flash_ops.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. /*
  2. * SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <assert.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <sys/param.h> // For MIN/MAX(a, b)
  11. #include <freertos/FreeRTOS.h>
  12. #include <freertos/task.h>
  13. #include <freertos/semphr.h>
  14. #include <soc/soc.h>
  15. #include <soc/soc_memory_layout.h>
  16. #include "sdkconfig.h"
  17. #include "esp_attr.h"
  18. #include "esp_spi_flash.h"
  19. #include "esp_log.h"
  20. #include "esp_private/system_internal.h"
  21. #include "esp_private/spi_flash_os.h"
  22. #if CONFIG_IDF_TARGET_ESP32
  23. #include "esp32/rom/cache.h"
  24. #include "esp32/rom/spi_flash.h"
  25. #include "esp32/clk.h"
  26. #elif CONFIG_IDF_TARGET_ESP32S2
  27. #include "esp32s2/rom/cache.h"
  28. #include "esp32s2/rom/spi_flash.h"
  29. #include "esp32s2/clk.h"
  30. #elif CONFIG_IDF_TARGET_ESP32S3
  31. #include "soc/spi_mem_reg.h"
  32. #include "esp32s3/rom/spi_flash.h"
  33. #include "esp32s3/rom/opi_flash.h"
  34. #include "esp32s3/rom/cache.h"
  35. #include "esp32s3/clk.h"
  36. #include "esp32s3/clk.h"
  37. #include "esp32s3/opi_flash_private.h"
  38. #elif CONFIG_IDF_TARGET_ESP32C3
  39. #include "esp32c3/rom/cache.h"
  40. #include "esp32c3/rom/spi_flash.h"
  41. #include "esp32c3/clk.h"
  42. #elif CONFIG_IDF_TARGET_ESP32H2
  43. #include "esp32h2/rom/cache.h"
  44. #include "esp32h2/rom/spi_flash.h"
  45. #include "esp32h2/clk.h"
  46. #endif
  47. #include "esp_flash_partitions.h"
  48. #include "cache_utils.h"
  49. #include "esp_flash.h"
  50. #include "esp_attr.h"
  51. #include "bootloader_flash.h"
  52. #include "esp_compiler.h"
  53. esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_addr, const void *src, size_t size);
  54. /* bytes erased by SPIEraseBlock() ROM function */
  55. #define BLOCK_ERASE_SIZE 65536
  56. /* Limit number of bytes written/read in a single SPI operation,
  57. as these operations disable all higher priority tasks from running.
  58. */
  59. #ifdef CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
  60. #define MAX_WRITE_CHUNK CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
  61. #else
  62. #define MAX_WRITE_CHUNK 8192
  63. #endif // CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
  64. #define MAX_READ_CHUNK 16384
  65. static const char *TAG __attribute__((unused)) = "spi_flash";
  66. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  67. static spi_flash_counters_t s_flash_stats;
  68. #define COUNTER_START() uint32_t ts_begin = cpu_hal_get_cycle_count()
  69. #define COUNTER_STOP(counter) \
  70. do{ \
  71. s_flash_stats.counter.count++; \
  72. s_flash_stats.counter.time += (cpu_hal_get_cycle_count() - ts_begin) / (esp_clk_cpu_freq() / 1000000); \
  73. } while(0)
  74. #define COUNTER_ADD_BYTES(counter, size) \
  75. do { \
  76. s_flash_stats.counter.bytes += size; \
  77. } while (0)
  78. #else
  79. #define COUNTER_START()
  80. #define COUNTER_STOP(counter)
  81. #define COUNTER_ADD_BYTES(counter, size)
  82. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
  83. #if CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  84. static esp_err_t spi_flash_translate_rc(esp_rom_spiflash_result_t rc);
  85. #endif //CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  86. static bool is_safe_write_address(size_t addr, size_t size);
  87. static void spi_flash_os_yield(void);
  88. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
  89. .start = spi_flash_disable_interrupts_caches_and_other_cpu,
  90. .end = spi_flash_enable_interrupts_caches_and_other_cpu,
  91. .op_lock = spi_flash_op_lock,
  92. .op_unlock = spi_flash_op_unlock,
  93. #if !CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  94. .is_safe_write_address = is_safe_write_address,
  95. #endif
  96. .yield = spi_flash_os_yield,
  97. };
  98. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
  99. .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
  100. .end = spi_flash_enable_interrupts_caches_no_os,
  101. .op_lock = NULL,
  102. .op_unlock = NULL,
  103. #if !CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  104. .is_safe_write_address = NULL,
  105. #endif
  106. .yield = NULL,
  107. };
  108. #ifdef CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS
  109. #define UNSAFE_WRITE_ADDRESS abort()
  110. #else
  111. #define UNSAFE_WRITE_ADDRESS return false
  112. #endif
  113. /* CHECK_WRITE_ADDRESS macro to fail writes which land in the
  114. bootloader, partition table, or running application region.
