spi_common.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "sdkconfig.h"
  8. #include "driver/spi_master.h"
  9. #include "soc/spi_periph.h"
  10. #include "esp_types.h"
  11. #include "esp_attr.h"
  12. #include "esp_log.h"
  13. #include "esp_err.h"
  14. #include "soc/soc.h"
  15. #include "soc/soc_caps.h"
  16. #include "soc/soc_pins.h"
  17. #include "soc/lldesc.h"
  18. #include "driver/gpio.h"
  19. #include "driver/periph_ctrl.h"
  20. #include "esp_heap_caps.h"
  21. #include "driver/spi_common_internal.h"
  22. #include "stdatomic.h"
  23. #include "hal/spi_hal.h"
  24. #include "hal/gpio_hal.h"
  25. #include "esp_rom_gpio.h"
  26. #if CONFIG_IDF_TARGET_ESP32
  27. #include "soc/dport_reg.h"
  28. #endif
  29. #if SOC_GDMA_SUPPORTED
  30. #include "esp_private/gdma.h"
  31. #endif
  32. static const char *SPI_TAG = "spi";
  33. #define SPI_CHECK(a, str, ret_val) do { \
  34. if (!(a)) { \
  35. ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  36. return (ret_val); \
  37. } \
  38. } while(0)
  39. #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
  40. SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  41. } else { \
  42. SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  43. }
  44. #define SPI_MAIN_BUS_DEFAULT() { \
  45. .host_id = 0, \
  46. .bus_attr = { \
  47. .tx_dma_chan = 0, \
  48. .rx_dma_chan = 0, \
  49. .max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \
  50. .dma_desc_num= 0, \
  51. }, \
  52. }
  53. #define FUNC_GPIO PIN_FUNC_GPIO
  54. typedef struct {
  55. int host_id;
  56. spi_destroy_func_t destroy_func;
  57. void* destroy_arg;
  58. spi_bus_attr_t bus_attr;
  59. #if SOC_GDMA_SUPPORTED
  60. gdma_channel_handle_t tx_channel;
  61. gdma_channel_handle_t rx_channel;
  62. #endif
  63. } spicommon_bus_context_t;
  64. //Periph 1 is 'claimed' by SPI flash code.
  65. static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false),
  66. #if (SOC_SPI_PERIPH_NUM >= 3)
  67. ATOMIC_VAR_INIT(false),
  68. #endif
  69. #if (SOC_SPI_PERIPH_NUM >= 4)
  70. ATOMIC_VAR_INIT(false),
  71. #endif
  72. };
  73. static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
  74. static spicommon_bus_context_t s_mainbus = SPI_MAIN_BUS_DEFAULT();
  75. static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus};
  76. #if !SOC_GDMA_SUPPORTED
  77. //Each bit stands for 1 dma channel, BIT(0) should be used for SPI1
  78. static uint8_t spi_dma_chan_enabled = 0;
  79. static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
  80. #endif //#if !SOC_GDMA_SUPPORTED
  81. static inline bool is_valid_host(spi_host_device_t host)
  82. {
  83. #if (SOC_SPI_PERIPH_NUM == 2)
  84. return host >= SPI1_HOST && host <= SPI2_HOST;
  85. #elif (SOC_SPI_PERIPH_NUM == 3)
  86. return host >= SPI1_HOST && host <= SPI3_HOST;
  87. #endif
  88. }
  89. //----------------------------------------------------------alloc spi periph-------------------------------------------------------//
  90. //Returns true if this peripheral is successfully claimed, false if otherwise.
  91. bool spicommon_periph_claim(spi_host_device_t host, const char* source)
  92. {
  93. bool false_var = false;
  94. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
  95. if (ret) {
  96. spi_claiming_func[host] = source;
  97. periph_module_enable(spi_periph_signal[host].module);
  98. } else {
  99. ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
  100. }
  101. return ret;
  102. }
  103. bool spicommon_periph_in_use(spi_host_device_t host)
  104. {
  105. return atomic_load(&spi_periph_claimed[host]);
  106. }
  107. //Returns true if this peripheral is successfully freed, false if otherwise.
