rtc_tempsensor.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. /*
  2. * SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <ctype.h>
  8. #include <math.h>
  9. #include "esp_types.h"
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/semphr.h"
  12. #include "esp_log.h"
  13. #include "esp_check.h"
  14. #include "soc/rtc_cntl_reg.h"
  15. #include "soc/rtc_io_reg.h"
  16. #include "soc/rtc_io_struct.h"
  17. #include "soc/sens_reg.h"
  18. #include "soc/sens_struct.h"
  19. #include "driver/temp_sensor.h"
  20. #include "regi2c_ctrl.h"
  21. #include "esp_log.h"
  22. #include "esp_efuse_rtc_table.h"
  23. static const char *TAG = "tsens";
  24. #define TSENS_XPD_WAIT_DEFAULT 0xFF /* Set wait cycle time(8MHz) from power up to reset enable. */
  25. #define TSENS_ADC_FACTOR (0.4386)
  26. #define TSENS_DAC_FACTOR (27.88)
  27. #define TSENS_SYS_OFFSET (20.52)
  28. typedef struct {
  29. int index;
  30. int offset;
  31. int set_val;
  32. int range_min;
  33. int range_max;
  34. int error_max;
  35. } tsens_dac_offset_t;
  36. static const tsens_dac_offset_t dac_offset[TSENS_DAC_MAX] = {
  37. /* DAC Offset reg_val min max error */
  38. {TSENS_DAC_L0, -2, 5, 50, 125, 3},
  39. {TSENS_DAC_L1, -1, 7, 20, 100, 2},
  40. {TSENS_DAC_L2, 0, 15, -10, 80, 1},
  41. {TSENS_DAC_L3, 1, 11, -30, 50, 2},
  42. {TSENS_DAC_L4, 2, 10, -40, 20, 3},
  43. };
  44. typedef enum {
  45. TSENS_HW_STATE_UNCONFIGURED,
  46. TSENS_HW_STATE_CONFIGURED,
  47. TSENS_HW_STATE_STARTED,
  48. } tsens_hw_state_t;
  49. static tsens_hw_state_t tsens_hw_state = TSENS_HW_STATE_UNCONFIGURED;
  50. static SemaphoreHandle_t rtc_tsens_mux = NULL;
  51. static float s_deltaT = NAN; // Unused number
  52. esp_err_t temp_sensor_set_config(temp_sensor_config_t tsens)
  53. {
  54. esp_err_t err = ESP_OK;
  55. if (tsens_hw_state == TSENS_HW_STATE_STARTED) {
  56. ESP_LOGE(TAG, "Do not configure the temp sensor when it's running!");
  57. err = ESP_ERR_INVALID_STATE;
