sdmmc_cmd.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include "sdmmc_common.h"
  7. static const char* TAG = "sdmmc_cmd";
  8. esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  9. {
  10. if (card->host.command_timeout_ms != 0) {
  11. cmd->timeout_ms = card->host.command_timeout_ms;
  12. } else if (cmd->timeout_ms == 0) {
  13. cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
  14. }
  15. int slot = card->host.slot;
  16. ESP_LOGV(TAG, "sending cmd slot=%d op=%d arg=%x flags=%x data=%p blklen=%d datalen=%d timeout=%d",
  17. slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, cmd->blklen, cmd->datalen, cmd->timeout_ms);
  18. esp_err_t err = (*card->host.do_transaction)(slot, cmd);
  19. if (err != 0) {
  20. ESP_LOGD(TAG, "cmd=%d, sdmmc_req_run returned 0x%x", cmd->opcode, err);
  21. return err;
  22. }
  23. int state = MMC_R1_CURRENT_STATE(cmd->response);
  24. ESP_LOGV(TAG, "cmd response %08x %08x %08x %08x err=0x%x state=%d",
  25. cmd->response[0],
  26. cmd->response[1],
  27. cmd->response[2],
  28. cmd->response[3],
  29. cmd->error,
  30. state);
  31. return cmd->error;
  32. }
  33. esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  34. {
  35. sdmmc_command_t app_cmd = {
  36. .opcode = MMC_APP_CMD,
  37. .flags = SCF_CMD_AC | SCF_RSP_R1,
  38. .arg = MMC_ARG_RCA(card->rca),
  39. };
  40. esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
  41. if (err != ESP_OK) {
  42. return err;
  43. }
  44. // Check APP_CMD status bit (only in SD mode)
  45. if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
  46. ESP_LOGW(TAG, "card doesn't support APP_CMD");
  47. return ESP_ERR_NOT_SUPPORTED;
  48. }
  49. return sdmmc_send_cmd(card, cmd);
  50. }
  51. esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
  52. {
  53. sdmmc_command_t cmd = {
  54. .opcode = MMC_GO_IDLE_STATE,
  55. .flags = SCF_CMD_BC | SCF_RSP_R0,
  56. };
  57. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  58. if (host_is_spi(card)) {
  59. /* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
  60. * SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
  61. * so don't expect the above command to succeed.
  62. * SCF_RSP_R1 flag below tells the lower layer to expect correct R1
  63. * response (in SPI mode).
  64. */
  65. (void) err;
  66. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  67. cmd.flags |= SCF_RSP_R1;
  68. err = sdmmc_send_cmd(card, &cmd);
  69. }
  70. if (err == ESP_OK) {
  71. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  72. }
  73. return err;
  74. }
  75. esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
  76. {
  77. const uint8_t pattern = 0xaa; /* any pattern will do here */
  78. sdmmc_command_t cmd = {
  79. .opcode = SD_SEND_IF_COND,
  80. .arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
  81. .flags = SCF_CMD_BCR | SCF_RSP_R7,
  82. };
  83. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  84. if (err != ESP_OK) {
  85. return err;
  86. }
  87. uint8_t response = cmd.response[0] & 0xff;
  88. if (response != pattern) {
  89. ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
  90. return ESP_ERR_INVALID_RESPONSE;
  91. }
  92. return ESP_OK;
  93. }
  94. esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
  95. {
  96. esp_err_t err;
  97. sdmmc_command_t cmd = {
  98. .arg = ocr,
  99. .flags = SCF_CMD_BCR | SCF_RSP_R3,
  100. .opcode = SD_APP_OP_COND
  101. };
  102. int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
  103. int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
  104. for (; nretries != 0; --nretries) {
  105. bzero(&cmd, sizeof cmd);
  106. cmd.arg = ocr;
  107. cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
  108. if (!card->is_mmc) { /* SD mode */
  109. cmd.opcode = SD_APP_OP_COND;
  110. err = sdmmc_send_app_cmd(card, &cmd);
  111. } else { /* MMC mode */
  112. cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
  113. cmd.arg |= MMC_OCR_SECTOR_MODE;
  114. cmd.opcode = MMC_SEND_OP_COND;
  115. err = sdmmc_send_cmd(card, &cmd);
  116. }
  117. if (err != ESP_OK) {
  118. if (--err_cnt == 0) {
  119. ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
  120. return err;
  121. } else {
  122. ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
  123. continue;
  124. }
  125. }
  126. // In SD protocol, card sets MEM_READY bit in OCR when it is ready.