  108. bool spicommon_periph_free(spi_host_device_t host)
  109. {
  110. bool true_var = true;
  111. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
  112. if (ret) periph_module_disable(spi_periph_signal[host].module);
  113. return ret;
  114. }
  115. int spicommon_irqsource_for_host(spi_host_device_t host)
  116. {
  117. return spi_periph_signal[host].irq;
  118. }
  119. int spicommon_irqdma_source_for_host(spi_host_device_t host)
  120. {
  121. return spi_periph_signal[host].irq_dma;
  122. }
  123. //----------------------------------------------------------alloc dma periph-------------------------------------------------------//
  124. #if !SOC_GDMA_SUPPORTED
  125. static inline periph_module_t get_dma_periph(int dma_chan)
  126. {
  127. assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM);
  128. #if CONFIG_IDF_TARGET_ESP32S2
  129. if (dma_chan == 1) {
  130. return PERIPH_SPI2_DMA_MODULE;
  131. } else if (dma_chan == 2) {
  132. return PERIPH_SPI3_DMA_MODULE;
  133. } else {
  134. abort();
  135. }
  136. #elif CONFIG_IDF_TARGET_ESP32
  137. return PERIPH_SPI_DMA_MODULE;
  138. #endif
  139. }
  140. static bool spicommon_dma_chan_claim(int dma_chan, uint32_t *out_actual_dma_chan)
  141. {
  142. bool ret = false;
  143. portENTER_CRITICAL(&spi_dma_spinlock);
  144. bool is_used = (BIT(dma_chan) & spi_dma_chan_enabled);
  145. if (!is_used) {
  146. spi_dma_chan_enabled |= BIT(dma_chan);
  147. periph_module_enable(get_dma_periph(dma_chan));
  148. *out_actual_dma_chan = dma_chan;
  149. ret = true;
  150. }
  151. portEXIT_CRITICAL(&spi_dma_spinlock);
  152. return ret;
  153. }
  154. static void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
  155. {
  156. #if CONFIG_IDF_TARGET_ESP32
  157. DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
  158. #elif CONFIG_IDF_TARGET_ESP32S2
  159. //On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them.
  160. #endif
  161. }
  162. static esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
  163. {
  164. assert(is_valid_host(host_id));
  165. #if CONFIG_IDF_TARGET_ESP32
  166. assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO);
  167. #elif CONFIG_IDF_TARGET_ESP32S2
  168. assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO);
  169. #endif
  170. esp_err_t ret = ESP_OK;
  171. bool success = false;
  172. uint32_t actual_dma_chan = 0;
  173. if (dma_chan == SPI_DMA_CH_AUTO) {
  174. #if CONFIG_IDF_TARGET_ESP32
  175. for (int i = 1; i < SOC_SPI_DMA_CHAN_NUM+1; i++) {
  176. success = spicommon_dma_chan_claim(i, &actual_dma_chan);
  177. if (success) {
  178. break;
  179. }
  180. }
  181. #elif CONFIG_IDF_TARGET_ESP32S2
  182. //On ESP32S2, each SPI controller has its own DMA channel
  183. success = spicommon_dma_chan_claim(host_id, &actual_dma_chan);
  184. #endif //#if CONFIG_IDF_TARGET_XXX
  185. } else {
  186. success = spicommon_dma_chan_claim((int)dma_chan, &actual_dma_chan);
  187. }
  188. //On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
  189. *out_actual_tx_dma_chan = actual_dma_chan;
  190. *out_actual_rx_dma_chan = actual_dma_chan;
  191. if (!success) {
  192. SPI_CHECK(false, "no available dma channel", ESP_ERR_NOT_FOUND);
  193. }
  194. spicommon_connect_spi_and_dma(host_id, *out_actual_tx_dma_chan);
  195. return ret;
  196. }
  197. #else //SOC_GDMA_SUPPORTED
  198. static esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
  199. {
  200. assert(is_valid_host(host_id));
  201. assert(dma_chan == SPI_DMA_CH_AUTO);
  202. esp_err_t ret = ESP_OK;
  203. spicommon_bus_context_t *ctx = bus_ctx[host_id];
  204. if (dma_chan == SPI_DMA_CH_AUTO) {
  205. gdma_channel_alloc_config_t tx_alloc_config = {
  206. .flags.reserve_sibling = 1,
  207. .direction = GDMA_CHANNEL_DIRECTION_TX,
  208. };
  209. ret = gdma_new_channel(&tx_alloc_config, &ctx->tx_channel);
  210. if (ret != ESP_OK) {
  211. return ret;
  212. }
  213. gdma_channel_alloc_config_t rx_alloc_config = {
  214. .direction = GDMA_CHANNEL_DIRECTION_RX,
  215. .sibling_chan = ctx->tx_channel,
  216. };
  217. ret = gdma_new_channel(&rx_alloc_config, &ctx->rx_channel);
  218. if (ret != ESP_OK) {
  219. return ret;
  220. }
  221. if (host_id == SPI2_HOST) {
  222. gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
  223. gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
  224. }
  225. #if (SOC_SPI_PERIPH_NUM >= 3)
  226. else if (host_id == SPI3_HOST) {
  227. gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
  228. gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
  229. }
  230. #endif
  231. gdma_get_channel_id(ctx->tx_channel, (int *)out_actual_tx_dma_chan);