  115. */
  116. #if CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  117. #define CHECK_WRITE_ADDRESS(ADDR, SIZE)
  118. #else /* FAILS or ABORTS */
  119. #define CHECK_WRITE_ADDRESS(ADDR, SIZE) do { \
  120. if (guard && guard->is_safe_write_address && !guard->is_safe_write_address(ADDR, SIZE)) { \
  121. return ESP_ERR_INVALID_ARG; \
  122. } \
  123. } while(0)
  124. #endif // CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  125. static __attribute__((unused)) bool is_safe_write_address(size_t addr, size_t size)
  126. {
  127. if (!esp_partition_main_flash_region_safe(addr, size)) {
  128. UNSAFE_WRITE_ADDRESS;
  129. }
  130. return true;
  131. }
  132. #if CONFIG_SPI_FLASH_ROM_IMPL
  133. #include "esp_heap_caps.h"
  134. typedef void *(*malloc_internal_cb_t)(size_t size);
  135. void IRAM_ATTR *spi_flash_malloc_internal(size_t size)
  136. {
  137. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
  138. }
  139. #endif
  140. void IRAM_ATTR esp_mspi_pin_init(void)
  141. {
  142. #if CONFIG_ESPTOOLPY_OCT_FLASH || CONFIG_SPIRAM_MODE_OCT
  143. esp_rom_opiflash_pin_config();
  144. extern void spi_timing_set_pin_drive_strength(void);
  145. spi_timing_set_pin_drive_strength();
  146. #else
  147. //Set F4R4 board pin drive strength. TODO: IDF-3663
  148. #endif
  149. }
  150. esp_err_t IRAM_ATTR spi_flash_init_chip_state(void)
  151. {
  152. #if CONFIG_ESPTOOLPY_OCT_FLASH
  153. return esp_opiflash_init(rom_spiflash_legacy_data->chip.device_id);
  154. #else
  155. //currently we don't need other setup for initialising Quad Flash
  156. return ESP_OK;
  157. #endif
  158. }
  159. void spi_flash_init(void)
  160. {
  161. spi_flash_init_lock();
  162. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  163. spi_flash_reset_counters();
  164. #endif
  165. #if CONFIG_SPI_FLASH_ROM_IMPL
  166. spi_flash_guard_set(&g_flash_guard_default_ops);
  167. /* These two functions are in ROM only */
  168. extern void spi_flash_mmap_os_func_set(void *(*func1)(size_t size), void (*func2)(void *p));
  169. spi_flash_mmap_os_func_set(spi_flash_malloc_internal, heap_caps_free);
  170. extern esp_err_t spi_flash_mmap_page_num_init(uint32_t page_num);
  171. spi_flash_mmap_page_num_init(128);
  172. #endif
  173. }
  174. #if !CONFIG_SPI_FLASH_ROM_IMPL
  175. static const spi_flash_guard_funcs_t *s_flash_guard_ops;
  176. void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t *funcs)
  177. {
  178. s_flash_guard_ops = funcs;
  179. }
  180. const spi_flash_guard_funcs_t *IRAM_ATTR spi_flash_guard_get(void)
  181. {
  182. return s_flash_guard_ops;
  183. }
  184. #endif
  185. size_t IRAM_ATTR spi_flash_get_chip_size(void)
  186. {
  187. return g_rom_flashchip.chip_size;
  188. }
  189. static inline void IRAM_ATTR spi_flash_guard_start(void)
  190. {
  191. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  192. if (guard && guard->start) {
  193. guard->start();
  194. }
  195. }
  196. static inline void IRAM_ATTR spi_flash_guard_end(void)
  197. {
  198. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  199. if (guard && guard->end) {
  200. guard->end();
  201. }
  202. }
  203. static inline void IRAM_ATTR spi_flash_guard_op_lock(void)
  204. {
  205. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  206. if (guard && guard->op_lock) {
  207. guard->op_lock();
  208. }
  209. }
  210. static inline void IRAM_ATTR spi_flash_guard_op_unlock(void)
  211. {
  212. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  213. if (guard && guard->op_unlock) {
  214. guard->op_unlock();
  215. }
  216. }
