| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536 |
- /*
- * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include <string.h>
- #include <sys/param.h>
- #include "unity.h"
- #include "test_utils.h" // unity_send_signal
- #include "driver/uart.h" // for the uart driver access
- #include "esp_log.h"
- #include "esp_system.h" // for uint32_t esp_random()
- #include "esp_rom_gpio.h"
- #include "soc/uart_periph.h"
- #include "hal/uart_ll.h"
- #include "hal/uart_hal.h"
- #define UART_TAG "Uart"
- #define UART_NUM1 (UART_NUM_1)
- #define BUF_SIZE (100)
- #define UART1_RX_PIN (22)
- #define UART1_TX_PIN (23)
- #define UART_BAUD_11520 (11520)
- #define UART_BAUD_115200 (115200)
- #define TOLERANCE (0.02) //baud rate error tolerance 2%.
- #define UART1_CTS_PIN (13)
- // RTS for RS485 Half-Duplex Mode manages DE/~RE
- #define UART1_RTS_PIN (18)
- // Number of packets to be send during test
- #define PACKETS_NUMBER (10)
- // Wait timeout for uart driver
- #define PACKET_READ_TICS (1000 / portTICK_RATE_MS)
- #define TEST_DEFAULT_CLK UART_SCLK_APB
- static void uart_config(uint32_t baud_rate, uart_sclk_t source_clk)
- {
- uart_config_t uart_config = {
- .baud_rate = baud_rate,
- .source_clk = source_clk,
- .data_bits = UART_DATA_8_BITS,
- .parity = UART_PARITY_DISABLE,
- .stop_bits = UART_STOP_BITS_1,
- .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
- };
- uart_driver_install(UART_NUM1, BUF_SIZE * 2, BUF_SIZE * 2, 20, NULL, 0);
- uart_param_config(UART_NUM1, &uart_config);
- TEST_ESP_OK(uart_set_loop_back(UART_NUM1, true));
- }
- static volatile bool exit_flag;
- static void test_task(void *pvParameters)
- {
- xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
- char* data = (char *) malloc(256);
- while (exit_flag == false) {
- uart_tx_chars(UART_NUM1, data, 256);
- // The uart_wait_tx_done() function does not block anything if ticks_to_wait = 0.
- uart_wait_tx_done(UART_NUM1, 0);
- }
- free(data);
- xSemaphoreGive(*sema);
- vTaskDelete(NULL);
- }
- static void test_task2(void *pvParameters)
- {
- while (exit_flag == false) {
- // This task obstruct a setting tx_done_sem semaphore in the UART interrupt.
- // It leads to waiting the ticks_to_wait time in uart_wait_tx_done() function.
- uart_disable_tx_intr(UART_NUM1);
- }
- vTaskDelete(NULL);
- }
- TEST_CASE("test uart_wait_tx_done is not blocked when ticks_to_wait=0", "[uart]")
- {
- uart_config(UART_BAUD_11520, TEST_DEFAULT_CLK);
- xSemaphoreHandle exit_sema = xSemaphoreCreateBinary();
- exit_flag = false;
- xTaskCreate(test_task, "tsk1", 2048, &exit_sema, 5, NULL);
- xTaskCreate(test_task2, "tsk2", 2048, NULL, 5, NULL);
- printf("Waiting for 5 sec\n");
- vTaskDelay(5000 / portTICK_PERIOD_MS);
- exit_flag = true;
- if (xSemaphoreTake(exit_sema, 1000 / portTICK_PERIOD_MS) == pdTRUE) {
- vSemaphoreDelete(exit_sema);
- } else {
- TEST_FAIL_MESSAGE("uart_wait_tx_done is blocked");
- }
- TEST_ESP_OK(uart_driver_delete(UART_NUM1));
- }
- TEST_CASE("test uart get baud-rate", "[uart]")
- {
- #if SOC_UART_SUPPORT_REF_TICK
- uint32_t baud_rate1 = 0;
- printf("init uart%d, use reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_11520);
- uart_config(UART_BAUD_11520, UART_SCLK_REF_TICK);
- uart_get_baudrate(UART_NUM1, &baud_rate1);
- printf("get baud rate when use reftick: %d\n", (int)baud_rate1);
- TEST_ASSERT_UINT32_WITHIN(UART_BAUD_11520 * TOLERANCE, UART_BAUD_11520, baud_rate1);
- #endif
- uint32_t baud_rate2 = 0;
- printf("init uart%d, unuse reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_115200);
- uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
- uart_get_baudrate(UART_NUM1, &baud_rate2);
- printf("get baud rate when don't use reftick: %d\n", (int)baud_rate2);
- TEST_ASSERT_UINT32_WITHIN(UART_BAUD_115200 * TOLERANCE, UART_BAUD_115200, baud_rate2);
- uart_driver_delete(UART_NUM1);
- ESP_LOGI(UART_TAG, "get baud-rate test passed ....\n");
- }
- TEST_CASE("test uart tx data with break", "[uart]")
- {
- const int buf_len = 200;
- const int send_len = 128;
- const int brk_len = 10;
- char *psend = (char *)malloc(buf_len);
- TEST_ASSERT_NOT_NULL(psend);
- memset(psend, '0', buf_len);
- uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
- printf("Uart%d send %d bytes with break\n", UART_NUM1, send_len);
- uart_write_bytes_with_break(UART_NUM1, (const char *)psend, send_len, brk_len);
- uart_wait_tx_done(UART_NUM1, (portTickType)portMAX_DELAY);
- //If the code is running here, it means the test passed, otherwise it will crash due to the interrupt wdt timeout.