  232. gdma_get_channel_id(ctx->rx_channel, (int *)out_actual_rx_dma_chan);
  233. }
  234. return ret;
  235. }
  236. #endif //#if !SOC_GDMA_SUPPORTED
  237. esp_err_t spicommon_slave_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
  238. {
  239. assert(is_valid_host(host_id));
  240. #if CONFIG_IDF_TARGET_ESP32
  241. assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO);
  242. #elif CONFIG_IDF_TARGET_ESP32S2
  243. assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO);
  244. #endif
  245. esp_err_t ret = ESP_OK;
  246. uint32_t actual_tx_dma_chan = 0;
  247. uint32_t actual_rx_dma_chan = 0;
  248. spicommon_bus_context_t *ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
  249. if (!ctx) {
  250. ret = ESP_ERR_NO_MEM;
  251. goto cleanup;
  252. }
  253. bus_ctx[host_id] = ctx;
  254. ctx->host_id = host_id;
  255. ret = spicommon_dma_chan_alloc(host_id, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
  256. if (ret != ESP_OK) {
  257. goto cleanup;
  258. }
  259. ctx->bus_attr.tx_dma_chan = actual_tx_dma_chan;
  260. ctx->bus_attr.rx_dma_chan = actual_rx_dma_chan;
  261. *out_actual_tx_dma_chan = actual_tx_dma_chan;
  262. *out_actual_rx_dma_chan = actual_rx_dma_chan;
  263. return ret;
  264. cleanup:
  265. free(ctx);
  266. ctx = NULL;
  267. return ret;
  268. }
  269. //----------------------------------------------------------free dma periph-------------------------------------------------------//
  270. static esp_err_t spicommon_dma_chan_free(spi_host_device_t host_id)
  271. {
  272. assert(is_valid_host(host_id));
  273. spicommon_bus_context_t *ctx = bus_ctx[host_id];
  274. #if !SOC_GDMA_SUPPORTED
  275. //On ESP32S2, each SPI controller has its own DMA channel
  276. int dma_chan = ctx->bus_attr.tx_dma_chan;
  277. assert(spi_dma_chan_enabled & BIT(dma_chan));
  278. portENTER_CRITICAL(&spi_dma_spinlock);
  279. spi_dma_chan_enabled &= ~BIT(dma_chan);
  280. periph_module_disable(get_dma_periph(dma_chan));
  281. portEXIT_CRITICAL(&spi_dma_spinlock);
  282. #else //SOC_GDMA_SUPPORTED
  283. if (ctx->rx_channel) {
  284. gdma_disconnect(ctx->rx_channel);
  285. gdma_del_channel(ctx->rx_channel);
  286. }
  287. if (ctx->tx_channel) {
  288. gdma_disconnect(ctx->tx_channel);
  289. gdma_del_channel(ctx->tx_channel);
  290. }
  291. #endif
  292. return ESP_OK;
  293. }
  294. esp_err_t spicommon_slave_free_dma(spi_host_device_t host_id)
  295. {
  296. assert(is_valid_host(host_id));
  297. esp_err_t ret = spicommon_dma_chan_free(host_id);
  298. free(bus_ctx[host_id]);
  299. bus_ctx[host_id] = NULL;
  300. return ret;
  301. }
  302. //----------------------------------------------------------IO general-------------------------------------------------------//
  303. #if SOC_SPI_SUPPORT_OCT
  304. static bool check_iomux_pins_oct(spi_host_device_t host, const spi_bus_config_t* bus_config)
  305. {
  306. if (host != SPI2_HOST) {
  307. return false;
  308. }
  309. int io_nums[] = {bus_config->data0_io_num, bus_config->data1_io_num, bus_config->data2_io_num, bus_config->data3_io_num,
  310. bus_config->sclk_io_num, bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num};
  311. int io_mux_nums[] = {SPI2_IOMUX_PIN_NUM_MOSI_OCT, SPI2_IOMUX_PIN_NUM_MISO_OCT, SPI2_IOMUX_PIN_NUM_WP_OCT, SPI2_IOMUX_PIN_NUM_HD_OCT,
  312. SPI2_IOMUX_PIN_NUM_CLK_OCT, SPI2_IOMUX_PIN_NUM_IO4_OCT, SPI2_IOMUX_PIN_NUM_IO5_OCT, SPI2_IOMUX_PIN_NUM_IO6_OCT, SPI2_IOMUX_PIN_NUM_IO7_OCT};
  313. for (size_t i = 0; i < sizeof(io_nums)/sizeof(io_nums[0]); i++) {
  314. if (io_nums[i] >= 0 && io_nums[i] != io_mux_nums[i]) {
  315. return false;
  316. }
  317. }
  318. return true;
  319. }
  320. #endif
  321. static bool check_iomux_pins_quad(spi_host_device_t host, const spi_bus_config_t* bus_config)
  322. {
  323. if (bus_config->sclk_io_num>=0 &&
  324. bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) {
  325. return false;
  326. }
  327. if (bus_config->quadwp_io_num>=0 &&
  328. bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) {
  329. return false;
  330. }
  331. if (bus_config->quadhd_io_num>=0 &&
  332. bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) {
  333. return false;
  334. }
  335. if (bus_config->mosi_io_num >= 0 &&
  336. bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) {
  337. return false;
  338. }
  339. if (bus_config->miso_io_num>=0 &&
  340. bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) {
  341. return false;
  342. }
  343. return true;
  344. }
  345. static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
  346. {
  347. //Check if SPI pins could be routed to iomux.
