sdmmc_transaction.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_err.h"
  8. #include "esp_log.h"
  9. #include "esp_pm.h"
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/queue.h"
  12. #include "freertos/semphr.h"
  13. #include "freertos/task.h"
  14. #include "soc/sdmmc_periph.h"
  15. #include "soc/soc_memory_layout.h"
  16. #include "driver/sdmmc_types.h"
  17. #include "driver/sdmmc_defs.h"
  18. #include "driver/sdmmc_host.h"
  19. #include "sdmmc_private.h"
  20. /* Number of DMA descriptors used for transfer.
  21. * Increasing this value above 4 doesn't improve performance for the usual case
  22. * of SD memory cards (most data transfers are multiples of 512 bytes).
  23. */
  24. #define SDMMC_DMA_DESC_CNT 4
  25. static const char* TAG = "sdmmc_req";
  26. typedef enum {
  27. SDMMC_IDLE,
  28. SDMMC_SENDING_CMD,
  29. SDMMC_SENDING_DATA,
  30. SDMMC_BUSY,
  31. } sdmmc_req_state_t;
  32. typedef struct {
  33. uint8_t* ptr;
  34. size_t size_remaining;
  35. size_t next_desc;
  36. size_t desc_remaining;
  37. } sdmmc_transfer_state_t;
  38. const uint32_t SDMMC_DATA_ERR_MASK =
  39. SDMMC_INTMASK_DTO | SDMMC_INTMASK_DCRC |
  40. SDMMC_INTMASK_HTO | SDMMC_INTMASK_SBE |
  41. SDMMC_INTMASK_EBE;
  42. const uint32_t SDMMC_DMA_DONE_MASK =
  43. SDMMC_IDMAC_INTMASK_RI | SDMMC_IDMAC_INTMASK_TI |
  44. SDMMC_IDMAC_INTMASK_NI;
  45. const uint32_t SDMMC_CMD_ERR_MASK =
  46. SDMMC_INTMASK_RTO |
  47. SDMMC_INTMASK_RCRC |
  48. SDMMC_INTMASK_RESP_ERR;
  49. static sdmmc_desc_t s_dma_desc[SDMMC_DMA_DESC_CNT];
  50. static sdmmc_transfer_state_t s_cur_transfer = { 0 };
  51. static QueueHandle_t s_request_mutex;
  52. static bool s_is_app_cmd; // This flag is set if the next command is an APP command
  53. #ifdef CONFIG_PM_ENABLE
  54. static esp_pm_lock_handle_t s_pm_lock;
  55. #endif
  56. static esp_err_t handle_idle_state_events(void);
  57. static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd);
  58. static esp_err_t handle_event(sdmmc_command_t* cmd, sdmmc_req_state_t* state,
  59. sdmmc_event_t* unhandled_events);
  60. static esp_err_t process_events(sdmmc_event_t evt, sdmmc_command_t* cmd,
  61. sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events);
  62. static void process_command_response(uint32_t status, sdmmc_command_t* cmd);
  63. static void fill_dma_descriptors(size_t num_desc);
  64. static size_t get_free_descriptors_count(void);
  65. static bool wait_for_busy_cleared(int timeout_ms);
  66. esp_err_t sdmmc_host_transaction_handler_init(void)
  67. {
  68. assert(s_request_mutex == NULL);
  69. s_request_mutex = xSemaphoreCreateMutex();
  70. if (!s_request_mutex) {
  71. return ESP_ERR_NO_MEM;
  72. }
  73. s_is_app_cmd = false;
  74. #ifdef CONFIG_PM_ENABLE
  75. esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "sdmmc", &s_pm_lock);
  76. if (err != ESP_OK) {
  77. vSemaphoreDelete(s_request_mutex);
  78. s_request_mutex = NULL;
  79. return err;
  80. }
  81. #endif
  82. return ESP_OK;
  83. }
  84. void sdmmc_host_transaction_handler_deinit(void)
  85. {
  86. assert(s_request_mutex);
  87. #ifdef CONFIG_PM_ENABLE
  88. esp_pm_lock_delete(s_pm_lock);
  89. s_pm_lock = NULL;
  90. #endif
  91. vSemaphoreDelete(s_request_mutex);
  92. s_request_mutex = NULL;
  93. }
  94. esp_err_t sdmmc_host_do_transaction(int slot, sdmmc_command_t* cmdinfo)
  95. {
  96. esp_err_t ret;
  97. xSemaphoreTake(s_request_mutex, portMAX_DELAY);
  98. #ifdef CONFIG_PM_ENABLE
  99. esp_pm_lock_acquire(s_pm_lock);
  100. #endif
  101. // dispose of any events which happened asynchronously
  102. handle_idle_state_events();
  103. // convert cmdinfo to hardware register value
  104. sdmmc_hw_cmd_t hw_cmd = make_hw_cmd(cmdinfo);
  105. if (cmdinfo->data) {
  106. // Length should be either <4 or >=4 and =0 (mod 4).