- printf("Send data with break test passed\n");
- free(psend);
- uart_driver_delete(UART_NUM1);
- }
- static void uart_word_len_set_get_test(int uart_num)
- {
- printf("uart word len set and get test\n");
- uart_word_length_t word_length_set = 0;
- uart_word_length_t word_length_get = 0;
- for (int i = 0; i < UART_DATA_BITS_MAX; i++) {
- word_length_set = UART_DATA_5_BITS + i;
- TEST_ESP_OK(uart_set_word_length(uart_num, word_length_set));
- TEST_ESP_OK(uart_get_word_length(uart_num, &word_length_get));
- TEST_ASSERT_EQUAL(word_length_set, word_length_get);
- }
- }
- static void uart_stop_bit_set_get_test(int uart_num)
- {
- printf("uart stop bit set and get test\n");
- uart_stop_bits_t stop_bit_set = 0;
- uart_stop_bits_t stop_bit_get = 0;
- for (int i = UART_STOP_BITS_1; i < UART_STOP_BITS_MAX; i++) {
- stop_bit_set = i;
- TEST_ESP_OK(uart_set_stop_bits(uart_num, stop_bit_set));
- TEST_ESP_OK(uart_get_stop_bits(uart_num, &stop_bit_get));
- TEST_ASSERT_EQUAL(stop_bit_set, stop_bit_get);
- }
- }
- static void uart_parity_set_get_test(int uart_num)
- {
- printf("uart parity set and get test\n");
- uart_parity_t parity_set[3] = {
- UART_PARITY_DISABLE,
- UART_PARITY_EVEN,
- UART_PARITY_ODD,
- };
- uart_parity_t parity_get = 0;
- for (int i = 0; i < 3; i++) {
- TEST_ESP_OK(uart_set_parity(uart_num, parity_set[i]));
- TEST_ESP_OK(uart_get_parity(uart_num, &parity_get));
- TEST_ASSERT_EQUAL(parity_set[i], parity_get);
- }
- }
- static void uart_hw_flow_set_get_test(int uart_num)
- {
- printf("uart hw flow control set and get test\n");
- uart_hw_flowcontrol_t flowcontrol_set = 0;
- uart_hw_flowcontrol_t flowcontrol_get = 0;
- for (int i = 0; i < UART_HW_FLOWCTRL_DISABLE; i++) {
- TEST_ESP_OK(uart_set_hw_flow_ctrl(uart_num, flowcontrol_set, 20));
- TEST_ESP_OK(uart_get_hw_flow_ctrl(uart_num, &flowcontrol_get));
- TEST_ASSERT_EQUAL(flowcontrol_set, flowcontrol_get);
- }
- }
- static void uart_wakeup_set_get_test(int uart_num)
- {
- printf("uart wake up set and get test\n");
- int wake_up_set = 0;
- int wake_up_get = 0;
- for (int i = 3; i < 0x3ff; i++) {
- wake_up_set = i;
- TEST_ESP_OK(uart_set_wakeup_threshold(uart_num, wake_up_set));
- TEST_ESP_OK(uart_get_wakeup_threshold(uart_num, &wake_up_get));
- TEST_ASSERT_EQUAL(wake_up_set, wake_up_get);
- }
- }
- TEST_CASE("uart general API test", "[uart]")
- {
- const int uart_num = UART_NUM1;
- uart_config_t uart_config = {
- .baud_rate = 115200,
- .data_bits = UART_DATA_8_BITS,
- .parity = UART_PARITY_DISABLE,
- .stop_bits = UART_STOP_BITS_1,
- .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
- .source_clk = TEST_DEFAULT_CLK,
- };
- uart_param_config(uart_num, &uart_config);
- uart_word_len_set_get_test(uart_num);
- uart_stop_bit_set_get_test(uart_num);
- uart_parity_set_get_test(uart_num);
- uart_hw_flow_set_get_test(uart_num);
- uart_wakeup_set_get_test(uart_num);
- }
- static void uart_write_task(void *param)
- {
- int uart_num = (int)param;
- uint8_t *tx_buf = (uint8_t *)malloc(1024);
- if(tx_buf == NULL) {