  348. #if SOC_SPI_SUPPORT_OCT
  349. //The io mux pins available for Octal mode is not the same as the ones we use for non-Octal mode.
  350. if ((bus_config->flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) {
  351. return check_iomux_pins_oct(host, bus_config);
  352. }
  353. #endif
  354. return check_iomux_pins_quad(host, bus_config);
  355. }
  356. #if SOC_SPI_SUPPORT_OCT
  357. static void bus_iomux_pins_set_oct(spi_host_device_t host, const spi_bus_config_t* bus_config)
  358. {
  359. assert(host == SPI2_HOST);
  360. int io_nums[] = {bus_config->data0_io_num, bus_config->data1_io_num, bus_config->data2_io_num, bus_config->data3_io_num,
  361. bus_config->sclk_io_num, bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num};
  362. int io_signals[] = {spi_periph_signal[host].spid_in, spi_periph_signal[host].spiq_in, spi_periph_signal[host].spiwp_in,
  363. spi_periph_signal[host].spihd_in,spi_periph_signal[host].spiclk_in, spi_periph_signal[host].spid4_out,
  364. spi_periph_signal[host].spid5_out, spi_periph_signal[host].spid6_out, spi_periph_signal[host].spid7_out};
  365. for (size_t i = 0; i < sizeof(io_nums)/sizeof(io_nums[0]); i++) {
  366. if (io_nums[i] > 0) {
  367. gpio_iomux_in(io_nums[i], io_signals[i]);
  368. // In Octal mode use function channel 2
  369. gpio_iomux_out(io_nums[i], SPI2_FUNC_NUM_OCT, false);
  370. }
  371. }
  372. }
  373. #endif //SOC_SPI_SUPPORT_OCT
  374. static void bus_iomux_pins_set_quad(spi_host_device_t host, const spi_bus_config_t* bus_config)
  375. {
  376. if (bus_config->mosi_io_num >= 0) {
  377. gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
  378. gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false);
  379. }
  380. if (bus_config->miso_io_num >= 0) {
  381. gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
  382. gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false);
  383. }
  384. if (bus_config->quadwp_io_num >= 0) {
  385. gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
  386. gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false);
  387. }
  388. if (bus_config->quadhd_io_num >= 0) {
  389. gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
  390. gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false);
  391. }
  392. if (bus_config->sclk_io_num >= 0) {
  393. gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
  394. gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false);
  395. }
  396. }
  397. static void bus_iomux_pins_set(spi_host_device_t host, const spi_bus_config_t* bus_config)
  398. {
  399. #if SOC_SPI_SUPPORT_OCT
  400. if ((bus_config->flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) {
  401. bus_iomux_pins_set_oct(host, bus_config);
  402. return;
  403. }
  404. #endif
  405. bus_iomux_pins_set_quad(host, bus_config);
  406. }
  407. /*
  408. Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
  409. bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
  410. it should be able to be initialized.
  411. */
  412. esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, uint32_t flags, uint32_t* flags_o)
  413. {
  414. #if SOC_SPI_SUPPORT_OCT
  415. // In the driver of previous version, spi data4 ~ spi data7 are not in spi_bus_config_t struct. So the new-added pins come as 0
  416. // if they are not really set. Add this boolean variable to check if the user has set spi data4 ~spi data7 pins .
  417. bool io4_7_is_blank = !bus_config->data4_io_num && !bus_config->data5_io_num && !bus_config->data6_io_num && !bus_config->data7_io_num;
  418. // This boolean variable specifies if user sets pins used for octal mode (users can set spi data4 ~ spi data7 to -1).