  217. static void IRAM_ATTR spi_flash_os_yield(void)
  218. {
  219. #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
  220. if (likely(xTaskGetSchedulerState() == taskSCHEDULER_RUNNING)) {
  221. vTaskDelay(CONFIG_SPI_FLASH_ERASE_YIELD_TICKS);
  222. }
  223. #endif
  224. }
  225. #ifdef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  226. static esp_rom_spiflash_result_t IRAM_ATTR spi_flash_unlock(void)
  227. {
  228. static bool unlocked = false;
  229. if (!unlocked) {
  230. spi_flash_guard_start();
  231. bootloader_flash_unlock();
  232. spi_flash_guard_end();
  233. unlocked = true;
  234. }
  235. return ESP_ROM_SPIFLASH_RESULT_OK;
  236. }
  237. #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  238. esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
  239. {
  240. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  241. CHECK_WRITE_ADDRESS(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  242. return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  243. }
  244. #ifdef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  245. //deprecated, only used in compatible mode
  246. esp_err_t IRAM_ATTR spi_flash_erase_range(size_t start_addr, size_t size)
  247. {
  248. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  249. CHECK_WRITE_ADDRESS(start_addr, size);
  250. if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
  251. return ESP_ERR_INVALID_ARG;
  252. }
  253. if (size % SPI_FLASH_SEC_SIZE != 0) {
  254. return ESP_ERR_INVALID_SIZE;
  255. }
  256. if (size + start_addr > spi_flash_get_chip_size()) {
  257. return ESP_ERR_INVALID_SIZE;
  258. }
  259. size_t start = start_addr / SPI_FLASH_SEC_SIZE;
  260. size_t end = start + size / SPI_FLASH_SEC_SIZE;
  261. const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
  262. COUNTER_START();
  263. esp_rom_spiflash_result_t rc;
  264. rc = spi_flash_unlock();
  265. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  266. #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
  267. int64_t no_yield_time_us = 0;
  268. #endif
  269. for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) {
  270. #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
  271. int64_t start_time_us = esp_system_get_time();
  272. #endif
  273. spi_flash_guard_start();
  274. #ifndef CONFIG_SPI_FLASH_BYPASS_BLOCK_ERASE
  275. if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) {
  276. rc = esp_rom_spiflash_erase_block(sector / sectors_per_block);
  277. sector += sectors_per_block;
  278. COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE);
  279. } else
  280. #endif
  281. {
  282. rc = esp_rom_spiflash_erase_sector(sector);
  283. ++sector;
  284. COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE);
  285. }
  286. spi_flash_guard_end();
  287. #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
  288. no_yield_time_us += (esp_system_get_time() - start_time_us);
  289. if (no_yield_time_us / 1000 >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS) {
  290. no_yield_time_us = 0;
  291. if (s_flash_guard_ops && s_flash_guard_ops->yield) {
  292. s_flash_guard_ops->yield();
  293. }
  294. }
  295. #endif
  296. }
  297. }
  298. COUNTER_STOP(erase);
  299. spi_flash_guard_start();
  300. // Ensure WEL is 0 after the operation, even if the erase failed.
  301. esp_rom_spiflash_write_disable();
  302. spi_flash_check_and_flush_cache(start_addr, size);
  303. spi_flash_guard_end();
  304. return spi_flash_translate_rc(rc);
  305. }
  306. /* Wrapper around esp_rom_spiflash_write() that verifies data as written if CONFIG_SPI_FLASH_VERIFY_WRITE is set.
