test_spi_master.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444
  1. /*
  2. * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. Tests for the spi_master device driver
  8. */
  9. #include <esp_types.h>
  10. #include <stdio.h>
  11. #include <stdlib.h>
  12. #include <malloc.h>
  13. #include <string.h>
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/task.h"
  16. #include "freertos/semphr.h"
  17. #include "freertos/queue.h"
  18. #include "unity.h"
  19. #include "driver/spi_master.h"
  20. #include "driver/spi_slave.h"
  21. #include "esp_heap_caps.h"
  22. #include "esp_log.h"
  23. #include "soc/spi_periph.h"
  24. #include "test_utils.h"
  25. #include "test/test_common_spi.h"
  26. #include "soc/gpio_periph.h"
  27. #include "sdkconfig.h"
  28. #include "../cache_utils.h"
  29. #include "soc/soc_memory_layout.h"
  30. #include "driver/spi_common_internal.h"
  31. const static char TAG[] = "test_spi";
  32. // There is no input-only pin on esp32c3 and esp32s3
  33. #define TEST_SOC_HAS_INPUT_ONLY_PINS (!DISABLED_FOR_TARGETS(ESP32C3, ESP32S3))
  34. static void check_spi_pre_n_for(int clk, int pre, int n)
  35. {
  36. esp_err_t ret;
  37. spi_device_handle_t handle;
  38. spi_device_interface_config_t devcfg = {
  39. .command_bits = 0,
  40. .address_bits = 0,
  41. .dummy_bits = 0,
  42. .clock_speed_hz = clk,
  43. .duty_cycle_pos = 128,
  44. .mode = 0,
  45. .spics_io_num = PIN_NUM_CS,
  46. .queue_size = 3
  47. };
  48. char sendbuf[16] = "";
  49. spi_transaction_t t;
  50. memset(&t, 0, sizeof(t));
  51. ret = spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle);
  52. TEST_ASSERT(ret == ESP_OK);
  53. t.length = 16 * 8;
  54. t.tx_buffer = sendbuf;
  55. ret = spi_device_transmit(handle, &t);
  56. spi_dev_t *hw = spi_periph_signal[TEST_SPI_HOST].hw;
  57. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, hw->clock.clkdiv_pre + 1, hw->clock.clkcnt_n + 1);
  58. TEST_ASSERT(hw->clock.clkcnt_n + 1 == n);
  59. TEST_ASSERT(hw->clock.clkdiv_pre + 1 == pre);
  60. ret = spi_bus_remove_device(handle);
  61. TEST_ASSERT(ret == ESP_OK);
  62. }
  63. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  64. {
  65. spi_bus_config_t buscfg = {
  66. .mosi_io_num = PIN_NUM_MOSI,
  67. .miso_io_num = PIN_NUM_MISO,
  68. .sclk_io_num = PIN_NUM_CLK,
  69. .quadwp_io_num = -1,
  70. .quadhd_io_num = -1
  71. };
  72. esp_err_t ret;
  73. ret = spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
  74. TEST_ASSERT(ret == ESP_OK);
  75. check_spi_pre_n_for(26000000, 1, 3);
  76. check_spi_pre_n_for(20000000, 1, 4);
  77. check_spi_pre_n_for(8000000, 1, 10);
  78. check_spi_pre_n_for(800000, 2, 50);
  79. check_spi_pre_n_for(100000, 16, 50);
  80. check_spi_pre_n_for(333333, 4, 60);
  81. check_spi_pre_n_for(900000, 2, 44);
  82. check_spi_pre_n_for(1, SOC_SPI_MAX_PRE_DIVIDER, 64); //Actually should generate the minimum clock speed, 152Hz
  83. check_spi_pre_n_for(26000000, 1, 3);
  84. ret = spi_bus_free(TEST_SPI_HOST);
  85. TEST_ASSERT(ret == ESP_OK);
  86. }
  87. static spi_device_handle_t setup_spi_bus_loopback(int clkspeed, bool dma)
  88. {
  89. spi_bus_config_t buscfg = {
  90. .mosi_io_num = PIN_NUM_MOSI,
  91. .miso_io_num = PIN_NUM_MOSI,
  92. .sclk_io_num = PIN_NUM_CLK,
  93. .quadwp_io_num = -1,
  94. .quadhd_io_num = -1,
  95. .max_transfer_sz = 4096 * 3
  96. };
  97. spi_device_interface_config_t devcfg = {
  98. .command_bits = 0,
  99. .address_bits = 0,
  100. .dummy_bits = 0,
  101. .clock_speed_hz = clkspeed,
  102. .duty_cycle_pos = 128,
  103. .mode = 0,
  104. .spics_io_num = PIN_NUM_CS,
  105. .queue_size = 3,
  106. };
  107. spi_device_handle_t handle;
  108. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, dma ? SPI_DMA_CH_AUTO : 0));
  109. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle));
  110. //connect MOSI to two devices breaks the output, fix it.