  107. if (cmdinfo->datalen >= 4 && cmdinfo->datalen % 4 != 0) {
  108. ESP_LOGD(TAG, "%s: invalid size: total=%d",
  109. __func__, cmdinfo->datalen);
  110. ret = ESP_ERR_INVALID_SIZE;
  111. goto out;
  112. }
  113. if ((intptr_t) cmdinfo->data % 4 != 0 ||
  114. !esp_ptr_dma_capable(cmdinfo->data)) {
  115. ESP_LOGD(TAG, "%s: buffer %p can not be used for DMA", __func__, cmdinfo->data);
  116. ret = ESP_ERR_INVALID_ARG;
  117. goto out;
  118. }
  119. // this clears "owned by IDMAC" bits
  120. memset(s_dma_desc, 0, sizeof(s_dma_desc));
  121. // initialize first descriptor
  122. s_dma_desc[0].first_descriptor = 1;
  123. // save transfer info
  124. s_cur_transfer.ptr = (uint8_t*) cmdinfo->data;
  125. s_cur_transfer.size_remaining = cmdinfo->datalen;
  126. s_cur_transfer.next_desc = 0;
  127. s_cur_transfer.desc_remaining = (cmdinfo->datalen + SDMMC_DMA_MAX_BUF_LEN - 1) / SDMMC_DMA_MAX_BUF_LEN;
  128. // prepare descriptors
  129. fill_dma_descriptors(SDMMC_DMA_DESC_CNT);
  130. // write transfer info into hardware
  131. sdmmc_host_dma_prepare(&s_dma_desc[0], cmdinfo->blklen, cmdinfo->datalen);
  132. }
  133. // write command into hardware, this also sends the command to the card
  134. ret = sdmmc_host_start_command(slot, hw_cmd, cmdinfo->arg);
  135. if (ret != ESP_OK) {
  136. goto out;
  137. }
  138. // process events until transfer is complete
  139. cmdinfo->error = ESP_OK;
  140. sdmmc_req_state_t state = SDMMC_SENDING_CMD;
  141. sdmmc_event_t unhandled_events = { 0 };
  142. while (state != SDMMC_IDLE) {
  143. ret = handle_event(cmdinfo, &state, &unhandled_events);
  144. if (ret != ESP_OK) {
  145. break;
  146. }
  147. }
  148. if (ret == ESP_OK && (cmdinfo->flags & SCF_WAIT_BUSY)) {
  149. if (!wait_for_busy_cleared(cmdinfo->timeout_ms)) {
  150. ret = ESP_ERR_TIMEOUT;
  151. }
  152. }
  153. s_is_app_cmd = (ret == ESP_OK && cmdinfo->opcode == MMC_APP_CMD);
  154. out:
  155. #ifdef CONFIG_PM_ENABLE
  156. esp_pm_lock_release(s_pm_lock);
  157. #endif
  158. xSemaphoreGive(s_request_mutex);
  159. return ret;
  160. }
  161. static size_t get_free_descriptors_count(void)
  162. {
  163. const size_t next = s_cur_transfer.next_desc;
  164. size_t count = 0;
  165. /* Starting with the current DMA descriptor, count the number of
  166. * descriptors which have 'owned_by_idmac' set to 0. These are the
  167. * descriptors already processed by the DMA engine.
  168. */
  169. for (size_t i = 0; i < SDMMC_DMA_DESC_CNT; ++i) {
  170. sdmmc_desc_t* desc = &s_dma_desc[(next + i) % SDMMC_DMA_DESC_CNT];
  171. if (desc->owned_by_idmac) {
  172. break;
  173. }
  174. ++count;
  175. if (desc->next_desc_ptr == NULL) {
  176. /* final descriptor in the chain */
  177. break;
  178. }
  179. }
  180. return count;
  181. }
  182. static void fill_dma_descriptors(size_t num_desc)
  183. {
  184. for (size_t i = 0; i < num_desc; ++i) {
  185. if (s_cur_transfer.size_remaining == 0) {
  186. return;
  187. }
  188. const size_t next = s_cur_transfer.next_desc;
  189. sdmmc_desc_t* desc = &s_dma_desc[next];
  190. assert(!desc->owned_by_idmac);
  191. size_t size_to_fill =
  192. (s_cur_transfer.size_remaining < SDMMC_DMA_MAX_BUF_LEN) ?
  193. s_cur_transfer.size_remaining : SDMMC_DMA_MAX_BUF_LEN;
  194. bool last = size_to_fill == s_cur_transfer.size_remaining;
  195. desc->last_descriptor = last;
  196. desc->second_address_chained = 1;
  197. desc->owned_by_idmac = 1;
  198. desc->buffer1_ptr = s_cur_transfer.ptr;
  199. desc->next_desc_ptr = (last) ? NULL : &s_dma_desc[(next + 1) % SDMMC_DMA_DESC_CNT];
  200. assert(size_to_fill < 4 || size_to_fill % 4 == 0);
  201. desc->buffer1_size = (size_to_fill + 3) & (~3);
  202. s_cur_transfer.size_remaining -= size_to_fill;
  203. s_cur_transfer.ptr += size_to_fill;
  204. s_cur_transfer.next_desc = (s_cur_transfer.next_desc + 1) % SDMMC_DMA_DESC_CNT;
  205. ESP_LOGV(TAG, "fill %d desc=%d rem=%d next=%d last=%d sz=%d",
  206. num_desc, next, s_cur_transfer.size_remaining,
  207. s_cur_transfer.next_desc, desc->last_descriptor, desc->buffer1_size);
  208. }
  209. }
  210. static esp_err_t handle_idle_state_events(void)
  211. {
  212. /* Handle any events which have happened in between transfers.
  213. * Under current assumptions (no SDIO support) only card detect events
  214. * can happen in the idle state.
  215. */
  216. sdmmc_event_t evt;
  217. while (sdmmc_host_wait_for_event(0, &evt) == ESP_OK) {
  218. if (evt.sdmmc_status & SDMMC_INTMASK_CD) {
  219. ESP_LOGV(TAG, "card detect event");
  220. evt.sdmmc_status &= ~SDMMC_INTMASK_CD;
  221. }
  222. if (evt.sdmmc_status != 0 || evt.dma_status != 0) {
  223. ESP_LOGE(TAG, "handle_idle_state_events unhandled: %08x %08x",
  224. evt.sdmmc_status, evt.dma_status);
  225. }
  226. }
  227. return ESP_OK;
  228. }
  229. static esp_err_t handle_event(sdmmc_command_t* cmd, sdmmc_req_state_t* state,
  230. sdmmc_event_t* unhandled_events)
  231. {
  232. sdmmc_event_t event;
  233. esp_err_t err = sdmmc_host_wait_for_event(cmd->timeout_ms / portTICK_PERIOD_MS, &event);
  234. if (err != ESP_OK) {
  235. ESP_LOGE(TAG, "sdmmc_host_wait_for_event returned 0x%x", err);
  236. if (err == ESP_ERR_TIMEOUT) {
  237. sdmmc_host_dma_stop();
  238. }
  239. return err;
  240. }
  241. ESP_LOGV(TAG, "sdmmc_handle_event: event %08x %08x, unhandled %08x %08x",
  242. event.sdmmc_status, event.dma_status,
  243. unhandled_events->sdmmc_status, unhandled_events->dma_status);
  244. event.sdmmc_status |= unhandled_events->sdmmc_status;
  245. event.dma_status |= unhandled_events->dma_status;
  246. process_events(event, cmd, state, unhandled_events);
  247. ESP_LOGV(TAG, "sdmmc_handle_event: events unhandled: %08x %08x", unhandled_events->sdmmc_status, unhandled_events->dma_status);
  248. return ESP_OK;
  249. }