  127. // In SPI protocol, card clears IDLE_STATE bit in R1 response.
  128. if (!host_is_spi(card)) {
  129. if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
  130. ocr == 0) {
  131. break;
  132. }
  133. } else {
  134. if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
  135. break;
  136. }
  137. }
  138. vTaskDelay(10 / portTICK_PERIOD_MS);
  139. }
  140. if (nretries == 0) {
  141. return ESP_ERR_TIMEOUT;
  142. }
  143. if (ocrp) {
  144. *ocrp = MMC_R3(cmd.response);
  145. }
  146. return ESP_OK;
  147. }
  148. esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
  149. {
  150. assert(ocrp);
  151. sdmmc_command_t cmd = {
  152. .opcode = SD_READ_OCR,
  153. .flags = SCF_CMD_BCR | SCF_RSP_R2
  154. };
  155. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  156. if (err != ESP_OK) {
  157. return err;
  158. }
  159. *ocrp = SD_SPI_R3(cmd.response);
  160. return ESP_OK;
  161. }
  162. esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
  163. {
  164. assert(out_raw_cid);
  165. sdmmc_command_t cmd = {
  166. .opcode = MMC_ALL_SEND_CID,
  167. .flags = SCF_CMD_BCR | SCF_RSP_R2
  168. };
  169. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  170. if (err != ESP_OK) {
  171. return err;
  172. }
  173. memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
  174. return ESP_OK;
  175. }
  176. esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
  177. {
  178. assert(out_cid);
  179. assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
  180. assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
  181. sdmmc_response_t buf;
  182. sdmmc_command_t cmd = {
  183. .opcode = MMC_SEND_CID,
  184. .flags = SCF_CMD_READ | SCF_CMD_ADTC,
  185. .arg = 0,
  186. .data = &buf[0],
  187. .datalen = sizeof(buf)
  188. };
  189. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  190. if (err != ESP_OK) {
  191. return err;
  192. }
  193. sdmmc_flip_byte_order(buf, sizeof(buf));
  194. return sdmmc_decode_cid(buf, out_cid);
  195. }
  196. esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
  197. {
  198. assert(out_rca);
  199. sdmmc_command_t cmd = {
  200. .opcode = SD_SEND_RELATIVE_ADDR,
  201. .flags = SCF_CMD_BCR | SCF_RSP_R6
  202. };
  203. /* MMC cards expect us to set the RCA.
  204. * Set RCA to 1 since we don't support multiple cards on the same bus, for now.
  205. */
  206. uint16_t mmc_rca = 1;
  207. if (card->is_mmc) {
  208. cmd.arg = MMC_ARG_RCA(mmc_rca);
  209. }
  210. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  211. if (err != ESP_OK) {
  212. return err;
  213. }
  214. *out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response);
  215. return ESP_OK;
  216. }
  217. esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
  218. {
  219. sdmmc_command_t cmd = {
  220. .opcode = MMC_SET_BLOCKLEN,
  221. .arg = csd->sector_size,
  222. .flags = SCF_CMD_AC | SCF_RSP_R1
  223. };
  224. return sdmmc_send_cmd(card, &cmd);
  225. }
  226. esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
  227. {
  228. /* The trick with SEND_CSD is that in SPI mode, it acts as a data read
  229. * command, while in SD mode it is an AC command with R2 response.