  111. spitest_gpio_output_sel(PIN_NUM_MOSI, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  112. printf("Bus/dev inited.\n");
  113. return handle;
  114. }
  115. static int spi_test(spi_device_handle_t handle, int num_bytes)
  116. {
  117. esp_err_t ret;
  118. int x;
  119. bool success = true;
  120. srand(num_bytes);
  121. char *sendbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
  122. char *recvbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
  123. for (x = 0; x < num_bytes; x++) {
  124. sendbuf[x] = rand() & 0xff;
  125. recvbuf[x] = 0x55;
  126. }
  127. spi_transaction_t t;
  128. memset(&t, 0, sizeof(t));
  129. t.length = num_bytes * 8;
  130. t.tx_buffer = sendbuf;
  131. t.rx_buffer = recvbuf;
  132. t.addr = 0xA00000000000000FL;
  133. t.cmd = 0x55;
  134. printf("Transmitting %d bytes...\n", num_bytes);
  135. ret = spi_device_transmit(handle, &t);
  136. TEST_ASSERT(ret == ESP_OK);
  137. srand(num_bytes);
  138. for (x = 0; x < num_bytes; x++) {
  139. if (sendbuf[x] != (rand() & 0xff)) {
  140. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  141. TEST_ASSERT(0);
  142. }
  143. if (sendbuf[x] != recvbuf[x]) {
  144. break;
  145. }
  146. }
  147. if (x != num_bytes) {
  148. int from = x - 16;
  149. if (from < 0) {
  150. from = 0;
  151. }
  152. success = false;
  153. printf("Error at %d! Sent vs recved: (starting from %d)\n", x, from);
  154. for (int i = 0; i < 32; i++) {
  155. if (i + from < num_bytes) {
  156. printf("%02X ", sendbuf[from + i]);
  157. }
  158. }
  159. printf("\n");
  160. for (int i = 0; i < 32; i++) {
  161. if (i + from < num_bytes) {
  162. printf("%02X ", recvbuf[from + i]);
  163. }
  164. }
  165. printf("\n");
  166. }
  167. if (success) {
  168. printf("Success!\n");
  169. }
  170. free(sendbuf);
  171. free(recvbuf);
  172. return success;
  173. }
  174. TEST_CASE("SPI Master test", "[spi]")
  175. {
  176. bool success = true;
  177. printf("Testing bus at 80KHz\n");
  178. spi_device_handle_t handle = setup_spi_bus_loopback(80000, true);
  179. success &= spi_test(handle, 16); //small
  180. success &= spi_test(handle, 21); //small, unaligned
  181. success &= spi_test(handle, 36); //aligned
  182. success &= spi_test(handle, 128); //aligned
  183. success &= spi_test(handle, 129); //unaligned
  184. success &= spi_test(handle, 4096 - 2); //multiple descs, edge case 1
  185. success &= spi_test(handle, 4096 - 1); //multiple descs, edge case 2
  186. success &= spi_test(handle, 4096 * 3); //multiple descs
  187. master_free_device_bus(handle);
  188. printf("Testing bus at 80KHz, non-DMA\n");
  189. handle = setup_spi_bus_loopback(80000, false);
  190. success &= spi_test(handle, 4); //aligned
  191. success &= spi_test(handle, 16); //small
  192. success &= spi_test(handle, 21); //small, unaligned
  193. success &= spi_test(handle, 32); //small
  194. success &= spi_test(handle, 47); //small, unaligned
  195. success &= spi_test(handle, 63); //small
  196. success &= spi_test(handle, 64); //small, unaligned
  197. master_free_device_bus(handle);
  198. printf("Testing bus at 26MHz\n");
  199. handle = setup_spi_bus_loopback(20000000, true);
  200. success &= spi_test(handle, 128); //DMA, aligned
  201. success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
  202. master_free_device_bus(handle);
  203. printf("Testing bus at 900KHz\n");
  204. handle = setup_spi_bus_loopback(9000000, true);
  205. success &= spi_test(handle, 128); //DMA, aligned
  206. success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
  207. master_free_device_bus(handle);
  208. TEST_ASSERT(success);
  209. }
  210. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]")
  211. {
  212. esp_err_t ret;
  213. bool success = true;
  214. spi_device_interface_config_t devcfg = {
  215. .command_bits = 0,
  216. .address_bits = 0,
  217. .dummy_bits = 0,
  218. .clock_speed_hz = 1000000,
  219. .duty_cycle_pos = 128,
  220. .mode = 0,
  221. .spics_io_num = PIN_NUM_CS,
  222. .queue_size = 3,
  223. };
  224. spi_device_handle_t handle1 = setup_spi_bus_loopback(80000, true);
  225. spi_device_handle_t handle2;
  226. spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle2);
  227. printf("Sending to dev 1\n");
  228. success &= spi_test(handle1, 7);
  229. printf("Sending to dev 1\n");
  230. success &= spi_test(handle1, 15);
  231. printf("Sending to dev 2\n");
  232. success &= spi_test(handle2, 15);
  233. printf("Sending to dev 1\n");
  234. success &= spi_test(handle1, 32);
  235. printf("Sending to dev 2\n");
  236. success &= spi_test(handle2, 32);
  237. printf("Sending to dev 1\n");
  238. success &= spi_test(handle1, 63);
  239. printf("Sending to dev 2\n");
  240. success &= spi_test(handle2, 63);
  241. printf("Sending to dev 1\n");
  242. success &= spi_test(handle1, 5000);
  243. printf("Sending to dev 2\n");
  244. success &= spi_test(handle2, 5000);
  245. ret = spi_bus_remove_device(handle2);
  246. TEST_ASSERT(ret == ESP_OK);
  247. master_free_device_bus(handle1);
  248. TEST_ASSERT(success);
  249. }
  250. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  251. static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
  252. {
  253. esp_err_t ret;
  254. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  255. cfg.mosi_io_num = mosi;
  256. cfg.miso_io_num = miso;
  257. cfg.sclk_io_num = sclk;
  258. spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  259. master_cfg.spics_io_num = cs;
  260. ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, SPI_DMA_CH_AUTO);
  261. if (ret != ESP_OK) {
  262. return ret;
  263. }
  264. spi_device_handle_t spi;
  265. ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
  266. if (ret != ESP_OK) {
  267. spi_bus_free(TEST_SPI_HOST);
  268. return ret;
  269. }
  270. master_free_device_bus(spi);
  271. return ESP_OK;
  272. }
  273. static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
  274. {
  275. esp_err_t ret;
  276. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  277. cfg.mosi_io_num = mosi;
  278. cfg.miso_io_num = miso;
  279. cfg.sclk_io_num = sclk;
  280. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  281. slave_cfg.spics_io_num = cs;
  282. ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, SPI_DMA_CH_AUTO);
  283. if (ret != ESP_OK) {
  284. return ret;
  285. }
  286. spi_slave_free(TEST_SLAVE_HOST);
  287. return ESP_OK;
  288. }
  289. TEST_CASE("spi placed on input-only pins", "[spi]")
  290. {
  291. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  292. TEST_ASSERT(test_master_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  293. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS));
  294. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS) != ESP_OK);
  295. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN) != ESP_OK);
  296. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  297. TEST_ESP_OK(test_slave_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  298. TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  299. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS));
  300. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN));
  301. }
  302. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  303. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  304. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  305. {
  306. spi_bus_config_t cfg;
  307. uint32_t flags_o;
  308. uint32_t flags_expected;
  309. ESP_LOGI(TAG, "test 6 iomux output pins...");
  310. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_QUAD;
  311. cfg = (spi_bus_config_t) {
  312. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  313. .max_transfer_sz = 8, .flags = flags_expected
  314. };
  315. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  316. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  317. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  318. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  319. ESP_LOGI(TAG, "test 4 iomux output pins...");
  320. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_DUAL;
  321. cfg = (spi_bus_config_t) {
  322. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  323. .max_transfer_sz = 8, .flags = flags_expected
  324. };
  325. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  326. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  327. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  328. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  329. ESP_LOGI(TAG, "test 6 output pins...");
  330. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD | SPICOMMON_BUSFLAG_GPIO_PINS;
  331. //swap MOSI and MISO