- TEST_FAIL_MESSAGE("tx buffer malloc fail");
- }
- for(int i = 1; i < 1023; i++) {
- tx_buf[i] = (i & 0xff);
- }
- for(int i = 0; i < 1024; i++) {
- //d[0] and d[1023] are header
- tx_buf[0] = (i & 0xff);
- tx_buf[1023] = ((~i) & 0xff);
- uart_write_bytes(uart_num, (const char*)tx_buf, 1024);
- uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
- }
- free(tx_buf);
- vTaskDelete(NULL);
- }
- /**
- * The following tests use loop back
- *
- * NOTE: In the following tests, because the internal loopback is enabled, the CTS signal is connected to
- * the RTS signal internally. However, On ESP32S3, they are not, and the CTS keeps the default level (which
- * is a high level). So the workaround is to map the CTS in_signal to a GPIO pin (here IO13 is used) and connect
- * the RTS output_signal to this IO.
- */
- TEST_CASE("uart read write test", "[uart]")
- {
- const int uart_num = UART_NUM1;
- uint8_t *rd_data = (uint8_t *)malloc(1024);
- if(rd_data == NULL) {
- TEST_FAIL_MESSAGE("rx buffer malloc fail");
- }
- uart_config_t uart_config = {
- .baud_rate = 2000000,
- .data_bits = UART_DATA_8_BITS,
- .parity = UART_PARITY_DISABLE,
- .stop_bits = UART_STOP_BITS_1,
- .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
- .source_clk = TEST_DEFAULT_CLK,
- .rx_flow_ctrl_thresh = 120
- };
- TEST_ESP_OK(uart_driver_install(uart_num, BUF_SIZE * 2, 0, 20, NULL, 0));
- TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
- TEST_ESP_OK(uart_set_loop_back(uart_num, true));
- TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
- //Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
- esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
- TEST_ESP_OK(uart_wait_tx_done(uart_num, portMAX_DELAY));
- vTaskDelay(1 / portTICK_PERIOD_MS); // make sure last byte has flushed from TX FIFO
- TEST_ESP_OK(uart_flush_input(uart_num));
- xTaskCreate(uart_write_task, "uart_write_task", 2048 * 4, (void *)uart_num, UNITY_FREERTOS_PRIORITY - 1, NULL);
- for (int i = 0; i < 1024; i++) {
- int bytes_remaining = 1024;
- memset(rd_data, 0, 1024);
- while (bytes_remaining) {
- int bytes_received = uart_read_bytes(uart_num, rd_data + 1024 - bytes_remaining, bytes_remaining, (TickType_t)1000);
- if (bytes_received < 0) {
- TEST_FAIL_MESSAGE("read timeout, uart read write test fail");
- }
- bytes_remaining -= bytes_received;
- }
- int check_fail_cnt = 0;
- if (rd_data[0] != (i & 0xff)) {
- printf("packet %d index check error at offset 0, expected 0x%02x\n", i, i);
- ++check_fail_cnt;
- }
- if (rd_data[1023] != ((~i) & 0xff)) {
- printf("packet %d index check error at offset 1023, expected 0x%02x\n", i, ((~i) & 0xff));
- ++check_fail_cnt;
- }
- for (int j = 1; j < 1023; j++) {
- if (rd_data[j] != (j & 0xff)) {
- printf("data mismatch in packet %d offset %d, expected 0x%02x got 0x%02x\n", i, j, (j & 0xff), rd_data[j]);
- ++check_fail_cnt;
- }
- if (check_fail_cnt > 10) {
- printf("(further checks skipped)\n");
- break;
- }
- }
- if (check_fail_cnt > 0) {
- ESP_LOG_BUFFER_HEX("rd_data", rd_data, 1024);
- TEST_FAIL();
- }
- }
- uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
- uart_driver_delete(uart_num);
- free(rd_data);
- }
- TEST_CASE("uart tx with ringbuffer test", "[uart]")
- {
- const int uart_num = UART_NUM1;
- uint8_t *rd_data = (uint8_t *)malloc(1024);
- uint8_t *wr_data = (uint8_t *)malloc(1024);
- if(rd_data == NULL || wr_data == NULL) {
- TEST_FAIL_MESSAGE("buffer malloc fail");
- }
- uart_config_t uart_config = {
- .baud_rate = 2000000,
- .data_bits = UART_DATA_8_BITS,
- .parity = UART_PARITY_DISABLE,
- .stop_bits = UART_STOP_BITS_1,
- .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
- .rx_flow_ctrl_thresh = 120,
- .source_clk = TEST_DEFAULT_CLK,
- };
- uart_wait_tx_idle_polling(uart_num);
- TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
- TEST_ESP_OK(uart_driver_install(uart_num, 1024 * 2, 1024 *2, 20, NULL, 0));
- TEST_ESP_OK(uart_set_loop_back(uart_num, true));
- TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
- //Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
- esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
- for (int i = 0; i < 1024; i++) {
- wr_data[i] = i;
- rd_data[i] = 0;
- }
- uart_write_bytes(uart_num, (const char*)wr_data, 1024);
- uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
- uart_read_bytes(uart_num, rd_data, 1024, (TickType_t)1000);
- TEST_ASSERT_EQUAL_HEX8_ARRAY(wr_data, rd_data, 1024);
- TEST_ESP_OK(uart_driver_delete(uart_num));
- free(rd_data);
- free(wr_data);
- }
- /* Global variable shared between the ISR and the test function */
- volatile uint32_t uart_isr_happened = 0;
- static void uart_custom_isr(void* arg) {
- (void) arg;
- /* Clear interrupt status and disable TX interrupt here in order to
- * prevent an infinite call loop. Use the LL function to prevent
- * entering a critical section from an interrupt. */
- uart_ll_disable_intr_mask(UART_LL_GET_HW(1), UART_INTR_TXFIFO_EMPTY);
- uart_clear_intr_status(UART_NUM_1, UART_INTR_TXFIFO_EMPTY);
- /* Mark the interrupt as serviced */
- uart_isr_happened = 1;
- }
- /**
- * This function shall always be executed by core 0.
- * This is required by `uart_isr_free`.
- */
- static void uart_test_custom_isr_core0(void* param) {
- /**
- * Setup the UART1 and make sure we can register and free a custom ISR
- */
- uart_config_t uart_config = {
- .baud_rate = 115200,
- .data_bits = UART_DATA_8_BITS,
- .parity = UART_PARITY_DISABLE,
- .stop_bits = UART_STOP_BITS_1,
- .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
- .source_clk = UART_SCLK_APB,
- };
- const uart_port_t uart_echo = UART_NUM_1;
- const int uart_tx = 4;
- const int uart_rx = 5;
- const int buf_size = 256;
- const int intr_alloc_flags = 0;
- const char msg[] = "hello world\n";
- uart_isr_handle_t handle = NULL;
- TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags));
- TEST_ESP_OK(uart_param_config(uart_echo, &uart_config));
- TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
- /* Prevent the custom ISR handler from being called if UART_INTR_BRK_DET interrupt occurs.