  307. If CONFIG_SPI_FLASH_VERIFY_WRITE is not set, this is esp_rom_spiflash_write().
  308. */
  309. static IRAM_ATTR esp_rom_spiflash_result_t spi_flash_write_inner(uint32_t target, const uint32_t *src_addr, int32_t len)
  310. {
  311. #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
  312. return esp_rom_spiflash_write(target, src_addr, len);
  313. #else // CONFIG_SPI_FLASH_VERIFY_WRITE
  314. esp_rom_spiflash_result_t res = ESP_ROM_SPIFLASH_RESULT_OK;
  315. assert(len % sizeof(uint32_t) == 0);
  316. uint32_t before_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  317. uint32_t after_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  318. uint32_t *expected_buf = before_buf;
  319. int32_t remaining = len;
  320. for(int i = 0; i < len; i += sizeof(before_buf)) {
  321. int i_w = i / sizeof(uint32_t); // index in words (i is an index in bytes)
  322. int32_t read_len = MIN(sizeof(before_buf), remaining);
  323. // Read "before" contents from flash
  324. res = esp_rom_spiflash_read(target + i, before_buf, read_len);
  325. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  326. break;
  327. }
  328. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  329. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  330. uint32_t write = src_addr[i_w + r_w];
  331. uint32_t before = before_buf[r_w];
  332. uint32_t expected = write & before;
  333. #ifdef CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
  334. if ((before & write) != write) {
  335. spi_flash_guard_end();
  336. ESP_LOGW(TAG, "Write at offset 0x%x requests 0x%08x but will write 0x%08x -> 0x%08x",
  337. target + i + r, write, before, before & write);
  338. spi_flash_guard_start();
  339. }
  340. #endif
  341. expected_buf[r_w] = expected;
  342. }
  343. res = esp_rom_spiflash_write(target + i, &src_addr[i_w], read_len);
  344. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  345. break;
  346. }
  347. res = esp_rom_spiflash_read(target + i, after_buf, read_len);
  348. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  349. break;
  350. }
  351. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  352. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  353. uint32_t expected = expected_buf[r_w];
  354. uint32_t actual = after_buf[r_w];
  355. if (expected != actual) {
  356. #ifdef CONFIG_SPI_FLASH_LOG_FAILED_WRITE
  357. spi_flash_guard_end();
  358. ESP_LOGE(TAG, "Bad write at offset 0x%x expected 0x%08x readback 0x%08x", target + i + r, expected, actual);
  359. spi_flash_guard_start();
  360. #endif
  361. res = ESP_ROM_SPIFLASH_RESULT_ERR;
  362. }
  363. }
  364. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  365. break;
  366. }
  367. remaining -= read_len;
  368. }
  369. return res;
  370. #endif // CONFIG_SPI_FLASH_VERIFY_WRITE
  371. }
  372. esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
  373. {
  374. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  375. CHECK_WRITE_ADDRESS(dst, size);
  376. // Out of bound writes are checked in ROM code, but we can give better
  377. // error code here
  378. if (dst + size > g_rom_flashchip.chip_size) {
  379. return ESP_ERR_INVALID_SIZE;
  380. }
  381. if (size == 0) {
  382. return ESP_OK;
  383. }
  384. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  385. COUNTER_START();
  386. const uint8_t *srcc = (const uint8_t *) srcv;
  387. /*
  388. * Large operations are split into (up to) 3 parts:
  389. * - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
  390. * - Middle part
  391. * - Right padding: 4 bytes from the last 4-byte aligned offset covered.
  392. */
  393. size_t left_off = dst & ~3U;
  394. size_t left_size = MIN(((dst + 3) & ~3U) - dst, size);
  395. size_t mid_off = left_size;
  396. size_t mid_size = (size - left_size) & ~3U;
  397. size_t right_off = left_size + mid_size;
  398. size_t right_size = size - mid_size - left_size;
  399. rc = spi_flash_unlock();
  400. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  401. goto out;
  402. }
  403. if (left_size > 0) {
  404. uint32_t t = 0xffffffff;
  405. memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
  406. spi_flash_guard_start();
  407. rc = spi_flash_write_inner(left_off, &t, 4);
  408. spi_flash_guard_end();
  409. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  410. goto out;
  411. }
  412. COUNTER_ADD_BYTES(write, 4);
  413. }
  414. if (mid_size > 0) {
  415. /* If src buffer is 4-byte aligned as well and is not in a region that requires cache access to be enabled, we
  416. * can write directly without buffering in RAM. */
  417. #ifdef ESP_PLATFORM
  418. bool direct_write = esp_ptr_internal(srcc)
  419. && esp_ptr_byte_accessible(srcc)
  420. && ((uintptr_t) srcc + mid_off) % 4 == 0;
  421. #else
  422. bool direct_write = true;
  423. #endif
  424. while(mid_size > 0 && rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  425. uint32_t write_buf[8];
  426. uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK);
  427. const uint8_t *write_src = srcc + mid_off;
  428. if (!direct_write) {
  429. write_size = MIN(write_size, sizeof(write_buf));
  430. memcpy(write_buf, write_src, write_size);
  431. write_src = (const uint8_t *)write_buf;
  432. }
  433. spi_flash_guard_start();
  434. rc = spi_flash_write_inner(dst + mid_off, (const uint32_t *) write_src, write_size);
  435. spi_flash_guard_end();
  436. COUNTER_ADD_BYTES(write, write_size);
  437. mid_size -= write_size;
  438. mid_off += write_size;
  439. }
  440. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  441. goto out;
  442. }
  443. }
  444. if (right_size > 0) {
  445. uint32_t t = 0xffffffff;
  446. memcpy(&t, srcc + right_off, right_size);
  447. spi_flash_guard_start();
  448. rc = spi_flash_write_inner(dst + right_off, &t, 4);
  449. spi_flash_guard_end();
  450. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  451. goto out;
  452. }
  453. COUNTER_ADD_BYTES(write, 4);
  454. }
  455. out:
  456. COUNTER_STOP(write);
  457. spi_flash_guard_start();
  458. // Ensure WEL is 0 after the operation, even if the write failed.