  332. cfg = (spi_bus_config_t) {
  333. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  334. .max_transfer_sz = 8, .flags = flags_expected
  335. };
  336. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  337. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  338. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  339. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  340. ESP_LOGI(TAG, "test 4 output pins...");
  341. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  342. //swap MOSI and MISO
  343. cfg = (spi_bus_config_t) {
  344. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  345. .max_transfer_sz = 8, .flags = flags_expected
  346. };
  347. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  348. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  349. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  350. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  351. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  352. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  353. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  354. cfg = (spi_bus_config_t) {
  355. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  356. .max_transfer_sz = 8, .flags = flags_expected
  357. };
  358. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  359. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  360. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  361. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  362. cfg = (spi_bus_config_t) {
  363. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  364. .max_transfer_sz = 8, .flags = flags_expected
  365. };
  366. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  367. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  368. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  369. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  370. cfg = (spi_bus_config_t) {
  371. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  372. .max_transfer_sz = 8, .flags = flags_expected
  373. };
  374. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  375. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  376. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  377. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  378. cfg = (spi_bus_config_t) {
  379. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  380. .max_transfer_sz = 8, .flags = flags_expected
  381. };
  382. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  383. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  384. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  385. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  386. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  387. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  388. //swap MOSI and MISO
  389. cfg = (spi_bus_config_t) {
  390. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  391. .max_transfer_sz = 8, .flags = flags_expected
  392. };
  393. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  394. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  395. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  396. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  397. //swap MOSI and MISO
  398. cfg = (spi_bus_config_t) {
  399. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  400. .max_transfer_sz = 8, .flags = flags_expected
  401. };
  402. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  403. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  404. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  405. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  406. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  407. cfg = (spi_bus_config_t) {
  408. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  409. .max_transfer_sz = 8, .flags = flags_expected
  410. };
  411. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  412. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  413. cfg = (spi_bus_config_t) {
  414. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  415. .max_transfer_sz = 8, .flags = flags_expected
  416. };
  417. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  418. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  419. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  420. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  421. cfg = (spi_bus_config_t) {
  422. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  423. .max_transfer_sz = 8, .flags = flags_expected
  424. };
  425. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  426. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  427. cfg = (spi_bus_config_t) {
  428. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  429. .max_transfer_sz = 8, .flags = flags_expected
  430. };
  431. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  432. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  433. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  434. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  435. ESP_LOGI(TAG, "check sclk flag...");
  436. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  437. cfg = (spi_bus_config_t) {
  438. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = -1, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  439. .max_transfer_sz = 8, .flags = flags_expected
  440. };
  441. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  442. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  443. ESP_LOGI(TAG, "check mosi flag...");
  444. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  445. cfg = (spi_bus_config_t) {
  446. .mosi_io_num = -1, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  447. .max_transfer_sz = 8, .flags = flags_expected
  448. };
  449. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  450. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  451. ESP_LOGI(TAG, "check miso flag...");
  452. flags_expected = SPICOMMON_BUSFLAG_MISO;
  453. cfg = (spi_bus_config_t) {
  454. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = -1, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  455. .max_transfer_sz = 8, .flags = flags_expected
  456. };
  457. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  458. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  459. ESP_LOGI(TAG, "check quad flag...");
  460. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  461. cfg = (spi_bus_config_t) {
  462. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  463. .max_transfer_sz = 8, .flags = flags_expected
  464. };
  465. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  466. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  467. cfg = (spi_bus_config_t) {
  468. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = -1,
  469. .max_transfer_sz = 8, .flags = flags_expected
  470. };
  471. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  472. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  473. }
  474. TEST_CASE("SPI Master no response when switch from host1 (SPI2) to host2 (SPI3)", "[spi]")
  475. {
  476. //spi config
  477. spi_bus_config_t bus_config;
  478. spi_device_interface_config_t device_config;
  479. spi_device_handle_t spi;
  480. spi_host_device_t host;
  481. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  482. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  483. bus_config.miso_io_num = -1;
  484. bus_config.mosi_io_num = PIN_NUM_MOSI;
  485. bus_config.sclk_io_num = PIN_NUM_CLK;
  486. bus_config.quadwp_io_num = -1;
  487. bus_config.quadhd_io_num = -1;
  488. device_config.clock_speed_hz = 50000;
  489. device_config.mode = 0;
  490. device_config.spics_io_num = -1;
  491. device_config.queue_size = 1;
  492. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  493. struct spi_transaction_t transaction = {
  494. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  495. .length = 16,
  496. .rx_buffer = NULL,
  497. .tx_data = {0x04, 0x00}
  498. };
  499. //initialize for first host
  500. host = TEST_SPI_HOST;
  501. TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
  502. TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
  503. printf("before first xmit\n");
  504. TEST_ESP_OK(spi_device_transmit(spi, &transaction));
  505. printf("after first xmit\n");
  506. TEST_ESP_OK(spi_bus_remove_device(spi));
  507. TEST_ESP_OK(spi_bus_free(host));
  508. //for second host and failed before
  509. host = TEST_SLAVE_HOST;
  510. TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
  511. TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
  512. printf("before second xmit\n");
  513. // the original version (bit mis-written) stucks here.