  419. bool io4_7_enabled = !io4_7_is_blank && bus_config->data4_io_num >= 0 && bus_config->data5_io_num >= 0 &&
  420. bus_config->data6_io_num >= 0 && bus_config->data7_io_num >= 0;
  421. SPI_CHECK((flags & SPICOMMON_BUSFLAG_MASTER) || !((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL), "Octal SPI mode / OPI mode only works when SPI is used as Master", ESP_ERR_INVALID_ARG);
  422. SPI_CHECK(host == SPI2_HOST || !((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL), "Only SPI2 supports Octal SPI mode / OPI mode", ESP_ERR_INVALID_ARG);
  423. #endif //SOC_SPI_SUPPORT_OCT
  424. uint32_t temp_flag = 0;
  425. bool miso_need_output;
  426. bool mosi_need_output;
  427. bool sclk_need_output;
  428. if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
  429. //initial for master
  430. miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  431. mosi_need_output = true;
  432. sclk_need_output = true;
  433. } else {
  434. //initial for slave
  435. miso_need_output = true;
  436. mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  437. sclk_need_output = false;
  438. }
  439. const bool wp_need_output = true;
  440. const bool hd_need_output = true;
  441. //check pin capabilities
  442. if (bus_config->sclk_io_num>=0) {
  443. temp_flag |= SPICOMMON_BUSFLAG_SCLK;
  444. SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
  445. }
  446. if (bus_config->quadwp_io_num>=0) {
  447. SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
  448. }
  449. if (bus_config->quadhd_io_num>=0) {
  450. SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
  451. }
  452. #if SOC_SPI_SUPPORT_OCT
  453. const bool io4_need_output = true;
  454. const bool io5_need_output = true;
  455. const bool io6_need_output = true;
  456. const bool io7_need_output = true;
  457. // set flags for OCTAL mode according to the existence of spi data4 ~ spi data7
  458. if (io4_7_enabled) {
  459. temp_flag |= SPICOMMON_BUSFLAG_IO4_IO7;
  460. if (bus_config->data4_io_num >= 0) {
  461. SPI_CHECK_PIN(bus_config->data4_io_num, "spi data4", io4_need_output);
  462. }
  463. if (bus_config->data5_io_num >= 0) {
  464. SPI_CHECK_PIN(bus_config->data5_io_num, "spi data5", io5_need_output);
  465. }
  466. if (bus_config->data6_io_num >= 0) {
  467. SPI_CHECK_PIN(bus_config->data6_io_num, "spi data6", io6_need_output);
  468. }
  469. if (bus_config->data7_io_num >= 0) {
  470. SPI_CHECK_PIN(bus_config->data7_io_num, "spi data7", io7_need_output);
  471. }
  472. }
  473. #endif //SOC_SPI_SUPPORT_OCT
  474. //set flags for QUAD mode according to the existence of wp and hd
  475. if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
  476. if (bus_config->mosi_io_num >= 0) {
  477. temp_flag |= SPICOMMON_BUSFLAG_MOSI;
  478. SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
  479. }
  480. if (bus_config->miso_io_num >= 0) {
  481. temp_flag |= SPICOMMON_BUSFLAG_MISO;
  482. SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
  483. }
  484. //set flags for DUAL mode according to output-capability of MOSI and MISO pins.
  485. if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
  486. (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
  487. temp_flag |= SPICOMMON_BUSFLAG_DUAL;
  488. }
  489. //check if the selected pins correspond to the iomux pins of the peripheral
  490. bool use_iomux = !(flags & SPICOMMON_BUSFLAG_GPIO_PINS) && bus_uses_iomux_pins(host, bus_config);
  491. if (use_iomux) {
  492. temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
  493. } else {
  494. temp_flag |= SPICOMMON_BUSFLAG_GPIO_PINS;
  495. }
  496. uint32_t missing_flag = flags & ~temp_flag;
  497. missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
  498. if (missing_flag != 0) {
  499. //check pins existence
  500. if (missing_flag & SPICOMMON_BUSFLAG_SCLK) {
  501. ESP_LOGE(SPI_TAG, "sclk pin required.");
  502. }
  503. if (missing_flag & SPICOMMON_BUSFLAG_MOSI) {
  504. ESP_LOGE(SPI_TAG, "mosi pin required.");
  505. }
  506. if (missing_flag & SPICOMMON_BUSFLAG_MISO) {
  507. ESP_LOGE(SPI_TAG, "miso pin required.");
  508. }
  509. if (missing_flag & SPICOMMON_BUSFLAG_DUAL) {
  510. ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
  511. }
  512. if (missing_flag & SPICOMMON_BUSFLAG_WPHD) {
  513. ESP_LOGE(SPI_TAG, "both wp and hd required.");
  514. }
  515. if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) {
  516. ESP_LOGE(SPI_TAG, "not using iomux pins");
  517. }
  518. #if SOC_SPI_SUPPORT_OCT
  519. if (missing_flag & SPICOMMON_BUSFLAG_IO4_IO7) {
  520. ESP_LOGE(SPI_TAG, "spi data4 ~ spi data7 are required.");
  521. }
  522. #endif
  523. SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
  524. }
  525. if (use_iomux) {
  526. //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
  527. //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
  528. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
  529. bus_iomux_pins_set(host, bus_config);
  530. } else {
  531. //Use GPIO matrix
  532. ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
  533. if (bus_config->mosi_io_num >= 0) {
  534. if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  535. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
  536. esp_rom_gpio_connect_out_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
  537. } else {
  538. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
  539. }
  540. esp_rom_gpio_connect_in_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
  541. #if CONFIG_IDF_TARGET_ESP32S2
  542. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]);
  543. #endif
  544. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
  545. }
  546. if (bus_config->miso_io_num >= 0) {
  547. if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  548. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
  549. esp_rom_gpio_connect_out_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
  550. } else {
  551. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
  552. }
  553. esp_rom_gpio_connect_in_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
  554. #if CONFIG_IDF_TARGET_ESP32S2
  555. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]);
  556. #endif
  557. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
  558. }
  559. if (bus_config->quadwp_io_num >= 0) {
  560. gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
  561. esp_rom_gpio_connect_out_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
  562. esp_rom_gpio_connect_in_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
  563. #if CONFIG_IDF_TARGET_ESP32S2
  564. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]);
  565. #endif
  566. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
  567. }
  568. if (bus_config->quadhd_io_num >= 0) {
  569. gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
  570. esp_rom_gpio_connect_out_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
  571. esp_rom_gpio_connect_in_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
  572. #if CONFIG_IDF_TARGET_ESP32S2
  573. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]);
  574. #endif
  575. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
  576. }
  577. if (bus_config->sclk_io_num >= 0) {
  578. if (sclk_need_output) {
  579. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
  580. esp_rom_gpio_connect_out_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
  581. } else {
  582. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
  583. }
  584. esp_rom_gpio_connect_in_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
  585. #if CONFIG_IDF_TARGET_ESP32S2
  586. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]);
  587. #endif
  588. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
  589. }
  590. #if SOC_SPI_SUPPORT_OCT
  591. if (flags & SPICOMMON_BUSFLAG_OCTAL) {
  592. int io_nums[] = {bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num};
  593. uint8_t io_signals[4][2] = {{spi_periph_signal[host].spid4_out, spi_periph_signal[host].spid4_in},
  594. {spi_periph_signal[host].spid5_out, spi_periph_signal[host].spid5_in},
  595. {spi_periph_signal[host].spid6_out, spi_periph_signal[host].spid6_in},
  596. {spi_periph_signal[host].spid7_out, spi_periph_signal[host].spid7_in}};
  597. for (size_t i = 0; i < sizeof(io_nums) / sizeof(io_nums[0]); i++) {
  598. if (io_nums[i] >= 0) {
  599. gpio_set_direction(io_nums[i], GPIO_MODE_INPUT_OUTPUT);
  600. esp_rom_gpio_connect_out_signal(io_nums[i], io_signals[i][0], false, false);
  601. esp_rom_gpio_connect_in_signal(io_nums[i], io_signals[i][1], false);
  602. #if CONFIG_IDF_TARGET_ESP32S2
  603. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[io_nums[i]]);
  604. #endif
  605. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[io_nums[i]], FUNC_GPIO);
  606. }
  607. }
  608. }
  609. #endif //SOC_SPI_SUPPORT_OCT
  610. }
  611. if (flags_o) *flags_o = temp_flag;
  612. return ESP_OK;
  613. }
  614. esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
  615. {
  616. int pin_array[] = {
  617. bus_cfg->mosi_io_num,
  618. bus_cfg->miso_io_num,
  619. bus_cfg->sclk_io_num,
  620. bus_cfg->quadwp_io_num,
  621. bus_cfg->quadhd_io_num,
  622. };
  623. for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
  624. const int io = pin_array[i];
  625. if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
  626. }
  627. return ESP_OK;
  628. }
  629. void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
  630. {
  631. if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
  632. //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
  633. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
  634. gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false);
  635. } else {
  636. //Use GPIO matrix
  637. if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
  638. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
  639. esp_rom_gpio_connect_out_signal(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
  640. } else {
  641. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
  642. }
  643. if (cs_num == 0) esp_rom_gpio_connect_in_signal(cs_io_num, spi_periph_signal[host].spics_in, false);
  644. PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]);
  645. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
  646. }
  647. }
  648. void spicommon_cs_free_io(int cs_gpio_num)
  649. {
  650. assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
  651. gpio_reset_pin(cs_gpio_num);
  652. }
  653. bool spicommon_bus_using_iomux(spi_host_device_t host)
  654. {
  655. #define CHECK_IOMUX_PIN(HOST, PIN_NAME) if (GPIO.func_in_sel_cfg[spi_periph_signal[(HOST)].PIN_NAME##_in].sig_in_sel) return false
  656. CHECK_IOMUX_PIN(host, spid);
  657. CHECK_IOMUX_PIN(host, spiq);
  658. CHECK_IOMUX_PIN(host, spiwp);
  659. CHECK_IOMUX_PIN(host, spihd);
  660. return true;
  661. }
  662. void spi_bus_main_set_lock(spi_bus_lock_handle_t lock)
  663. {
  664. bus_ctx[0]->bus_attr.lock = lock;
  665. }
  666. spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id)
  667. {
  668. return bus_ctx[host_id]->bus_attr.lock;
  669. }
  670. //----------------------------------------------------------master bus init-------------------------------------------------------//
  671. esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, spi_dma_chan_t dma_chan)
  672. {
  673. esp_err_t err = ESP_OK;
  674. spicommon_bus_context_t *ctx = NULL;
  675. spi_bus_attr_t *bus_attr = NULL;
  676. uint32_t actual_tx_dma_chan = 0;
  677. uint32_t actual_rx_dma_chan = 0;
  678. SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG);
  679. SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE);
  680. #ifdef CONFIG_IDF_TARGET_ESP32
  681. SPI_CHECK(dma_chan >= SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG );
  682. #elif CONFIG_IDF_TARGET_ESP32S2
  683. SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG );
  684. #elif SOC_GDMA_SUPPORTED
  685. SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG );
  686. #endif
  687. SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
  688. #ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM
  689. SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG);
  690. #endif
  691. bool spi_chan_claimed = spicommon_periph_claim(host_id, "spi master");
  692. SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE);
  693. //clean and initialize the context
  694. ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
  695. if (!ctx) {
  696. err = ESP_ERR_NO_MEM;
  697. goto cleanup;
  698. }
  699. bus_ctx[host_id] = ctx;
  700. ctx->host_id = host_id;
  701. bus_attr = &ctx->bus_attr;
  702. bus_attr->bus_cfg = *bus_config;
  703. if (dma_chan != SPI_DMA_DISABLED) {
  704. bus_attr->dma_enabled = 1;
  705. err = spicommon_dma_chan_alloc(host_id, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
  706. if (err != ESP_OK) {
  707. goto cleanup;
  708. }
  709. bus_attr->tx_dma_chan = actual_tx_dma_chan;
  710. bus_attr->rx_dma_chan = actual_rx_dma_chan;
  711. int dma_desc_ct = lldesc_get_required_num(bus_config->max_transfer_sz);
  712. if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given
  713. bus_attr->max_transfer_sz = dma_desc_ct * LLDESC_MAX_NUM_PER_DESC;
  714. bus_attr->dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