  459. esp_rom_spiflash_write_disable();
  460. spi_flash_check_and_flush_cache(dst, size);
  461. spi_flash_guard_end();
  462. return spi_flash_translate_rc(rc);
  463. }
  464. #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  465. #if !CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  466. #if !CONFIG_ESPTOOLPY_OCT_FLASH // Test for encryption on opi flash, IDF-3852.
  467. extern void spi_common_set_dummy_output(esp_rom_spiflash_read_mode_t mode);
  468. extern void spi_dummy_len_fix(uint8_t spi, uint8_t freqdiv);
  469. void IRAM_ATTR flash_rom_init(void)
  470. {
  471. uint32_t freqdiv = 0;
  472. #if CONFIG_IDF_TARGET_ESP32
  473. uint32_t dummy_bit = 0;
  474. #if CONFIG_ESPTOOLPY_FLASHFREQ_80M
  475. dummy_bit = ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M;
  476. #elif CONFIG_ESPTOOLPY_FLASHFREQ_40M
  477. dummy_bit = ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M;
  478. #elif CONFIG_ESPTOOLPY_FLASHFREQ_26M
  479. dummy_bit = ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_26M;
  480. #elif CONFIG_ESPTOOLPY_FLASHFREQ_20M
  481. dummy_bit = ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_20M;
  482. #endif
  483. #endif//CONFIG_IDF_TARGET_ESP32
  484. #if CONFIG_ESPTOOLPY_FLASHFREQ_80M
  485. freqdiv = 1;
  486. #elif CONFIG_ESPTOOLPY_FLASHFREQ_40M
  487. freqdiv = 2;
  488. #elif CONFIG_ESPTOOLPY_FLASHFREQ_26M
  489. freqdiv = 3;
  490. #elif CONFIG_ESPTOOLPY_FLASHFREQ_20M
  491. freqdiv = 4;
  492. #endif
  493. #if !CONFIG_IDF_TARGET_ESP32S2 && !CONFIG_IDF_TARGET_ESP32
  494. esp_rom_spiflash_read_mode_t read_mode;
  495. #if CONFIG_ESPTOOLPY_FLASHMODE_QIO
  496. read_mode = ESP_ROM_SPIFLASH_QIO_MODE;
  497. #elif CONFIG_ESPTOOLPY_FLASHMODE_QOUT
  498. read_mode = ESP_ROM_SPIFLASH_QOUT_MODE;
  499. #elif CONFIG_ESPTOOLPY_FLASHMODE_DIO
  500. read_mode = ESP_ROM_SPIFLASH_DIO_MODE;
  501. #elif CONFIG_ESPTOOLPY_FLASHMODE_DOUT
  502. read_mode = ESP_ROM_SPIFLASH_DOUT_MODE;
  503. #endif
  504. #endif //!CONFIG_IDF_TARGET_ESP32S2 && !CONFIG_IDF_TARGET_ESP32
  505. #if CONFIG_IDF_TARGET_ESP32
  506. g_rom_spiflash_dummy_len_plus[1] = dummy_bit;
  507. #else
  508. spi_dummy_len_fix(1, freqdiv);
  509. #endif //CONFIG_IDF_TARGET_ESP32
  510. #if !CONFIG_IDF_TARGET_ESP32S2 && !CONFIG_IDF_TARGET_ESP32
  511. spi_common_set_dummy_output(read_mode);
  512. #endif //!CONFIG_IDF_TARGET_ESP32S2
  513. esp_rom_spiflash_config_clk(freqdiv, 1);
  514. }
  515. #endif //CONFIG_ESPTOOLPY_OCT_FLASH
  516. #else
  517. void IRAM_ATTR flash_rom_init(void)
  518. {
  519. return;
  520. }
  521. esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
  522. {
  523. esp_err_t err = ESP_OK;
  524. const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
  525. CHECK_WRITE_ADDRESS(dest_addr, size);
  526. if ((dest_addr % 16) != 0) {
  527. return ESP_ERR_INVALID_ARG;
  528. }
  529. if ((size % 16) != 0) {
  530. return ESP_ERR_INVALID_SIZE;
  531. }
  532. COUNTER_START();
  533. esp_rom_spiflash_result_t rc = spi_flash_unlock();
  534. err = spi_flash_translate_rc(rc);
  535. if (err != ESP_OK) {
  536. goto fail;
  537. }
  538. #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
  539. err = spi_flash_write_encrypted_chip(dest_addr, src, size);
  540. COUNTER_ADD_BYTES(write, size);
  541. spi_flash_guard_start();
  542. esp_rom_spiflash_write_disable();
  543. spi_flash_check_and_flush_cache(dest_addr, size);
  544. spi_flash_guard_end();
  545. #else
  546. const uint32_t* src_w = (const uint32_t*)src;
  547. uint32_t read_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  548. int32_t remaining = size;
  549. for(int i = 0; i < size; i += sizeof(read_buf)) {
  550. int i_w = i / sizeof(uint32_t); // index in words (i is an index in bytes)
  551. int32_t read_len = MIN(sizeof(read_buf), remaining);
  552. // Read "before" contents from flash
  553. esp_err_t err = spi_flash_read(dest_addr + i, read_buf, read_len);
  554. if (err != ESP_OK) {
  555. break;
  556. }
  557. #ifdef CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
  558. //The written data cannot be predicted, so warning is shown if any of the bits is not 1.
  559. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  560. uint32_t before = read_buf[r / sizeof(uint32_t)];
  561. if (before != 0xFFFFFFFF) {
  562. ESP_LOGW(TAG, "Encrypted write at offset 0x%x but not erased (0x%08x)",
  563. dest_addr + i + r, before);
  564. }
  565. }
  566. #endif
  567. err = spi_flash_write_encrypted_chip(dest_addr + i, src + i, read_len);
  568. if (err != ESP_OK) {
  569. break;
  570. }
  571. COUNTER_ADD_BYTES(write, size);
  572. spi_flash_guard_start();
  573. esp_rom_spiflash_write_disable();
  574. spi_flash_check_and_flush_cache(dest_addr, size);
  575. spi_flash_guard_end();
  576. err = spi_flash_read_encrypted(dest_addr + i, read_buf, read_len);
  577. if (err != ESP_OK) {
  578. break;
  579. }
  580. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  581. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  582. uint32_t expected = src_w[i_w + r_w];
  583. uint32_t actual = read_buf[r_w];
  584. if (expected != actual) {
  585. #ifdef CONFIG_SPI_FLASH_LOG_FAILED_WRITE
  586. ESP_LOGE(TAG, "Bad write at offset 0x%x expected 0x%08x readback 0x%08x", dest_addr + i + r, expected, actual);
  587. #endif
  588. err = ESP_FAIL;
  589. }
  590. }
  591. if (err != ESP_OK) {
  592. break;
  593. }
  594. remaining -= read_len;
  595. }
  596. #endif // CONFIG_SPI_FLASH_VERIFY_WRITE
  597. fail:
  598. COUNTER_STOP(write);
  599. return err;
  600. }
  601. esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
  602. {
  603. // Out of bound reads are checked in ROM code, but we can give better
  604. // error code here
  605. if (src + size > g_rom_flashchip.chip_size) {
  606. return ESP_ERR_INVALID_SIZE;
  607. }
  608. if (size == 0) {
  609. return ESP_OK;
  610. }
  611. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  612. COUNTER_START();
  613. spi_flash_guard_start();
  614. /* To simplify boundary checks below, we handle small reads separately. */
  615. if (size < 16) {
  616. uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
  617. uint32_t read_src = src & ~3U;
  618. uint32_t left_off = src & 3U;
  619. uint32_t read_size = (left_off + size + 3) & ~3U;
  620. rc = esp_rom_spiflash_read(read_src, t, read_size);
  621. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  622. goto out;
  623. }
  624. COUNTER_ADD_BYTES(read, read_size);
  625. #ifdef ESP_PLATFORM
  626. if (esp_ptr_external_ram(dstv)) {
  627. spi_flash_guard_end();
  628. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  629. spi_flash_guard_start();
  630. } else {
  631. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  632. }
  633. #else
  634. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  635. #endif
  636. goto out;
  637. }
  638. uint8_t *dstc = (uint8_t *) dstv;
  639. intptr_t dsti = (intptr_t) dstc;
  640. /*
  641. * Large operations are split into (up to) 3 parts:
  642. * - The middle part: from the first 4-aligned position in src to the first
  643. * 4-aligned position in dst.
  644. */
  645. size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4));
  646. size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4));
  647. size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U;
  648. /*
  649. * - Once the middle part is in place, src_mid_off bytes from the preceding
  650. * 4-aligned source location are added on the left.
  651. */
  652. size_t pad_left_src = src & ~3U;
  653. size_t pad_left_size = src_mid_off;
  654. /*
  655. * - Finally, the right part is added: from the end of the middle part to
  656. * the end. Depending on the alignment of source and destination, this may
  657. * be a 4 or 8 byte read from pad_right_src.
  658. */
  659. size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U;
  660. size_t pad_right_off = (pad_right_src - src);
  661. size_t pad_right_size = (size - pad_right_off);
  662. #ifdef ESP_PLATFORM
  663. bool direct_read = esp_ptr_internal(dstc)
  664. && esp_ptr_byte_accessible(dstc)
  665. && ((uintptr_t) dstc + dst_mid_off) % 4 == 0;
  666. #else
  667. bool direct_read = true;
  668. #endif
  669. if (mid_size > 0) {
  670. uint32_t mid_remaining = mid_size;
  671. uint32_t mid_read = 0;
  672. while (mid_remaining > 0) {
  673. uint32_t read_size = MIN(mid_remaining, MAX_READ_CHUNK);
  674. uint32_t read_buf[8];
  675. uint8_t *read_dst_final = dstc + dst_mid_off + mid_read;
  676. uint8_t *read_dst = read_dst_final;
  677. if (!direct_read) {
  678. read_size = MIN(read_size, sizeof(read_buf));
  679. read_dst = (uint8_t *) read_buf;
  680. }
  681. rc = esp_rom_spiflash_read(src + src_mid_off + mid_read,
  682. (uint32_t *) read_dst, read_size);
  683. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  684. goto out;
  685. }
  686. mid_remaining -= read_size;
  687. mid_read += read_size;
  688. if (!direct_read) {
  689. spi_flash_guard_end();
  690. memcpy(read_dst_final, read_buf, read_size);
  691. spi_flash_guard_start();
  692. } else if (mid_remaining > 0) {
  693. /* Drop guard momentarily, allows other tasks to preempt */
  694. spi_flash_guard_end();
  695. spi_flash_guard_start();
  696. }
  697. }
  698. COUNTER_ADD_BYTES(read, mid_size);
  699. /*
  700. * If offsets in src and dst are different, perform an in-place shift
  701. * to put destination data into its final position.
  702. * Note that the shift can be left (src_mid_off < dst_mid_off) or right.