  514. TEST_ESP_OK(spi_device_transmit(spi, &transaction));
  515. // test case success when see this.
  516. printf("after second xmit\n");
  517. TEST_ESP_OK(spi_bus_remove_device(spi));
  518. TEST_ESP_OK(spi_bus_free(host));
  519. }
  520. DRAM_ATTR static uint32_t data_dram[80] = {0};
  521. //force to place in code area.
  522. static const uint8_t data_drom[320 + 3] = {
  523. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  524. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  525. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  526. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  527. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  528. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  529. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  530. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  531. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  532. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  533. };
  534. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  535. {
  536. #ifdef CONFIG_SPIRAM
  537. //test psram if enabled
  538. ESP_LOGI(TAG, "testing PSRAM...");
  539. uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  540. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  541. #else
  542. uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_DMA);
  543. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  544. #endif
  545. TEST_ASSERT(data_malloc != NULL);
  546. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  547. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  548. ESP_LOGI(TAG, "dram: %p", data_dram);
  549. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  550. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  551. uint32_t *data_iram = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  552. TEST_ASSERT(data_iram != NULL);
  553. TEST_ASSERT(esp_ptr_executable(data_iram) || esp_ptr_in_iram(data_iram) || esp_ptr_in_diram_iram(data_iram));
  554. ESP_LOGI(TAG, "iram: %p", data_iram);
  555. #endif
  556. srand(52);
  557. for (int i = 0; i < 320 / 4; i++) {
  558. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  559. data_iram[i] = rand();
  560. #endif
  561. data_dram[i] = rand();
  562. data_malloc[i] = rand();
  563. }
  564. esp_err_t ret;
  565. spi_device_handle_t spi;
  566. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  567. buscfg.miso_io_num = PIN_NUM_MOSI;
  568. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  569. //Initialize the SPI bus
  570. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  571. //Attach the LCD to the SPI bus
  572. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  573. //connect MOSI to two devices breaks the output, fix it.
  574. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  575. #define TEST_REGION_SIZE 5
  576. static spi_transaction_t trans[TEST_REGION_SIZE];
  577. int x;
  578. memset(trans, 0, sizeof(trans));
  579. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  580. trans[0].length = 320 * 8,
  581. trans[0].tx_buffer = data_iram;
  582. trans[0].rx_buffer = data_malloc + 1;
  583. trans[1].length = 320 * 8,
  584. trans[1].tx_buffer = data_dram;
  585. trans[1].rx_buffer = data_iram;
  586. trans[2].length = 320 * 8,
  587. trans[2].tx_buffer = data_drom;
  588. trans[2].rx_buffer = data_iram;
  589. #endif
  590. trans[3].length = 320 * 8,
  591. trans[3].tx_buffer = data_malloc + 2;
  592. trans[3].rx_buffer = data_dram;
  593. trans[4].length = 4 * 8,
  594. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  595. uint32_t *ptr = (uint32_t *)trans[4].rx_data;
  596. *ptr = 0x54545454;
  597. ptr = (uint32_t *)trans[4].tx_data;
  598. *ptr = 0xbc124960;
  599. //Queue all transactions.
  600. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  601. for (x = 0; x < TEST_REGION_SIZE; x++) {
  602. #else
  603. for (x = 3; x < TEST_REGION_SIZE; x++) {
  604. #endif
  605. ESP_LOGI(TAG, "transmitting %d...", x);
  606. ret = spi_device_transmit(spi, &trans[x]);
  607. TEST_ASSERT(ret == ESP_OK);
  608. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  609. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  610. } else {
  611. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 / 4);
  612. }
  613. }
  614. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  615. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  616. free(data_malloc);
  617. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  618. free(data_iram);
  619. #endif
  620. }
  621. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  622. // 1. RX buffer not aligned (start and end)
  623. // 2. not setting rx_buffer
  624. // 3. setting rx_length != length
  625. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  626. {
  627. uint8_t tx_buf[320] = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  628. uint8_t rx_buf[320];
  629. spi_device_handle_t spi;
  630. spi_bus_config_t buscfg = {
  631. .miso_io_num = PIN_NUM_MOSI,
  632. .mosi_io_num = PIN_NUM_MOSI,
  633. .sclk_io_num = PIN_NUM_CLK,
  634. .quadwp_io_num = -1,
  635. .quadhd_io_num = -1
  636. };
  637. spi_device_interface_config_t devcfg = {
  638. .clock_speed_hz = 10 * 1000 * 1000, //Clock out at 10 MHz
  639. .mode = 0, //SPI mode 0
  640. .spics_io_num = PIN_NUM_CS, //CS pin
  641. .queue_size = 7, //We want to be able to queue 7 transactions at a time
  642. .pre_cb = NULL,
  643. };
  644. //Initialize the SPI bus
  645. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  646. //Attach the LCD to the SPI bus
  647. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  648. //connect MOSI to two devices breaks the output, fix it.