  715. bus_attr->dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
  716. if (bus_attr->dmadesc_tx == NULL || bus_attr->dmadesc_rx == NULL) {
  717. err = ESP_ERR_NO_MEM;
  718. goto cleanup;
  719. }
  720. bus_attr->dma_desc_num = dma_desc_ct;
  721. } else {
  722. bus_attr->dma_enabled = 0;
  723. bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE;
  724. bus_attr->dma_desc_num = 0;
  725. }
  726. spi_bus_lock_config_t lock_config = {
  727. .host_id = host_id,
  728. .cs_num = SOC_SPI_PERIPH_CS_NUM(host_id),
  729. };
  730. err = spi_bus_init_lock(&bus_attr->lock, &lock_config);
  731. if (err != ESP_OK) {
  732. goto cleanup;
  733. }
  734. #ifdef CONFIG_PM_ENABLE
  735. err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
  736. &bus_attr->pm_lock);
  737. if (err != ESP_OK) {
  738. goto cleanup;
  739. }
  740. #endif //CONFIG_PM_ENABLE
  741. err = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags);
  742. if (err != ESP_OK) {
  743. goto cleanup;
  744. }
  745. return ESP_OK;
  746. cleanup:
  747. if (bus_attr) {
  748. #ifdef CONFIG_PM_ENABLE
  749. esp_pm_lock_delete(bus_attr->pm_lock);
  750. #endif
  751. if (bus_attr->lock) {
  752. spi_bus_deinit_lock(bus_attr->lock);
  753. }
  754. free(bus_attr->dmadesc_tx);
  755. free(bus_attr->dmadesc_rx);
  756. bus_attr->dmadesc_tx = NULL;
  757. bus_attr->dmadesc_rx = NULL;
  758. if (bus_attr->dma_enabled) {
  759. spicommon_dma_chan_free(host_id);
  760. }
  761. }
  762. spicommon_periph_free(host_id);
  763. free(bus_ctx[host_id]);
  764. bus_ctx[host_id] = NULL;
  765. return err;
  766. }
  767. const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id)
  768. {
  769. if (bus_ctx[host_id] == NULL) return NULL;
  770. return &bus_ctx[host_id]->bus_attr;
  771. }
  772. esp_err_t spi_bus_free(spi_host_device_t host_id)
  773. {
  774. esp_err_t err = ESP_OK;
  775. spicommon_bus_context_t* ctx = bus_ctx[host_id];
  776. spi_bus_attr_t* bus_attr = &ctx->bus_attr;
  777. if (ctx->destroy_func) {
  778. err = ctx->destroy_func(ctx->destroy_arg);
  779. }
  780. spicommon_bus_free_io_cfg(&bus_attr->bus_cfg);
  781. #ifdef CONFIG_PM_ENABLE
  782. esp_pm_lock_delete(bus_attr->pm_lock);
  783. #endif
  784. spi_bus_deinit_lock(bus_attr->lock);
  785. free(bus_attr->dmadesc_rx);
  786. free(bus_attr->dmadesc_tx);
  787. bus_attr->dmadesc_tx = NULL;
  788. bus_attr->dmadesc_rx = NULL;
  789. if (bus_attr->dma_enabled > 0) {
  790. spicommon_dma_chan_free(host_id);
  791. }
  792. spicommon_periph_free(host_id);
  793. free(ctx);
  794. bus_ctx[host_id] = NULL;
  795. return err;
  796. }
  797. esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id,
  798. spi_destroy_func_t f, void *arg)
  799. {
  800. bus_ctx[host_id]->destroy_func = f;
  801. bus_ctx[host_id]->destroy_arg = arg;
  802. return ESP_OK;
  803. }
  804. /*
  805. Code for workaround for DMA issue in ESP32 v0/v1 silicon
  806. */
  807. #if CONFIG_IDF_TARGET_ESP32
  808. static volatile int dmaworkaround_channels_busy[2] = {0, 0};
  809. static dmaworkaround_cb_t dmaworkaround_cb;
  810. static void *dmaworkaround_cb_arg;
  811. static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
  812. static int dmaworkaround_waiting_for_chan = 0;
  813. #endif
  814. bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
  815. {
  816. #if CONFIG_IDF_TARGET_ESP32
  817. int otherchan = (dmachan == 1) ? 2 : 1;
  818. bool ret;
  819. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  820. if (dmaworkaround_channels_busy[otherchan-1]) {
  821. //Other channel is busy. Call back when it's done.
  822. dmaworkaround_cb = cb;
  823. dmaworkaround_cb_arg = arg;
  824. dmaworkaround_waiting_for_chan = otherchan;
  825. ret = false;
  826. } else {
  827. //Reset DMA
  828. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  829. ret = true;
  830. }
  831. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  832. return ret;
  833. #else
  834. //no need to reset
  835. return true;
  836. #endif
  837. }
  838. bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void)
  839. {
  840. #if CONFIG_IDF_TARGET_ESP32
  841. return (dmaworkaround_waiting_for_chan != 0);
  842. #else
  843. return false;
  844. #endif
  845. }
  846. void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
  847. {
  848. #if CONFIG_IDF_TARGET_ESP32
  849. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  850. dmaworkaround_channels_busy[dmachan-1] = 0;
  851. if (dmaworkaround_waiting_for_chan == dmachan) {
  852. //Reset DMA
  853. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  854. dmaworkaround_waiting_for_chan = 0;
  855. //Call callback
  856. dmaworkaround_cb(dmaworkaround_cb_arg);
  857. }
  858. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  859. #endif
  860. }
  861. void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
  862. {
  863. #if CONFIG_IDF_TARGET_ESP32
  864. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  865. dmaworkaround_channels_busy[dmachan-1] = 1;
  866. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  867. #endif
  868. }