  230. */
  231. sdmmc_response_t spi_buf;
  232. const bool is_spi = host_is_spi(card);
  233. sdmmc_command_t cmd = {
  234. .opcode = MMC_SEND_CSD,
  235. .arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
  236. .flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
  237. (SCF_CMD_AC | SCF_RSP_R2),
  238. .data = is_spi ? &spi_buf[0] : 0,
  239. .datalen = is_spi ? sizeof(spi_buf) : 0,
  240. };
  241. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  242. if (err != ESP_OK) {
  243. return err;
  244. }
  245. uint32_t* ptr = cmd.response;
  246. if (is_spi) {
  247. sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf));
  248. ptr = spi_buf;
  249. }
  250. if (card->is_mmc) {
  251. err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
  252. } else {
  253. err = sdmmc_decode_csd(ptr, out_csd);
  254. }
  255. return err;
  256. }
  257. esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
  258. {
  259. /* Don't expect to see a response when de-selecting a card */
  260. uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
  261. sdmmc_command_t cmd = {
  262. .opcode = MMC_SELECT_CARD,
  263. .arg = MMC_ARG_RCA(rca),
  264. .flags = SCF_CMD_AC | response
  265. };
  266. return sdmmc_send_cmd(card, &cmd);
  267. }
  268. esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
  269. {
  270. size_t datalen = 8;
  271. uint32_t* buf = (uint32_t*) heap_caps_malloc(datalen, MALLOC_CAP_DMA);
  272. if (buf == NULL) {
  273. return ESP_ERR_NO_MEM;
  274. }
  275. sdmmc_command_t cmd = {
  276. .data = buf,
  277. .datalen = datalen,
  278. .blklen = datalen,
  279. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  280. .opcode = SD_APP_SEND_SCR
  281. };
  282. esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
  283. if (err == ESP_OK) {
  284. err = sdmmc_decode_scr(buf, out_scr);
  285. }
  286. free(buf);
  287. return err;
  288. }
  289. esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
  290. {
  291. sdmmc_command_t cmd = {
  292. .opcode = SD_APP_SET_BUS_WIDTH,
  293. .flags = SCF_RSP_R1 | SCF_CMD_AC,
  294. .arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
  295. };
  296. return sdmmc_send_app_cmd(card, &cmd);
  297. }
  298. esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
  299. {
  300. assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
  301. sdmmc_command_t cmd = {
  302. .opcode = SD_CRC_ON_OFF,
  303. .arg = crc_enable ? 1 : 0,
  304. .flags = SCF_CMD_AC | SCF_RSP_R1
  305. };
  306. return sdmmc_send_cmd(card, &cmd);
  307. }
  308. esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
  309. {
  310. sdmmc_command_t cmd = {
  311. .opcode = MMC_SEND_STATUS,
  312. .arg = MMC_ARG_RCA(card->rca),
  313. .flags = SCF_CMD_AC | SCF_RSP_R1
  314. };
  315. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  316. if (err != ESP_OK) {
  317. return err;
  318. }
  319. if (out_status) {
  320. *out_status = MMC_R1(cmd.response);
  321. }
  322. return ESP_OK;
  323. }
  324. esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
  325. size_t start_block, size_t block_count)
  326. {
  327. esp_err_t err = ESP_OK;
  328. size_t block_size = card->csd.sector_size;
  329. if (esp_ptr_dma_capable(src) && (intptr_t)src % 4 == 0) {
  330. err = sdmmc_write_sectors_dma(card, src, start_block, block_count);
  331. } else {
  332. // SDMMC peripheral needs DMA-capable buffers. Split the write into
  333. // separate single block writes, if needed, and allocate a temporary
  334. // DMA-capable buffer.