  649. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  650. memset(rx_buf, 0x66, 320);
  651. for ( int i = 0; i < 8; i ++ ) {
  652. memset( rx_buf, 0x66, sizeof(rx_buf));
  653. spi_transaction_t t = {};
  654. t.length = 8 * (i + 1);
  655. t.rxlength = 0;
  656. t.tx_buffer = tx_buf + 2 * i;
  657. t.rx_buffer = rx_buf + i;
  658. if ( i == 1 ) {
  659. //test set no start
  660. t.rx_buffer = NULL;
  661. } else if ( i == 2 ) {
  662. //test rx length != tx_length
  663. t.rxlength = t.length - 8;
  664. }
  665. spi_device_transmit( spi, &t );
  666. for ( int i = 0; i < 16; i ++ ) {
  667. printf("%02X ", rx_buf[i]);
  668. }
  669. printf("\n");
  670. if ( i == 1 ) {
  671. // no rx, skip check
  672. } else if ( i == 2 ) {
  673. //test rx length = tx length-1
  674. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8 - 1 );
  675. } else {
  676. //normal check
  677. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8 );
  678. }
  679. }
  680. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  681. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  682. }
  683. #if !DISABLED_FOR_TARGETS(ESP32C3) //There is only one GPSPI controller, so single-board test is disabled.
  684. static uint8_t bitswap(uint8_t in)
  685. {
  686. uint8_t out = 0;
  687. for (int i = 0; i < 8; i++) {
  688. out = out >> 1;
  689. if (in & 0x80) {
  690. out |= 0x80;
  691. }
  692. in = in << 1;
  693. }
  694. return out;
  695. }
  696. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  697. {
  698. spi_device_handle_t spi;
  699. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first ? "LSB" : "MSB");
  700. //initial master, mode 0, 1MHz
  701. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  702. buscfg.quadhd_io_num = UNCONNECTED_PIN;
  703. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  704. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  705. devcfg.clock_speed_hz = 1 * 1000 * 1000;
  706. if (lsb_first) {
  707. devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  708. }
  709. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  710. //connecting pins to two peripherals breaks the output, fix it.
  711. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  712. spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  713. spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  714. spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  715. for (int i = 0; i < 8; i++) {
  716. //prepare slave tx data
  717. slave_txdata_t slave_txdata = (slave_txdata_t) {
  718. .start = spitest_slave_send + 4 * (i % 3),
  719. .len = 256,
  720. };
  721. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  722. vTaskDelay(50);
  723. //prepare master tx data
  724. int cmd_bits = (i + 1) * 2;
  725. int addr_bits =
  726. #ifdef CONFIG_IDF_TARGET_ESP32
  727. 56 - 8 * i;
  728. #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  729. //ESP32S2 only supportes up to 32 bits address
  730. 28 - 4 * i;
  731. #endif
  732. int round_up = (cmd_bits + addr_bits + 7) / 8 * 8;
  733. addr_bits = round_up - cmd_bits;
  734. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  735. .base = {
  736. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  737. .addr = 0x456789abcdef0123,
  738. .cmd = 0x9876,
  739. },
  740. .command_bits = cmd_bits,
  741. .address_bits = addr_bits,
  742. };
  743. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  744. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  745. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&trans));
  746. //wait for both master and slave end
  747. size_t rcv_len;
  748. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  749. rcv_len -= 8;
  750. uint8_t *buffer = rcv_data->data;
  751. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  752. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len + 7) / 8);
  753. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits + addr_bits);
  754. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  755. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  756. uint64_t addr_expected = trans.base.addr & ((1ULL << addr_bits) - 1);
  757. uint8_t *data_ptr = buffer;
  758. uint16_t cmd_got = *(uint16_t *)data_ptr;
  759. data_ptr += cmd_bits / 8;
  760. cmd_got = __builtin_bswap16(cmd_got);
  761. cmd_got = cmd_got >> (16 - cmd_bits);
  762. int remain_bits = cmd_bits % 8;
  763. uint64_t addr_got = *(uint64_t *)data_ptr;
  764. data_ptr += 8;
  765. addr_got = __builtin_bswap64(addr_got);
  766. addr_got = (addr_got << remain_bits);
  767. addr_got |= (*data_ptr >> (8 - remain_bits));
  768. addr_got = addr_got >> (64 - addr_bits);
  769. if (lsb_first) {
  770. cmd_got = __builtin_bswap16(cmd_got);
  771. addr_got = __builtin_bswap64(addr_got);
  772. uint8_t *swap_ptr = (uint8_t *)&cmd_got;
  773. swap_ptr[0] = bitswap(swap_ptr[0]);
  774. swap_ptr[1] = bitswap(swap_ptr[1]);
  775. cmd_got = cmd_got >> (16 - cmd_bits);
  776. swap_ptr = (uint8_t *)&addr_got;
  777. for (int j = 0; j < 8; j++) {
  778. swap_ptr[j] = bitswap(swap_ptr[j]);
  779. }
  780. addr_got = addr_got >> (64 - addr_bits);
  781. }
  782. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got >> 32), (uint32_t)addr_got);
  783. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  784. if (addr_bits > 0) {
  785. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  786. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  787. }
  788. //clean
  789. vRingbufferReturnItem(slave_context->data_received, rcv_data);
  790. }
  791. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  792. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  793. }
  794. TEST_CASE("SPI master variable cmd & addr test", "[spi]")
  795. {
  796. spi_slave_task_context_t slave_context = {};
  797. esp_err_t err = init_slave_context( &slave_context );
  798. TEST_ASSERT( err == ESP_OK );
  799. TaskHandle_t handle_slave;
  800. xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  801. //initial slave, mode 0, no dma
  802. int dma_chan = 0;
  803. int slave_mode = 0;
  804. spi_bus_config_t slv_buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  805. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  806. slvcfg.mode = slave_mode;
  807. //Initialize SPI slave interface
  808. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  809. test_cmd_addr(&slave_context, false);
  810. test_cmd_addr(&slave_context, true);
  811. vTaskDelete( handle_slave );
  812. handle_slave = 0;
  813. deinit_slave_context(&slave_context);