  58. }
  59. CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M);
  60. SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
  61. CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M);
  62. SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
  63. REGI2C_WRITE_MASK(I2C_SAR_ADC, I2C_SARADC_TSENS_DAC, dac_offset[tsens.dac_offset].set_val);
  64. SENS.sar_tctrl.tsens_clk_div = tsens.clk_div;
  65. SENS.sar_tctrl.tsens_power_up_force = 1;
  66. SENS.sar_tctrl2.tsens_xpd_wait = TSENS_XPD_WAIT_DEFAULT;
  67. SENS.sar_tctrl2.tsens_xpd_force = 1;
  68. SENS.sar_tctrl2.tsens_reset = 1;// Reset the temp sensor.
  69. SENS.sar_tctrl2.tsens_reset = 0;// Clear the reset status.
  70. ESP_LOGI(TAG, "Config temperature range [%d°C ~ %d°C], error < %d°C",
  71. dac_offset[tsens.dac_offset].range_min,
  72. dac_offset[tsens.dac_offset].range_max,
  73. dac_offset[tsens.dac_offset].error_max);
  74. tsens_hw_state = TSENS_HW_STATE_CONFIGURED;
  75. return err;
  76. }
  77. esp_err_t temp_sensor_get_config(temp_sensor_config_t *tsens)
  78. {
  79. ESP_RETURN_ON_FALSE(tsens != NULL, ESP_ERR_INVALID_ARG, TAG, "no tsens specified");
  80. CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PD_M);
  81. SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_FORCE_PU_M);
  82. CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M);
  83. SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M);
  84. tsens->dac_offset = REGI2C_READ_MASK(I2C_SAR_ADC, I2C_SARADC_TSENS_DAC);
  85. for (int i = TSENS_DAC_L0; i < TSENS_DAC_MAX; i++) {
  86. if ((int)tsens->dac_offset == dac_offset[i].set_val) {
  87. tsens->dac_offset = dac_offset[i].index;
  88. break;
  89. }
  90. }
  91. tsens->clk_div = SENS.sar_tctrl.tsens_clk_div;
  92. return ESP_OK;
  93. }
  94. esp_err_t temp_sensor_start(void)
  95. {
  96. esp_err_t err = ESP_OK;
  97. if (tsens_hw_state != TSENS_HW_STATE_CONFIGURED) {
  98. ESP_LOGE(TAG, "Temperature sensor is already running or not be configured");
  99. err = ESP_ERR_INVALID_STATE;
  100. }
  101. if (rtc_tsens_mux == NULL) {
  102. rtc_tsens_mux = xSemaphoreCreateMutex();
  103. }
  104. ESP_RETURN_ON_FALSE(rtc_tsens_mux != NULL, ESP_ERR_NO_MEM, TAG, "failed to create mutex");
  105. SENS.sar_tctrl.tsens_dump_out = 0;
  106. SENS.sar_tctrl2.tsens_clkgate_en = 1;
  107. SENS.sar_tctrl.tsens_power_up = 1;
  108. tsens_hw_state = TSENS_HW_STATE_STARTED;
  109. return err;
  110. }
  111. esp_err_t temp_sensor_stop(void)
  112. {
  113. SENS.sar_tctrl.tsens_power_up = 0;
  114. SENS.sar_tctrl2.tsens_clkgate_en = 0;
  115. if (rtc_tsens_mux != NULL) {
  116. vSemaphoreDelete(rtc_tsens_mux);
  117. rtc_tsens_mux = NULL;
  118. }
  119. return ESP_OK;
  120. }
  121. esp_err_t temp_sensor_read_raw(uint32_t *tsens_out)
  122. {
  123. ESP_RETURN_ON_FALSE(tsens_out != NULL, ESP_ERR_INVALID_ARG, TAG, "no tsens_out specified");
  124. ESP_RETURN_ON_FALSE(rtc_tsens_mux != NULL, ESP_ERR_INVALID_STATE, TAG, "mutex not ready");
  125. xSemaphoreTake(rtc_tsens_mux, portMAX_DELAY);
  126. SENS.sar_tctrl.tsens_dump_out = 1;
  127. while (!SENS.sar_tctrl.tsens_ready);
  128. *tsens_out = SENS.sar_tctrl.tsens_out;
  129. SENS.sar_tctrl.tsens_dump_out = 0;
  130. xSemaphoreGive(rtc_tsens_mux);
  131. return ESP_OK;
  132. }
  133. static void read_delta_t_from_efuse(void)
  134. {
  135. uint32_t version = esp_efuse_rtc_table_read_calib_version();
  136. if (version == 1 || version == 2) {
  137. // fetch calibration value for temp sensor from eFuse
  138. s_deltaT = esp_efuse_rtc_table_get_parsed_efuse_value(RTCCALIB_IDX_TMPSENSOR, false) / 10.0;
  139. } else {
  140. // no value to fetch, use 0.
  141. s_deltaT = 0;
  142. }
  143. ESP_LOGD(TAG, "s_deltaT = %f\n", s_deltaT);
  144. }
  145. static float parse_temp_sensor_raw_value(uint32_t tsens_raw, const int dac_offset)
  146. {
  147. if (isnan(s_deltaT)) { //suggests that the value is not initialized
  148. read_delta_t_from_efuse();
  149. }
  150. float result = (TSENS_ADC_FACTOR * (float)tsens_raw - TSENS_DAC_FACTOR * dac_offset - TSENS_SYS_OFFSET) - s_deltaT;
  151. return result;
  152. }
  153. esp_err_t temp_sensor_read_celsius(float *celsius)
  154. {
  155. ESP_RETURN_ON_FALSE(celsius != NULL, ESP_ERR_INVALID_ARG, TAG, "celsius points to nothing");
  156. temp_sensor_config_t tsens;
  157. uint32_t tsens_out = 0;
  158. esp_err_t ret = temp_sensor_get_config(&tsens);
  159. if (ret == ESP_OK) {
  160. ret = temp_sensor_read_raw(&tsens_out);
  161. ESP_RETURN_ON_FALSE(ret == ESP_OK, ret, TAG, "failed to read raw data");
  162. const tsens_dac_offset_t *dac = &dac_offset[tsens.dac_offset];
  163. *celsius = parse_temp_sensor_raw_value(tsens_out, dac->offset);
  164. if (*celsius < dac->range_min || *celsius > dac->range_max) {
  165. ESP_LOGW(TAG, "Exceeding the temperature range!");
  166. ret = ESP_ERR_INVALID_STATE;
  167. }
  168. }
  169. return ret;
  170. }