  335. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  336. if (tmp_buf == NULL) {
  337. return ESP_ERR_NO_MEM;
  338. }
  339. const uint8_t* cur_src = (const uint8_t*) src;
  340. for (size_t i = 0; i < block_count; ++i) {
  341. memcpy(tmp_buf, cur_src, block_size);
  342. cur_src += block_size;
  343. err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1);
  344. if (err != ESP_OK) {
  345. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  346. __func__, err, start_block, i);
  347. break;
  348. }
  349. }
  350. free(tmp_buf);
  351. }
  352. return err;
  353. }
  354. esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
  355. size_t start_block, size_t block_count)
  356. {
  357. if (start_block + block_count > card->csd.capacity) {
  358. return ESP_ERR_INVALID_SIZE;
  359. }
  360. size_t block_size = card->csd.sector_size;
  361. sdmmc_command_t cmd = {
  362. .flags = SCF_CMD_ADTC | SCF_RSP_R1,
  363. .blklen = block_size,
  364. .data = (void*) src,
  365. .datalen = block_count * block_size,
  366. .timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
  367. };
  368. if (block_count == 1) {
  369. cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
  370. } else {
  371. cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
  372. }
  373. if (card->ocr & SD_OCR_SDHC_CAP) {
  374. cmd.arg = start_block;
  375. } else {
  376. cmd.arg = start_block * block_size;
  377. }
  378. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  379. if (err != ESP_OK) {
  380. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  381. return err;
  382. }
  383. uint32_t status = 0;
  384. size_t count = 0;
  385. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  386. // TODO: add some timeout here
  387. err = sdmmc_send_cmd_send_status(card, &status);
  388. if (err != ESP_OK) {
  389. return err;
  390. }
  391. if (++count % 10 == 0) {
  392. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  393. }
  394. }
  395. return ESP_OK;
  396. }
  397. esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
  398. size_t start_block, size_t block_count)
  399. {
  400. esp_err_t err = ESP_OK;
  401. size_t block_size = card->csd.sector_size;
  402. if (esp_ptr_dma_capable(dst) && (intptr_t)dst % 4 == 0) {
  403. err = sdmmc_read_sectors_dma(card, dst, start_block, block_count);
  404. } else {
  405. // SDMMC peripheral needs DMA-capable buffers. Split the read into
  406. // separate single block reads, if needed, and allocate a temporary
  407. // DMA-capable buffer.
  408. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  409. if (tmp_buf == NULL) {
  410. return ESP_ERR_NO_MEM;
  411. }
  412. uint8_t* cur_dst = (uint8_t*) dst;
  413. for (size_t i = 0; i < block_count; ++i) {
  414. err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1);
  415. if (err != ESP_OK) {
  416. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  417. __func__, err, start_block, i);
  418. break;
  419. }
  420. memcpy(cur_dst, tmp_buf, block_size);
  421. cur_dst += block_size;
  422. }
  423. free(tmp_buf);
  424. }
  425. return err;
  426. }
  427. esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
  428. size_t start_block, size_t block_count)
  429. {
  430. if (start_block + block_count > card->csd.capacity) {
  431. return ESP_ERR_INVALID_SIZE;
  432. }
  433. size_t block_size = card->csd.sector_size;
  434. sdmmc_command_t cmd = {
  435. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  436. .blklen = block_size,
  437. .data = (void*) dst,
  438. .datalen = block_count * block_size
  439. };
  440. if (block_count == 1) {
  441. cmd.opcode = MMC_READ_BLOCK_SINGLE;
  442. } else {
  443. cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
  444. }
  445. if (card->ocr & SD_OCR_SDHC_CAP) {
  446. cmd.arg = start_block;
  447. } else {
  448. cmd.arg = start_block * block_size;
  449. }
  450. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  451. if (err != ESP_OK) {
  452. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  453. return err;
  454. }
  455. uint32_t status = 0;
  456. size_t count = 0;
  457. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  458. // TODO: add some timeout here
  459. err = sdmmc_send_cmd_send_status(card, &status);
  460. if (err != ESP_OK) {
  461. return err;
  462. }
  463. if (++count % 10 == 0) {
  464. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  465. }
  466. }
  467. return ESP_OK;
  468. }
  469. esp_err_t sdmmc_get_status(sdmmc_card_t* card)
  470. {
  471. uint32_t stat;
  472. return sdmmc_send_cmd_send_status(card, &stat);
  473. }