  814. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  815. ESP_LOGI(MASTER_TAG, "test passed.");
  816. }
  817. void test_dummy(spi_device_handle_t spi, int dummy_n, uint8_t *data_to_send, int len)
  818. {
  819. ESP_LOGI(TAG, "testing dummy n=%d", dummy_n);
  820. WORD_ALIGNED_ATTR uint8_t slave_buffer[len + (dummy_n + 7) / 8];
  821. spi_slave_transaction_t slave_t = {
  822. .tx_buffer = slave_buffer,
  823. .rx_buffer = slave_buffer,
  824. .length = len * 8 + ((dummy_n + 7) & (~8)) + 32, //receive more bytes to avoid slave discarding data
  825. };
  826. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  827. vTaskDelay(50);
  828. spi_transaction_ext_t t = {
  829. .base = {
  830. .tx_buffer = data_to_send,
  831. .length = (len + 1) * 8, //send one more byte force slave receive all data
  832. .flags = SPI_TRANS_VARIABLE_DUMMY,
  833. },
  834. .dummy_bits = dummy_n,
  835. };
  836. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&t));
  837. spi_slave_transaction_t *ret_slave;
  838. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  839. TEST_ASSERT(ret_slave == &slave_t);
  840. ESP_LOG_BUFFER_HEXDUMP("rcv", slave_buffer, len + 4, ESP_LOG_INFO);
  841. int skip_cnt = dummy_n / 8;
  842. int dummy_remain = dummy_n % 8;
  843. uint8_t *slave_ptr = slave_buffer;
  844. if (dummy_remain > 0) {
  845. for (int i = 0; i < len; i++) {
  846. slave_ptr[0] = (slave_ptr[skip_cnt] << dummy_remain) | (slave_ptr[skip_cnt + 1] >> (8 - dummy_remain));
  847. slave_ptr++;
  848. }
  849. } else {
  850. for (int i = 0; i < len; i++) {
  851. slave_ptr[0] = slave_ptr[skip_cnt];
  852. slave_ptr++;
  853. }
  854. }
  855. TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_send, slave_buffer, len);
  856. }
  857. TEST_CASE("SPI master variable dummy test", "[spi]")
  858. {
  859. spi_device_handle_t spi;
  860. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  861. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  862. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  863. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, 0));
  864. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  865. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  866. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, 0));
  867. spitest_gpio_output_sel(bus_cfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  868. spitest_gpio_output_sel(bus_cfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  869. spitest_gpio_output_sel(dev_cfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  870. spitest_gpio_output_sel(bus_cfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  871. uint8_t data_to_send[] = {0x12, 0x34, 0x56, 0x78};
  872. test_dummy(spi, 0, data_to_send, sizeof(data_to_send));
  873. test_dummy(spi, 1, data_to_send, sizeof(data_to_send));
  874. test_dummy(spi, 2, data_to_send, sizeof(data_to_send));
  875. test_dummy(spi, 3, data_to_send, sizeof(data_to_send));
  876. test_dummy(spi, 4, data_to_send, sizeof(data_to_send));
  877. test_dummy(spi, 8, data_to_send, sizeof(data_to_send));
  878. test_dummy(spi, 12, data_to_send, sizeof(data_to_send));
  879. test_dummy(spi, 16, data_to_send, sizeof(data_to_send));
  880. spi_slave_free(TEST_SLAVE_HOST);
  881. master_free_device_bus(spi);
  882. }
  883. /**
  884. * This test is to check when the first transaction of the HD master is to send data without receiving data via DMA,
  885. * then if the master could receive data correctly.
  886. *
  887. * Because an old version ESP32 silicon issue, there is a workaround to enable and start the RX DMA in FD/HD mode in
  888. * this condition (TX without RX). And if RX DMA is enabled and started in HD mode, because there is no correctly
  889. * linked RX DMA descriptor, there will be an inlink_dscr_error interrupt emerging, which will influence the following
  890. * RX transactions.
  891. *
  892. * This bug is fixed by triggering this workaround only in FD mode.
  893. *
  894. */
  895. TEST_CASE("SPI master hd dma TX without RX test", "[spi]")
  896. {
  897. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  898. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
  899. spi_device_handle_t spi;
  900. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  901. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  902. dev_cfg.clock_speed_hz = 4 * 1000 * 1000;
  903. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  904. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  905. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, SPI_DMA_CH_AUTO));
  906. same_pin_func_sel(bus_cfg, dev_cfg, 0);
  907. uint32_t buf_size = 32;
  908. uint8_t *mst_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
  909. uint8_t *mst_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
  910. uint8_t *slv_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
  911. uint8_t *slv_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
  912. srand(199);
  913. for (int i = 0; i < buf_size; i++) {
  914. mst_send_buf[i] = rand();
  915. }
  916. //1. Master sends without receiving, no rx_buffer is set
  917. spi_slave_transaction_t slave_trans = {
  918. .rx_buffer = slv_recv_buf,
  919. .length = buf_size * 8,
  920. };
  921. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
  922. spi_transaction_t master_trans = {
  923. .tx_buffer = mst_send_buf,
  924. .length = buf_size * 8,
  925. };
  926. TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
  927. spi_slave_transaction_t *ret_slave;
  928. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  929. spitest_cmp_or_dump(mst_send_buf, slv_recv_buf, buf_size);
  930. //2. Master receives data
  931. for (int i = 100; i < 110; i++) {
  932. srand(i);
  933. for (int j = 0; j < buf_size; j++) {
  934. slv_send_buf[j] = rand();
  935. }
  936. slave_trans = (spi_slave_transaction_t) {};
  937. slave_trans.tx_buffer = slv_send_buf;
  938. slave_trans.length = buf_size * 8;
  939. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
  940. vTaskDelay(50);
  941. master_trans = (spi_transaction_t) {};
  942. master_trans.rx_buffer = mst_recv_buf;
  943. master_trans.rxlength = buf_size * 8;
  944. TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
  945. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  946. spitest_cmp_or_dump(slv_send_buf, mst_recv_buf, buf_size);
  947. }
  948. free(mst_send_buf);
  949. free(mst_recv_buf);
  950. free(slv_send_buf);
  951. free(slv_recv_buf);
  952. spi_slave_free(TEST_SLAVE_HOST);
  953. master_free_device_bus(spi);
  954. }
  955. //There is only one GPSPI controller, so single-board test is disabled.
