esp_efuse_utility.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. /*
  2. * SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <sys/param.h>
  7. #include "sdkconfig.h"
  8. #include "esp_log.h"
  9. #include "assert.h"
  10. #include "esp_efuse_utility.h"
  11. #include "soc/efuse_periph.h"
  12. #include "esp32c3/clk.h"
  13. #include "esp32c3/rom/efuse.h"
  14. static const char *TAG = "efuse";
  15. #ifdef CONFIG_EFUSE_VIRTUAL
  16. extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
  17. #endif // CONFIG_EFUSE_VIRTUAL
  18. /*Range addresses to read blocks*/
  19. const esp_efuse_range_addr_t range_read_addr_blocks[] = {
  20. {EFUSE_RD_WR_DIS_REG, EFUSE_RD_REPEAT_DATA4_REG}, // range address of EFUSE_BLK0 REPEAT
  21. {EFUSE_RD_MAC_SPI_SYS_0_REG, EFUSE_RD_MAC_SPI_SYS_5_REG}, // range address of EFUSE_BLK1 MAC_SPI_8M
  22. {EFUSE_RD_SYS_PART1_DATA0_REG, EFUSE_RD_SYS_PART1_DATA7_REG}, // range address of EFUSE_BLK2 SYS_DATA
  23. {EFUSE_RD_USR_DATA0_REG, EFUSE_RD_USR_DATA7_REG}, // range address of EFUSE_BLK3 USR_DATA
  24. {EFUSE_RD_KEY0_DATA0_REG, EFUSE_RD_KEY0_DATA7_REG}, // range address of EFUSE_BLK4 KEY0
  25. {EFUSE_RD_KEY1_DATA0_REG, EFUSE_RD_KEY1_DATA7_REG}, // range address of EFUSE_BLK5 KEY1
  26. {EFUSE_RD_KEY2_DATA0_REG, EFUSE_RD_KEY2_DATA7_REG}, // range address of EFUSE_BLK6 KEY2
  27. {EFUSE_RD_KEY3_DATA0_REG, EFUSE_RD_KEY3_DATA7_REG}, // range address of EFUSE_BLK7 KEY3
  28. {EFUSE_RD_KEY4_DATA0_REG, EFUSE_RD_KEY4_DATA7_REG}, // range address of EFUSE_BLK8 KEY4
  29. {EFUSE_RD_KEY5_DATA0_REG, EFUSE_RD_KEY5_DATA7_REG}, // range address of EFUSE_BLK9 KEY5
  30. {EFUSE_RD_SYS_PART2_DATA0_REG, EFUSE_RD_SYS_PART2_DATA7_REG} // range address of EFUSE_BLK10 KEY6
  31. };
  32. static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
  33. /*Range addresses to write blocks (it is not real regs, it is buffer) */
  34. const esp_efuse_range_addr_t range_write_addr_blocks[] = {
  35. {(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][5]},
  36. {(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][5]},
  37. {(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
  38. {(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
  39. {(uint32_t) &write_mass_blocks[EFUSE_BLK4][0], (uint32_t) &write_mass_blocks[EFUSE_BLK4][7]},
  40. {(uint32_t) &write_mass_blocks[EFUSE_BLK5][0], (uint32_t) &write_mass_blocks[EFUSE_BLK5][7]},
  41. {(uint32_t) &write_mass_blocks[EFUSE_BLK6][0], (uint32_t) &write_mass_blocks[EFUSE_BLK6][7]},
  42. {(uint32_t) &write_mass_blocks[EFUSE_BLK7][0], (uint32_t) &write_mass_blocks[EFUSE_BLK7][7]},
  43. {(uint32_t) &write_mass_blocks[EFUSE_BLK8][0], (uint32_t) &write_mass_blocks[EFUSE_BLK8][7]},
  44. {(uint32_t) &write_mass_blocks[EFUSE_BLK9][0], (uint32_t) &write_mass_blocks[EFUSE_BLK9][7]},
  45. {(uint32_t) &write_mass_blocks[EFUSE_BLK10][0], (uint32_t) &write_mass_blocks[EFUSE_BLK10][7]},
  46. };
  47. #ifndef CONFIG_EFUSE_VIRTUAL
  48. // Update Efuse timing configuration
  49. static esp_err_t esp_efuse_set_timing(void)
  50. {
  51. // efuse clock is fixed in ESP32-C3, so the ets_efuse_set_timing() function
  52. // takes an argument for compatibility with older ROM functions but it's ignored.
  53. int res = ets_efuse_set_timing(0);
  54. assert(res == 0);
  55. (void)res;
  56. REG_SET_FIELD(EFUSE_WR_TIM_CONF2_REG, EFUSE_PWR_OFF_NUM, 0x60);
  57. return ESP_OK;
  58. }
  59. #endif // ifndef CONFIG_EFUSE_VIRTUAL
  60. // Efuse read operation: copies data from physical efuses to efuse read registers.
  61. void esp_efuse_utility_clear_program_registers(void)
  62. {
  63. ets_efuse_read();
  64. ets_efuse_clear_program_registers();
  65. }
  66. // Burn values written to the efuse write registers
  67. void esp_efuse_utility_burn_chip(void)
  68. {
  69. #ifdef CONFIG_EFUSE_VIRTUAL
  70. ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
  71. for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
  72. int subblock = 0;
  73. for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
  74. virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
  75. }
  76. }
  77. #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
  78. esp_efuse_utility_write_efuses_to_flash();
  79. #endif
  80. #else
  81. if (esp_efuse_set_timing() != ESP_OK) {
  82. ESP_LOGE(TAG, "Efuse fields are not burnt");
  83. } else {
  84. // Permanently update values written to the efuse write registers
  85. // It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
  86. for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
  87. for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
  88. if (REG_READ(addr_wr_block) != 0) {
  89. if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
  90. uint8_t block_rs[12];
  91. ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
  92. memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
  93. }
  94. int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
  95. memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
  96. ets_efuse_program(num_block);
  97. break;
  98. }
  99. }
  100. }
  101. }
  102. #endif // CONFIG_EFUSE_VIRTUAL
  103. esp_efuse_utility_reset();
  104. }
  105. // After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
  106. // This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme.
  107. // The RS coding scheme does not require data changes for the encoded data. esp32s2 has special registers for this.
  108. // They will be filled during the burn operation.
  109. esp_err_t esp_efuse_utility_apply_new_coding_scheme()
  110. {
  111. // start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
  112. for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
  113. if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
  114. for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
  115. if (REG_READ(addr_wr_block)) {
  116. int num_reg = 0;
  117. for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) {
  118. if (esp_efuse_utility_read_reg(num_block, num_reg)) {
  119. ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
  120. return ESP_ERR_CODING;
  121. }
  122. }
  123. break;
  124. }
  125. }
  126. }
  127. }
  128. return ESP_OK;
  129. }