  250. static bool cmd_needs_auto_stop(const sdmmc_command_t* cmd)
  251. {
  252. /* SDMMC host needs an "auto stop" flag for the following commands: */
  253. return cmd->datalen > 0 &&
  254. (cmd->opcode == MMC_WRITE_BLOCK_MULTIPLE ||
  255. cmd->opcode == MMC_READ_BLOCK_MULTIPLE ||
  256. cmd->opcode == MMC_WRITE_DAT_UNTIL_STOP ||
  257. cmd->opcode == MMC_READ_DAT_UNTIL_STOP);
  258. }
  259. static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd)
  260. {
  261. sdmmc_hw_cmd_t res = { 0 };
  262. res.cmd_index = cmd->opcode;
  263. if (cmd->opcode == MMC_STOP_TRANSMISSION) {
  264. res.stop_abort_cmd = 1;
  265. } else if (cmd->opcode == MMC_GO_IDLE_STATE) {
  266. res.send_init = 1;
  267. } else {
  268. res.wait_complete = 1;
  269. }
  270. if (cmd->opcode == MMC_GO_IDLE_STATE) {
  271. res.send_init = 1;
  272. }
  273. if (cmd->flags & SCF_RSP_PRESENT) {
  274. res.response_expect = 1;
  275. if (cmd->flags & SCF_RSP_136) {
  276. res.response_long = 1;
  277. }
  278. }
  279. if (cmd->flags & SCF_RSP_CRC) {
  280. res.check_response_crc = 1;
  281. }
  282. res.use_hold_reg = 1;
  283. if (cmd->data) {
  284. res.data_expected = 1;
  285. if ((cmd->flags & SCF_CMD_READ) == 0) {
  286. res.rw = 1;
  287. }
  288. assert(cmd->datalen % cmd->blklen == 0);
  289. res.send_auto_stop = cmd_needs_auto_stop(cmd) ? 1 : 0;
  290. }
  291. ESP_LOGV(TAG, "%s: opcode=%d, rexp=%d, crc=%d, auto_stop=%d", __func__,
  292. res.cmd_index, res.response_expect, res.check_response_crc,
  293. res.send_auto_stop);
  294. return res;
  295. }
  296. static void process_command_response(uint32_t status, sdmmc_command_t* cmd)
  297. {
  298. if (cmd->flags & SCF_RSP_PRESENT) {
  299. if (cmd->flags & SCF_RSP_136) {
  300. /* Destination is 4-byte aligned, can memcopy from peripheral registers */
  301. memcpy(cmd->response, (uint32_t*) SDMMC.resp, 4 * sizeof(uint32_t));
  302. } else {
  303. cmd->response[0] = SDMMC.resp[0];
  304. cmd->response[1] = 0;
  305. cmd->response[2] = 0;
  306. cmd->response[3] = 0;
  307. }
  308. }
  309. esp_err_t err = ESP_OK;
  310. if (status & SDMMC_INTMASK_RTO) {
  311. // response timeout is only possible when response is expected
  312. assert(cmd->flags & SCF_RSP_PRESENT);
  313. err = ESP_ERR_TIMEOUT;
  314. } else if ((cmd->flags & SCF_RSP_CRC) && (status & SDMMC_INTMASK_RCRC)) {
  315. err = ESP_ERR_INVALID_CRC;
  316. } else if (status & SDMMC_INTMASK_RESP_ERR) {
  317. err = ESP_ERR_INVALID_RESPONSE;
  318. }
  319. if (err != ESP_OK) {
  320. cmd->error = err;
  321. if (cmd->data) {
  322. sdmmc_host_dma_stop();
  323. }
  324. ESP_LOGD(TAG, "%s: error 0x%x (status=%08x)", __func__, err, status);
  325. }
  326. }
  327. static void process_data_status(uint32_t status, sdmmc_command_t* cmd)
  328. {
  329. if (status & SDMMC_DATA_ERR_MASK) {
  330. if (status & SDMMC_INTMASK_DTO) {
  331. cmd->error = ESP_ERR_TIMEOUT;
  332. } else if (status & SDMMC_INTMASK_DCRC) {
  333. cmd->error = ESP_ERR_INVALID_CRC;
  334. } else if ((status & SDMMC_INTMASK_EBE) &&
  335. (cmd->flags & SCF_CMD_READ) == 0) {
  336. cmd->error = ESP_ERR_TIMEOUT;
  337. } else {
  338. cmd->error = ESP_FAIL;
  339. }
  340. SDMMC.ctrl.fifo_reset = 1;
  341. }
  342. if (cmd->error != 0) {
  343. if (cmd->data) {
  344. sdmmc_host_dma_stop();
  345. }
  346. ESP_LOGD(TAG, "%s: error 0x%x (status=%08x)", __func__, cmd->error, status);
  347. }
  348. }
  349. static inline bool mask_check_and_clear(uint32_t* state, uint32_t mask) {
  350. bool ret = ((*state) & mask) != 0;
  351. *state &= ~mask;
  352. return ret;
  353. }
  354. static esp_err_t process_events(sdmmc_event_t evt, sdmmc_command_t* cmd,
  355. sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events)
  356. {
  357. const char* const s_state_names[] __attribute__((unused)) = {
  358. "IDLE",
  359. "SENDING_CMD",
  360. "SENDIND_DATA",
  361. "BUSY"
  362. };
  363. sdmmc_event_t orig_evt = evt;
  364. ESP_LOGV(TAG, "%s: state=%s evt=%x dma=%x", __func__, s_state_names[*pstate],
  365. evt.sdmmc_status, evt.dma_status);
  366. sdmmc_req_state_t next_state = *pstate;
  367. sdmmc_req_state_t state = (sdmmc_req_state_t) -1;
  368. while (next_state != state) {
  369. state = next_state;
  370. switch (state) {
  371. case SDMMC_IDLE:
  372. break;
  373. case SDMMC_SENDING_CMD:
  374. if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_CMD_ERR_MASK)) {
  375. process_command_response(orig_evt.sdmmc_status, cmd);
  376. break; // Need to wait for the CMD_DONE interrupt
  377. }
  378. if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_CMD_DONE)) {
  379. process_command_response(orig_evt.sdmmc_status, cmd);
  380. if (cmd->error != ESP_OK) {
  381. next_state = SDMMC_IDLE;
  382. break;
  383. }
  384. if (cmd->data == NULL) {
  385. next_state = SDMMC_IDLE;
  386. } else {
  387. next_state = SDMMC_SENDING_DATA;
  388. }
  389. }
  390. break;
  391. case SDMMC_SENDING_DATA:
  392. if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_DATA_ERR_MASK)) {
  393. process_data_status(orig_evt.sdmmc_status, cmd);
  394. sdmmc_host_dma_stop();
  395. }
  396. if (mask_check_and_clear(&evt.dma_status, SDMMC_DMA_DONE_MASK)) {
  397. s_cur_transfer.desc_remaining--;
  398. if (s_cur_transfer.size_remaining) {
  399. int desc_to_fill = get_free_descriptors_count();
  400. fill_dma_descriptors(desc_to_fill);
  401. sdmmc_host_dma_resume();
  402. }
  403. if (s_cur_transfer.desc_remaining == 0) {
  404. next_state = SDMMC_BUSY;
  405. }
  406. }
  407. if (orig_evt.sdmmc_status & (SDMMC_INTMASK_SBE | SDMMC_INTMASK_DATA_OVER)) {
  408. // On start bit error, DATA_DONE interrupt will not be generated
  409. next_state = SDMMC_IDLE;
  410. break;
  411. }
  412. break;
  413. case SDMMC_BUSY:
  414. if (!mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_DATA_OVER)) {
  415. break;
  416. }
  417. process_data_status(orig_evt.sdmmc_status, cmd);
  418. next_state = SDMMC_IDLE;
  419. break;
  420. }
  421. ESP_LOGV(TAG, "%s state=%s next_state=%s", __func__, s_state_names[state], s_state_names[next_state]);
  422. }
  423. *pstate = state;
  424. *unhandled_events = evt;
  425. return ESP_OK;
  426. }
  427. static bool wait_for_busy_cleared(int timeout_ms)
  428. {
  429. if (timeout_ms == 0) {
  430. return !sdmmc_host_card_busy();
  431. }
  432. /* It would have been nice to do this without polling, however the peripheral
  433. * can only generate Busy Clear Interrupt for data write commands, and waiting
  434. * for busy clear is mostly needed for other commands such as MMC_SWITCH.
  435. */
  436. int timeout_ticks = (timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS;
  437. while (timeout_ticks-- > 0) {
  438. if (!sdmmc_host_card_busy()) {
  439. return true;
  440. }
  441. vTaskDelay(1);
  442. }
  443. return false;
  444. }