  956. #endif //#if !DISABLED_FOR_TARGETS(ESP32C3)
  957. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
  958. #define FD_TEST_BUF_SIZE 32
  959. #define TEST_NUM 4
  960. #define FD_SEED1 199
  961. #define FD_SEED2 29
  962. #define FD_SEED3 48
  963. #define FD_SEED4 327
  964. static void master_only_tx_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint32_t length)
  965. {
  966. ESP_LOGI(MASTER_TAG, "FD DMA, Only TX:");
  967. spi_transaction_t trans = {0};
  968. trans.tx_buffer = mst_send_buf;
  969. trans.length = length * 8;
  970. unity_wait_for_signal("Slave ready");
  971. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  972. ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
  973. }
  974. static void master_only_rx_trans(spi_device_handle_t spi, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
  975. {
  976. ESP_LOGI(MASTER_TAG, "FD DMA, Only RX:");
  977. spi_transaction_t trans = {0};
  978. trans.tx_buffer = NULL;
  979. trans.rx_buffer = mst_recv_buf;
  980. trans.length = length * 8;
  981. unity_wait_for_signal("Slave ready");
  982. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  983. ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
  984. TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
  985. }
  986. static void master_both_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
  987. {
  988. ESP_LOGI(MASTER_TAG, "FD DMA, Both TX and RX:");
  989. spi_transaction_t trans = {0};
  990. trans.tx_buffer = mst_send_buf;
  991. trans.rx_buffer = mst_recv_buf;
  992. trans.length = length * 8;
  993. unity_wait_for_signal("Slave ready");
  994. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  995. ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
  996. ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
  997. TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
  998. }
  999. static void fd_master(void)
  1000. {
  1001. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1002. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
  1003. spi_device_handle_t spi;
  1004. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1005. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  1006. unity_send_signal("Master ready");
  1007. uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1008. uint8_t *mst_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
  1009. uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1010. //Master FD DMA, RX without TX Test
  1011. for (int i = 0; i < TEST_NUM; i++) {
  1012. // 1. Master FD DMA, only receive, with NULL tx_buffer
  1013. get_tx_buffer(FD_SEED1+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1014. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1015. master_only_rx_trans(spi, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1016. //2. Master FD DMA with TX and RX
  1017. get_tx_buffer(FD_SEED2+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1018. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1019. master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1020. }
  1021. //Master FD DMA, TX without RX Test
  1022. for (int i = 0; i < TEST_NUM; i++) {
  1023. // 1. Master FD DMA, only send, with NULL rx_buffer
  1024. get_tx_buffer(FD_SEED3+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1025. master_only_tx_trans(spi, mst_send_buf, FD_TEST_BUF_SIZE);
  1026. //2. Master FD DMA with TX and RX
  1027. get_tx_buffer(FD_SEED4+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1028. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1029. master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1030. }
  1031. free(mst_send_buf);
  1032. free(mst_recv_buf);
  1033. free(slv_send_buf);
  1034. master_free_device_bus(spi);
  1035. }
  1036. static void slave_only_tx_trans(uint8_t *slv_send_buf, uint32_t length)
  1037. {
  1038. ESP_LOGI(SLAVE_TAG, "FD DMA, Only TX");
  1039. spi_slave_transaction_t trans = {0};
  1040. trans.tx_buffer = slv_send_buf;
  1041. trans.length = length * 8;
  1042. unity_send_signal("Slave ready");
  1043. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1044. ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
  1045. }
  1046. static void slave_only_rx_trans(uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
  1047. {
  1048. ESP_LOGI(SLAVE_TAG, "FD DMA, Only RX");
  1049. spi_slave_transaction_t trans = {};
  1050. trans.tx_buffer = NULL;
  1051. trans.rx_buffer = slv_recv_buf;
  1052. trans.length = length * 8;
  1053. unity_send_signal("Slave ready");
  1054. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1055. ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
  1056. TEST_ASSERT_EQUAL(length * 8, trans.trans_len);
  1057. TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
  1058. }
  1059. static void slave_both_trans(uint8_t *slv_send_buf, uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
  1060. {
  1061. ESP_LOGI(SLAVE_TAG, "FD DMA, Both TX and RX:");
  1062. spi_slave_transaction_t trans = {0};
  1063. trans.tx_buffer = slv_send_buf;
  1064. trans.rx_buffer = slv_recv_buf;
  1065. trans.length = length * 8;
  1066. unity_send_signal("Slave ready");
  1067. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1068. ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
  1069. ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
  1070. TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
  1071. }
  1072. static void fd_slave(void)
  1073. {
  1074. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1075. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  1076. TEST_ESP_OK(spi_slave_initialize(SPI2_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
  1077. unity_wait_for_signal("Master ready");
  1078. uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1079. uint8_t *slv_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
  1080. uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1081. for (int i = 0; i < TEST_NUM; i++) {
  1082. //1. Slave TX without RX (rx_buffer == NULL)
  1083. get_tx_buffer(FD_SEED1+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1084. slave_only_tx_trans(slv_send_buf, FD_TEST_BUF_SIZE);
  1085. //2. Slave both TX and RX
  1086. get_tx_buffer(FD_SEED2+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1087. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1088. slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1089. }
  1090. for (int i = 0; i < TEST_NUM; i++) {
  1091. // 1. Slave RX without TX (tx_buffer == NULL)