  703. */
  704. if (src_mid_off != dst_mid_off) {
  705. if (!direct_read) {
  706. spi_flash_guard_end();
  707. }
  708. memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size);
  709. if (!direct_read) {
  710. spi_flash_guard_start();
  711. }
  712. }
  713. }
  714. if (pad_left_size > 0) {
  715. uint32_t t;
  716. rc = esp_rom_spiflash_read(pad_left_src, &t, 4);
  717. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  718. goto out;
  719. }
  720. COUNTER_ADD_BYTES(read, 4);
  721. if (!direct_read) {
  722. spi_flash_guard_end();
  723. }
  724. memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size);
  725. if (!direct_read) {
  726. spi_flash_guard_start();
  727. }
  728. }
  729. if (pad_right_size > 0) {
  730. uint32_t t[2];
  731. int32_t read_size = (pad_right_size <= 4 ? 4 : 8);
  732. rc = esp_rom_spiflash_read(pad_right_src, t, read_size);
  733. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  734. goto out;
  735. }
  736. COUNTER_ADD_BYTES(read, read_size);
  737. if (!direct_read) {
  738. spi_flash_guard_end();
  739. }
  740. memcpy(dstc + pad_right_off, t, pad_right_size);
  741. if (!direct_read) {
  742. spi_flash_guard_start();
  743. }
  744. }
  745. out:
  746. spi_flash_guard_end();
  747. COUNTER_STOP(read);
  748. return spi_flash_translate_rc(rc);
  749. }
  750. #endif // !CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  751. esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size)
  752. {
  753. if (src + size > g_rom_flashchip.chip_size) {
  754. return ESP_ERR_INVALID_SIZE;
  755. }
  756. if (size == 0) {
  757. return ESP_OK;
  758. }
  759. esp_err_t err;
  760. const uint8_t *map;
  761. spi_flash_mmap_handle_t map_handle;
  762. size_t map_src = src & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
  763. size_t map_size = size + (src - map_src);
  764. err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle);
  765. if (err != ESP_OK) {
  766. return err;
  767. }
  768. memcpy(dstv, map + (src - map_src), size);
  769. spi_flash_munmap(map_handle);
  770. return err;
  771. }
  772. #if CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  773. static esp_err_t IRAM_ATTR spi_flash_translate_rc(esp_rom_spiflash_result_t rc)
  774. {
  775. switch (rc) {
  776. case ESP_ROM_SPIFLASH_RESULT_OK:
  777. return ESP_OK;
  778. case ESP_ROM_SPIFLASH_RESULT_TIMEOUT:
  779. return ESP_ERR_FLASH_OP_TIMEOUT;
  780. case ESP_ROM_SPIFLASH_RESULT_ERR:
  781. default:
  782. return ESP_ERR_FLASH_OP_FAIL;
  783. }
  784. }
  785. #endif //CONFIG_SPI_FLASH_USE_LEGACY_IMPL
  786. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  787. static inline void dump_counter(spi_flash_counter_t *counter, const char *name)
  788. {
  789. ESP_LOGI(TAG, "%s count=%8d time=%8dus bytes=%8d\n", name,
  790. counter->count, counter->time, counter->bytes);
  791. }
  792. const spi_flash_counters_t *spi_flash_get_counters(void)
  793. {
  794. return &s_flash_stats;
  795. }
  796. void spi_flash_reset_counters(void)
  797. {
  798. memset(&s_flash_stats, 0, sizeof(s_flash_stats));
  799. }
  800. void spi_flash_dump_counters(void)
  801. {
  802. dump_counter(&s_flash_stats.read, "read ");
  803. dump_counter(&s_flash_stats.write, "write");
  804. dump_counter(&s_flash_stats.erase, "erase");
  805. }
  806. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
  807. #if CONFIG_SPI_FLASH_USE_LEGACY_IMPL && !CONFIG_IDF_TARGET_ESP32
  808. // TODO esp32s2: Remove once ESP32-S2 & later chips has new SPI Flash API support
  809. esp_flash_t *esp_flash_default_chip = NULL;
  810. #endif
  811. void IRAM_ATTR spi_flash_set_rom_required_regs(void)
  812. {
  813. #if CONFIG_ESPTOOLPY_OCT_FLASH
  814. //Disable the variable dummy mode when doing timing tuning
  815. CLEAR_PERI_REG_MASK(SPI_MEM_DDR_REG(1), SPI_MEM_SPI_FMEM_VAR_DUMMY);
  816. /**
  817. * STR /DTR mode setting is done every time when `esp_rom_opiflash_exec_cmd` is called
  818. *
  819. * Add any registers that are not set in ROM SPI flash functions here in the future
  820. */
  821. #endif
  822. }
  823. void IRAM_ATTR spi_flash_set_vendor_required_regs(void)
  824. {
  825. #if CONFIG_ESPTOOLPY_OCT_FLASH
  826. //Flash chip requires MSPI specifically, call this function to set them
  827. esp_opiflash_set_required_regs();
  828. #else
  829. //currently we don't need to set other MSPI registers for Quad Flash
  830. #endif
  831. }