- * It shall only be called for TX interrupts. */
- uart_disable_intr_mask(uart_echo, UART_INTR_BRK_DET);
- /* Unregister the default ISR setup by the function call above */
- TEST_ESP_OK(uart_isr_free(uart_echo));
- TEST_ESP_OK(uart_isr_register(uart_echo, uart_custom_isr, NULL, intr_alloc_flags, &handle));
- /* Set the TX FIFO empty threshold to the size of the message we are sending,
- * make sure it is never 0 in any case */
- TEST_ESP_OK(uart_enable_tx_intr(uart_echo, true, MAX(sizeof(msg), 1)));
- uart_write_bytes(uart_echo, msg, sizeof(msg));
- /* 10ms will be enough to receive the interrupt */
- vTaskDelay(10 / portTICK_PERIOD_MS);
- /* Make sure the ISR occured */
- TEST_ASSERT_EQUAL(uart_isr_happened, 1);
- esp_rom_printf("ISR happened: %d\n", uart_isr_happened);
- TEST_ESP_OK(uart_isr_free(uart_echo));
- TEST_ESP_OK(uart_driver_delete(uart_echo));
- #if !CONFIG_FREERTOS_UNICORE
- TaskHandle_t* parent_task = (TaskHandle_t*) param;
- esp_rom_printf("Notifying caller\n");
- TEST_ASSERT(xTaskNotify(*parent_task, 0, eNoAction));
- vTaskDelete(NULL);
- #else
- (void) param;
- #endif //!CONFIG_FREERTOS_UNICORE
- }
- TEST_CASE("uart can register and free custom ISRs", "[uart]")
- {
- #if !CONFIG_FREERTOS_UNICORE
- TaskHandle_t task_handle;
- TaskHandle_t current_handler = xTaskGetCurrentTaskHandle();
- /* Run the test on a determianted core, do not allow the core to be changed
- * as we will manipulate ISRs. */
- BaseType_t ret = xTaskCreatePinnedToCore(uart_test_custom_isr_core0,
- "uart_test_custom_isr_core0_task",
- 2048,
- ¤t_handler,
- 5,
- &task_handle,
- 0);
- TEST_ASSERT(ret);
- TEST_ASSERT(xTaskNotifyWait(0, 0, NULL, 1000 / portTICK_PERIOD_MS));
- (void) task_handle;
- #else
- uart_test_custom_isr_core0(NULL);
- #endif //!CONFIG_FREERTOS_UNICORE
- }
- TEST_CASE("uart int state restored after flush", "[uart]")
- {
- /**
- * The first goal of this test is to make sure that when our RX FIFO is full,
- * we can continue receiving back data after flushing
- * For more details, check IDF-4374
- */
- uart_config_t uart_config = {
- .baud_rate = 115200,
- .data_bits = UART_DATA_8_BITS,
- .parity = UART_PARITY_DISABLE,
- .stop_bits = UART_STOP_BITS_1,
- .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
- .source_clk = UART_SCLK_APB,
- };
- const uart_port_t uart_echo = UART_NUM_1;
- const int uart_tx_signal = U1TXD_OUT_IDX;
- const int uart_tx = 4;
- const int uart_rx = 5;
- const int buf_size = 256;
- const int intr_alloc_flags = 0;
- TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags));
- TEST_ESP_OK(uart_param_config(uart_echo, &uart_config));
- TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
- /* Make sure UART2's RX signal is connected to TX pin
- * This creates a loop that lets us receive anything we send on the UART */
- esp_rom_gpio_connect_out_signal(uart_rx, uart_tx_signal, false, false);
- uint8_t *data = (uint8_t *) malloc(buf_size);
- TEST_ASSERT_NOT_NULL(data);
- uart_write_bytes(uart_echo, (const char *) data, buf_size);
- /* As we set up a loopback, we can read them back on RX */
- int len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
- TEST_ASSERT_EQUAL(len, buf_size);
- /* Fill the RX buffer, this should disable the RX interrupts */
- int written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
- TEST_ASSERT_NOT_EQUAL(-1, written);
- written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
- TEST_ASSERT_NOT_EQUAL(-1, written);
- written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
- TEST_ASSERT_NOT_EQUAL(-1, written);
- /* Flush the input buffer, RX interrupts should be re-enabled */
- uart_flush_input(uart_echo);
- written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
- TEST_ASSERT_NOT_EQUAL(-1, written);
- len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
- /* len equals buf_size bytes if interrupts were indeed re-enabled */
- TEST_ASSERT_EQUAL(len, buf_size);
- /**
- * Second test, make sure that if we explicitly disable the RX interrupts,
- * they are NOT re-enabled after flushing
- * To do so, start by cleaning the RX FIFO, disable the RX interrupts,
- * flush again, send data to the UART and check that we haven't received
- * any of the bytes */
- uart_flush_input(uart_echo);
- uart_disable_rx_intr(uart_echo);
- uart_flush_input(uart_echo);
- written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
- TEST_ASSERT_NOT_EQUAL(-1, written);
- len = uart_read_bytes(uart_echo, data, buf_size, 250 / portTICK_RATE_MS);
- TEST_ASSERT_EQUAL(len, 0);
- TEST_ESP_OK(uart_driver_delete(uart_echo));
- free(data);
- }
|