  1092. get_tx_buffer(FD_SEED3+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1093. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1094. slave_only_rx_trans(slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1095. //2. Slave both TX and RX
  1096. get_tx_buffer(FD_SEED4+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1097. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1098. slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1099. }
  1100. free(slv_send_buf);
  1101. free(slv_recv_buf);
  1102. free(mst_send_buf);
  1103. TEST_ASSERT(spi_slave_free(SPI2_HOST) == ESP_OK);
  1104. }
  1105. TEST_CASE_MULTIPLE_DEVICES("SPI Master: FD, DMA, Master Single Direction Test", "[spi_ms][test_env=Example_SPI_Multi_device]", fd_master, fd_slave);
  1106. #endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
  1107. /********************************************************************************
  1108. * Test SPI transaction interval
  1109. ********************************************************************************/
  1110. //Disabled since the check in portENTER_CRITICAL in esp_intr_enable/disable increase the delay
  1111. #ifndef CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  1112. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  1113. #define RECORD_TIME_START() do {__t1 = esp_cpu_get_ccount();}while(0)
  1114. #define RECORD_TIME_END(p_time) do{__t2 = esp_cpu_get_ccount(); *p_time = (__t2-__t1);}while(0)
  1115. #ifdef CONFIG_IDF_TARGET_ESP32
  1116. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
  1117. #elif CONFIG_IDF_TARGET_ESP32S2
  1118. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ)
  1119. #elif CONFIG_IDF_TARGET_ESP32S3
  1120. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ)
  1121. #elif CONFIG_IDF_TARGET_ESP32C3
  1122. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ)
  1123. #endif
  1124. static void speed_setup(spi_device_handle_t *spi, bool use_dma)
  1125. {
  1126. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1127. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1128. devcfg.queue_size = 8; //We want to be able to queue 7 transactions at a time
  1129. //Initialize the SPI bus and the device to test
  1130. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, (use_dma ? SPI_DMA_CH_AUTO : 0)));
  1131. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi));
  1132. }
  1133. static void sorted_array_insert(uint32_t *array, int *size, uint32_t item)
  1134. {
  1135. int pos;
  1136. for (pos = *size; pos > 0; pos--) {
  1137. if (array[pos - 1] < item) {
  1138. break;
  1139. }
  1140. array[pos] = array[pos - 1];
  1141. }
  1142. array[pos] = item;
  1143. (*size)++;
  1144. }
  1145. #define TEST_TIMES 11
  1146. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
  1147. {
  1148. RECORD_TIME_PREPARE();
  1149. spi_device_transmit(spi, trans); // prime the flash cache
  1150. RECORD_TIME_START();
  1151. spi_device_transmit(spi, trans);
  1152. RECORD_TIME_END(t_flight);
  1153. }
  1154. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
  1155. {
  1156. spi_flash_disable_interrupts_caches_and_other_cpu(); //this can test the code are all in the IRAM at the same time
  1157. RECORD_TIME_PREPARE();
  1158. spi_device_polling_transmit(spi, trans); // prime the flash cache
  1159. RECORD_TIME_START();
  1160. spi_device_polling_transmit(spi, trans);
  1161. RECORD_TIME_END(t_flight);
  1162. spi_flash_enable_interrupts_caches_and_other_cpu();
  1163. }
  1164. TEST_CASE("spi_speed", "[spi]")
  1165. {
  1166. uint32_t t_flight;
  1167. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  1168. uint32_t t_flight_sorted[TEST_TIMES];
  1169. esp_err_t ret;
  1170. int t_flight_num = 0;
  1171. spi_device_handle_t spi;
  1172. const bool use_dma = true;
  1173. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  1174. .length = 1 * 8,
  1175. .flags = SPI_TRANS_USE_TXDATA,
  1176. };
  1177. //first work with DMA
  1178. speed_setup(&spi, use_dma);
  1179. //record flight time by isr, with DMA
  1180. t_flight_num = 0;
  1181. for (int i = 0; i < TEST_TIMES; i++) {
  1182. spi_transmit_measure(spi, &trans, &t_flight);
  1183. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1184. }
  1185. for (int i = 0; i < TEST_TIMES; i++) {
  1186. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1187. }
  1188. #ifndef CONFIG_SPIRAM
  1189. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1190. #endif
  1191. //acquire the bus to send polling transactions faster
  1192. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1193. TEST_ESP_OK(ret);
  1194. //record flight time by polling and with DMA
  1195. t_flight_num = 0;
  1196. for (int i = 0; i < TEST_TIMES; i++) {
  1197. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1198. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1199. }
  1200. for (int i = 0; i < TEST_TIMES; i++) {
  1201. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1202. }
  1203. #ifndef CONFIG_SPIRAM
  1204. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1205. #endif
  1206. //release the bus
  1207. spi_device_release_bus(spi);
  1208. master_free_device_bus(spi);
  1209. speed_setup(&spi, !use_dma);
  1210. //record flight time by isr, without DMA
  1211. t_flight_num = 0;
  1212. for (int i = 0; i < TEST_TIMES; i++) {
  1213. spi_transmit_measure(spi, &trans, &t_flight);
  1214. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1215. }
  1216. for (int i = 0; i < TEST_TIMES; i++) {
  1217. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1218. }
  1219. #ifndef CONFIG_SPIRAM
  1220. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1221. #endif
  1222. //acquire the bus to send polling transactions faster
  1223. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1224. TEST_ESP_OK(ret);
  1225. //record flight time by polling, without DMA
  1226. t_flight_num = 0;
  1227. for (int i = 0; i < TEST_TIMES; i++) {
  1228. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1229. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1230. }
  1231. for (int i = 0; i < TEST_TIMES; i++) {
  1232. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1233. }
  1234. #ifndef CONFIG_SPIRAM
  1235. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1236. #endif
  1237. //release the bus
  1238. spi_device_release_bus(spi);
  1239. master_free_device_bus(spi);
  1240. }
  1241. #endif // CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE