| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668 |
- /*
- * SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include <sys/param.h>
- #include "sdkconfig.h"
- #include "hal/adc_hal.h"
- #include "hal/adc_hal_conf.h"
- #include "hal/assert.h"
- #include "soc/lldesc.h"
- #include "soc/soc_caps.h"
- #if CONFIG_IDF_TARGET_ESP32
- //ADC utilises I2S0 DMA on ESP32
- #include "hal/i2s_ll.h"
- #include "hal/i2s_types.h"
- #include "soc/i2s_struct.h"
- #endif
- #if CONFIG_IDF_TARGET_ESP32S2
- //ADC utilises SPI3 DMA on ESP32S2
- #include "hal/spi_ll.h"
- #include "soc/spi_struct.h"
- #endif
- #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
- /*---------------------------------------------------------------
- Single Read
- ---------------------------------------------------------------*/
- /**
- * For chips without RTC controller, Digital controller is used to trigger an ADC single read.
- */
- #include "esp_rom_sys.h"
- typedef enum {
- ADC_EVENT_ADC1_DONE = BIT(0),
- ADC_EVENT_ADC2_DONE = BIT(1),
- } adc_hal_event_t;
- #endif //SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
- /*---------------------------------------------------------------
- Define all ADC DMA required operations here
- ---------------------------------------------------------------*/
- #if SOC_GDMA_SUPPORTED
- #define adc_dma_ll_rx_clear_intr(dev, chan, mask) gdma_ll_rx_clear_interrupt_status(dev, chan, mask)
- #define adc_dma_ll_rx_enable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, true)
- #define adc_dma_ll_rx_disable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, false)
- #define adc_dma_ll_rx_reset_channel(dev, chan) gdma_ll_rx_reset_channel(dev, chan)
- #define adc_dma_ll_rx_stop(dev, chan) gdma_ll_rx_stop(dev, chan)
- #define adc_dma_ll_rx_start(dev, chan, addr) do { \
- gdma_ll_rx_set_desc_addr(dev, chan, (uint32_t)addr); \
- gdma_ll_rx_start(dev, chan); \
- } while (0)
- #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
- #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
- #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
- #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
- //ADC utilises SPI3 DMA on ESP32S2
- #elif CONFIG_IDF_TARGET_ESP32S2
- #define adc_dma_ll_rx_get_intr(dev, mask) spi_ll_get_intr(dev, mask)
- #define adc_dma_ll_rx_clear_intr(dev, chan, mask) spi_ll_clear_intr(dev, mask)
- #define adc_dma_ll_rx_enable_intr(dev, chan, mask) spi_ll_enable_intr(dev, mask)
- #define adc_dma_ll_rx_disable_intr(dev, chan, mask) spi_ll_disable_intr(dev, mask)
- #define adc_dma_ll_rx_reset_channel(dev, chan) spi_dma_ll_rx_reset(dev, chan)
- #define adc_dma_ll_rx_stop(dev, chan) spi_dma_ll_rx_stop(dev, chan)
- #define adc_dma_ll_rx_start(dev, chan, addr) spi_dma_ll_rx_start(dev, chan, addr)
- #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan)
- #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
- #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
- #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
- #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
- //ADC utilises I2S0 DMA on ESP32
- #else //CONFIG_IDF_TARGET_ESP32
- #define adc_dma_ll_rx_get_intr(dev, mask) ({i2s_ll_get_intr_status(dev) & mask;})
- #define adc_dma_ll_rx_clear_intr(dev, chan, mask) i2s_ll_clear_intr_status(dev, mask)
- #define adc_dma_ll_rx_enable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val |= mask;} while (0)
- #define adc_dma_ll_rx_disable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val &= ~mask;} while (0)
- #define adc_dma_ll_rx_reset_channel(dev, chan) i2s_ll_rx_reset_dma(dev)
- #define adc_dma_ll_rx_stop(dev, chan) i2s_ll_rx_stop_link(dev)
- #define adc_dma_ll_rx_start(dev, chan, address) do { \
- ((i2s_dev_t *)(dev))->in_link.addr = (uint32_t)(address); \
- i2s_ll_enable_dma(dev, 1); \
- ((i2s_dev_t *)(dev))->in_link.start = 1; \
- } while (0)
- #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) ({uint32_t addr; i2s_ll_rx_get_eof_des_addr(dev, &addr); addr;})
- #define adc_ll_digi_dma_set_eof_num(dev, num) do {((i2s_dev_t *)(dev))->rx_eof_num = num;} while (0)
- #define adc_ll_digi_reset(dev) do { \
- i2s_ll_rx_reset(dev); \
- i2s_ll_rx_reset_fifo(dev); \
- } while (0)
- #define adc_ll_digi_trigger_enable(dev) i2s_ll_rx_start(dev)
- #define adc_ll_digi_trigger_disable(dev) i2s_ll_rx_stop(dev)
- #define adc_ll_digi_dma_enable() adc_ll_digi_set_data_source(1) //Will this influence I2S0
- #define adc_ll_digi_dma_disable() adc_ll_digi_set_data_source(0)
- //ESP32 ADC uses the DMA through I2S. The I2S needs to be configured.
- #define I2S_BASE_CLK (2*APB_CLK_FREQ)
- #define SAMPLE_BITS 16
- #define ADC_LL_CLKM_DIV_NUM_DEFAULT 2
- #define ADC_LL_CLKM_DIV_B_DEFAULT 0
- #define ADC_LL_CLKM_DIV_A_DEFAULT 1
- #endif
- void adc_hal_init(void)
- {
- // Set internal FSM wait time, fixed value.
- adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
- SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
- adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
- adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
- adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
- adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
- adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
- }
- #if SOC_ADC_ARBITER_SUPPORTED
- void adc_hal_arbiter_config(adc_arbiter_t *config)
- {
- adc_ll_set_arbiter_work_mode(config->mode);
- adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
- }
- #endif // #if SOC_ADC_ARBITER_SUPPORTED
- void adc_hal_digi_deinit(adc_hal_context_t *hal)
- {
- adc_ll_digi_trigger_disable(hal->dev);
- adc_ll_digi_dma_disable();
- adc_ll_digi_clear_pattern_table(ADC_NUM_1);
- adc_ll_digi_clear_pattern_table(ADC_NUM_2);
- adc_ll_digi_reset(hal->dev);
- adc_ll_digi_controller_clk_disable();
- }
- /*---------------------------------------------------------------
- Controller Setting
- ---------------------------------------------------------------*/
- static adc_ll_controller_t get_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
- {
- if (unit == ADC_NUM_1) {
- switch (work_mode) {
- #if SOC_ULP_SUPPORTED
- case ADC_HAL_ULP_MODE:
- return ADC_LL_CTRL_ULP;
- #endif
- case ADC_HAL_SINGLE_READ_MODE:
- #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
- return ADC_LL_CTRL_DIG;
- #elif SOC_ADC_RTC_CTRL_SUPPORTED
- return ADC_LL_CTRL_RTC;
- #endif
- case ADC_HAL_CONTINUOUS_READ_MODE:
- return ADC_LL_CTRL_DIG;
- default:
- abort();
- }
- } else {
- switch (work_mode) {
- #if SOC_ULP_SUPPORTED
- case ADC_HAL_ULP_MODE:
- return ADC_LL_CTRL_ULP;
- #endif
- #if !SOC_ADC_ARBITER_SUPPORTED //No ADC2 arbiter on ESP32
- case ADC_HAL_SINGLE_READ_MODE:
- return ADC_LL_CTRL_RTC;
- case ADC_HAL_CONTINUOUS_READ_MODE:
- return ADC_LL_CTRL_DIG;
- case ADC_HAL_PWDET_MODE:
- return ADC_LL_CTRL_PWDET;
- default:
- abort();
- #else
- default:
- return ADC_LL_CTRL_ARB;
- #endif
- }
- }
- }
- void adc_hal_set_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
- {
- adc_ll_controller_t ctrlr = get_controller(unit, work_mode);
- adc_ll_set_controller(unit, ctrlr);
- }
- /*---------------------------------------------------------------
- DMA read
- ---------------------------------------------------------------*/
- static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode)
- {
- #if CONFIG_IDF_TARGET_ESP32
- return ADC_LL_DIGI_CONV_ONLY_ADC1;
- #endif
- #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
- return ADC_LL_DIGI_CONV_ALTER_UNIT;
- #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
- switch (convert_mode) {
- case ADC_CONV_SINGLE_UNIT_1:
- return ADC_LL_DIGI_CONV_ONLY_ADC1;
- case ADC_CONV_SINGLE_UNIT_2:
- return ADC_LL_DIGI_CONV_ONLY_ADC2;
- case ADC_CONV_BOTH_UNIT:
- return ADC_LL_DIGI_CONV_BOTH_UNIT;
- case ADC_CONV_ALTER_UNIT:
- return ADC_LL_DIGI_CONV_ALTER_UNIT;
- default:
- abort();
- }
- #endif
- }
- /**
- * For esp32s2 and later chips
- * - Set ADC digital controller clock division factor. The clock is divided from `APLL` or `APB` clock.
- * Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1).
- * - Enable clock and select clock source for ADC digital controller.
- * For esp32, use I2S clock
- */
- static void adc_hal_digi_sample_freq_config(adc_hal_context_t *hal, uint32_t freq)
- {
- #if !CONFIG_IDF_TARGET_ESP32
- uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / freq;
- //set sample interval
- adc_ll_digi_set_trigger_interval(interval);
- //Here we set the clock divider factor to make the digital clock to 5M Hz
- adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
- adc_ll_digi_clk_sel(0); //use APB
- #else
- i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_D2CLK); /*!< Clock from PLL_D2_CLK(160M)*/
- uint32_t bck = I2S_BASE_CLK / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_B_DEFAULT / ADC_LL_CLKM_DIV_A_DEFAULT) / 2 / freq;
- i2s_ll_mclk_div_t clk = {
- .mclk_div = ADC_LL_CLKM_DIV_NUM_DEFAULT,
- .a = ADC_LL_CLKM_DIV_A_DEFAULT,
- .b = ADC_LL_CLKM_DIV_B_DEFAULT,
- };
- i2s_ll_rx_set_clk(hal->dev, &clk);
- i2s_ll_rx_set_bck_div_num(hal->dev, bck);
- #endif
- }
- void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
- {
- #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
- //Only one pattern table, this variable is for readability
- const int pattern_both = 0;
- adc_ll_digi_clear_pattern_table(pattern_both);
- adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len);
- for (int i = 0; i < cfg->adc_pattern_len; i++) {
- adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]);
- }
- #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
- uint32_t adc1_pattern_idx = 0;
- uint32_t adc2_pattern_idx = 0;
- adc_ll_digi_clear_pattern_table(ADC_NUM_1);
- adc_ll_digi_clear_pattern_table(ADC_NUM_2);
- for (int i = 0; i < cfg->adc_pattern_len; i++) {
- if (cfg->adc_pattern[i].unit == ADC_NUM_1) {
- adc_ll_digi_set_pattern_table(ADC_NUM_1, adc1_pattern_idx, cfg->adc_pattern[i]);
- adc1_pattern_idx++;
- } else if (cfg->adc_pattern[i].unit == ADC_NUM_2) {
- adc_ll_digi_set_pattern_table(ADC_NUM_2, adc2_pattern_idx, cfg->adc_pattern[i]);
- adc2_pattern_idx++;
- } else {
- abort();
- }
- }
- adc_ll_digi_set_pattern_table_len(ADC_NUM_1, adc1_pattern_idx);
- adc_ll_digi_set_pattern_table_len(ADC_NUM_2, adc2_pattern_idx);
- #endif
- if (cfg->conv_limit_en) {
- adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num);
- adc_ll_digi_convert_limit_enable();
- } else {
- adc_ll_digi_convert_limit_disable();
- }
- adc_ll_digi_set_convert_mode(get_convert_mode(cfg->conv_mode));
- //clock and sample frequency
- adc_hal_digi_sample_freq_config(hal, cfg->sample_freq_hz);
- }
- void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
- {
- hal->desc_dummy_head.next = hal->rx_desc;
- hal->dev = config->dev;
- hal->desc_max_num = config->desc_max_num;
- hal->dma_chan = config->dma_chan;
- hal->eof_num = config->eof_num;
- }
- void adc_hal_digi_init(adc_hal_context_t *hal)
- {
- adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
- adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
- adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
- #if CONFIG_IDF_TARGET_ESP32
- i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
- i2s_ll_rx_enable_mono_mode(hal->dev, 1);
- i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
- i2s_ll_enable_builtin_adc(hal->dev, 1);
- #endif
- #if CONFIG_IDF_TARGET_ESP32C3
- adc_ll_onetime_sample_enable(ADC_NUM_1, false);
- adc_ll_onetime_sample_enable(ADC_NUM_2, false);
- #endif
- }
- static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
- {
- HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
- HAL_ASSERT((size % 4) == 0);
- uint32_t n = 0;
- while (num--) {
- desc[n] = (dma_descriptor_t) {
- .dw0.size = size,
- .dw0.length = 0,
- .dw0.suc_eof = 0,
- .dw0.owner = 1,
- .buffer = data_buf,
- .next = &desc[n+1]
- };
- data_buf += size;
- n++;
- }
- desc[n-1].next = NULL;
- }
- void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf)
- {
- //stop peripheral and DMA
- adc_hal_digi_stop(hal);
- //reset DMA
- adc_dma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
- //reset peripheral
- adc_ll_digi_reset(hal->dev);
- //reset the current descriptor address
- hal->cur_desc_ptr = &hal->desc_dummy_head;
- adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
- //start DMA
- adc_dma_ll_rx_start(hal->dev, hal->dma_chan, (lldesc_t *)hal->rx_desc);
- //connect DMA and peripheral
- adc_ll_digi_dma_enable();
- //start ADC
- adc_ll_digi_trigger_enable(hal->dev);
- }
- #if !SOC_GDMA_SUPPORTED
- intptr_t adc_hal_get_desc_addr(adc_hal_context_t *hal)
- {
- return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan);
- }
- bool adc_hal_check_event(adc_hal_context_t *hal, uint32_t mask)
- {
- return adc_dma_ll_rx_get_intr(hal->dev, mask);
- }
- #endif //#if !SOC_GDMA_SUPPORTED
- adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
- {
- HAL_ASSERT(hal->cur_desc_ptr);
- if (!hal->cur_desc_ptr->next) {
- return ADC_HAL_DMA_DESC_NULL;
- }
- if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
- return ADC_HAL_DMA_DESC_WAITING;
- }
- hal->cur_desc_ptr = hal->cur_desc_ptr->next;
- *cur_desc = hal->cur_desc_ptr;
- return ADC_HAL_DMA_DESC_VALID;
- }
- void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
- {
- adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask);
- }
- void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
- {
- adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask);
- }
- void adc_hal_digi_stop(adc_hal_context_t *hal)
- {
- //stop ADC
- adc_ll_digi_trigger_disable(hal->dev);
- //stop DMA
- adc_dma_ll_rx_stop(hal->dev, hal->dma_chan);
- //disconnect DMA and peripheral
- adc_ll_digi_dma_disable();
- }
- #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
- /*---------------------------------------------------------------
- Single Read
- ---------------------------------------------------------------*/
- /**
- * For chips without RTC controller, Digital controller is used to trigger an ADC single read.
- */
- //--------------------INTR-------------------------------//
- static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
- {
- adc_ll_intr_t intr_mask = 0;
- if (event & ADC_EVENT_ADC1_DONE) {
- intr_mask |= ADC_LL_INTR_ADC1_DONE;
- }
- if (event & ADC_EVENT_ADC2_DONE) {
- intr_mask |= ADC_LL_INTR_ADC2_DONE;
- }
- return intr_mask;
- }
- static void adc_hal_intr_clear(adc_hal_event_t event)
- {
- adc_ll_intr_clear(get_event_intr(event));
- }
- static bool adc_hal_intr_get_raw(adc_hal_event_t event)
- {
- return adc_ll_intr_get_raw(get_event_intr(event));
- }
- //--------------------Single Read-------------------------------//
- static void adc_hal_onetime_start(void)
- {
- /**
- * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
- * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
- * clock cycle.
- *
- * This limitation will be removed in hardware future versions.
- *
- */
- uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
- //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
- uint32_t delay = (1000 * 1000) / digi_clk + 1;
- //3 ADC digital controller clock cycle
- delay = delay * 3;
- //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
- if (digi_clk >= APB_CLK_FREQ/8) {
- delay = 0;
- }
- adc_ll_onetime_start(false);
- esp_rom_delay_us(delay);
- adc_ll_onetime_start(true);
- //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
- }
- static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
- {
- if (adc_n == ADC_NUM_1) {
- *out_raw = adc_ll_adc1_read();
- } else if (adc_n == ADC_NUM_2) {
- *out_raw = adc_ll_adc2_read();
- if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
- return ESP_ERR_INVALID_STATE;
- }
- }
- return ESP_OK;
- }
- esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
- {
- esp_err_t ret;
- adc_hal_event_t event;
- if (adc_n == ADC_NUM_1) {
- event = ADC_EVENT_ADC1_DONE;
- } else {
- event = ADC_EVENT_ADC2_DONE;
- }
- adc_hal_intr_clear(event);
- adc_ll_onetime_sample_enable(ADC_NUM_1, false);
- adc_ll_onetime_sample_enable(ADC_NUM_2, false);
- adc_ll_onetime_sample_enable(adc_n, true);
- adc_ll_onetime_set_channel(adc_n, channel);
- //Trigger single read.
- adc_hal_onetime_start();
- while (!adc_hal_intr_get_raw(event));
- ret = adc_hal_single_read(adc_n, out_raw);
- //HW workaround: when enabling periph clock, this should be false
- adc_ll_onetime_sample_enable(adc_n, false);
- return ret;
- }
- #else // #if SOC_ADC_RTC_CTRL_SUPPORTED
- esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
- {
- adc_ll_rtc_enable_channel(adc_n, channel);
- adc_ll_rtc_start_convert(adc_n, channel);
- while (adc_ll_rtc_convert_is_done(adc_n) != true);
- *out_raw = adc_ll_rtc_get_convert_value(adc_n);
- if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
- return ESP_ERR_INVALID_STATE;
- }
- return ESP_OK;
- }
- #endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
- /*---------------------------------------------------------------
- ADC calibration setting
- ---------------------------------------------------------------*/
- #if SOC_ADC_CALIBRATION_V1_SUPPORTED
- void adc_hal_calibration_init(adc_ll_num_t adc_n)
- {
- adc_ll_calibration_init(adc_n);
- }
- static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
- void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
- {
- if (param != s_previous_init_code[adc_n]) {
- adc_ll_set_calibration_param(adc_n, param);
- s_previous_init_code[adc_n] = param;
- }
- }
- #if SOC_ADC_RTC_CTRL_SUPPORTED
- static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
- {
- adc_hal_set_controller(adc_n, ADC_HAL_SINGLE_READ_MODE); //Set controller
- /* Enable/disable internal connect GND (for calibration). */
- if (internal_gnd) {
- adc_ll_rtc_disable_channel(adc_n);
- adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
- } else {
- adc_ll_rtc_enable_channel(adc_n, channel);
- adc_ll_set_atten(adc_n, channel, atten);
- }
- }
- static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
- {
- adc_ll_rtc_start_convert(adc_n, channel);
- while (adc_ll_rtc_convert_is_done(adc_n) != true);
- return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
- }
- #elif SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
- //For those RTC controller not supported chips, they use digital controller to do the single read. e.g.: esp32c3
- static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
- {
- adc_ll_onetime_sample_enable(ADC_NUM_1, false);
- adc_ll_onetime_sample_enable(ADC_NUM_2, false);
- /* Enable/disable internal connect GND (for calibration). */
- if (internal_gnd) {
- const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
- adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
- } else {
- adc_ll_onetime_set_channel(adc_n, channel);
- }
- adc_ll_onetime_set_atten(atten);
- adc_ll_onetime_sample_enable(adc_n, true);
- }
- static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
- {
- adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
- adc_ll_onetime_start(false);
- esp_rom_delay_us(5);
- adc_ll_onetime_start(true);
- while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
- uint32_t read_val = -1;
- if (adc_n == ADC_NUM_1) {
- read_val = adc_ll_adc1_read();
- } else if (adc_n == ADC_NUM_2) {
- read_val = adc_ll_adc2_read();
- if (adc_ll_analysis_raw_data(adc_n, read_val)) {
- return -1;
- }
- }
- return read_val;
- }
- #endif //Do single read via DIGI controller or RTC controller
- #define ADC_HAL_CAL_TIMES (10)
- #define ADC_HAL_CAL_OFFSET_RANGE (4096)
- uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
- {
- if (adc_n == ADC_NUM_2) {
- adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
- adc_hal_arbiter_config(&config);
- }
- cal_setup(adc_n, channel, atten, internal_gnd);
- adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
- uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
- uint32_t code_sum = 0;
- uint32_t code_h = 0;
- uint32_t code_l = 0;
- uint32_t chk_code = 0;
- for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
- code_h = ADC_HAL_CAL_OFFSET_RANGE;
- code_l = 0;
- chk_code = (code_h + code_l) / 2;
- adc_ll_set_calibration_param(adc_n, chk_code);
- uint32_t self_cal = read_cal_channel(adc_n, channel);
- while (code_h - code_l > 1) {
- if (self_cal == 0) {
- code_h = chk_code;
- } else {
- code_l = chk_code;
- }
- chk_code = (code_h + code_l) / 2;
- adc_ll_set_calibration_param(adc_n, chk_code);
- self_cal = read_cal_channel(adc_n, channel);
- if ((code_h - code_l == 1)) {
- chk_code += 1;
- adc_ll_set_calibration_param(adc_n, chk_code);
- self_cal = read_cal_channel(adc_n, channel);
- }
- }
- code_list[rpt] = chk_code;
- code_sum += chk_code;
- }
- code_l = code_list[0];
- code_h = code_list[0];
- for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
- code_l = MIN(code_l, code_list[i]);
- code_h = MAX(code_h, code_list[i]);
- }
- chk_code = code_h + code_l;
- uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
- ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
- : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
- adc_ll_calibration_finish(adc_n);
- return ret;
- }
- #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
|