esp_efuse_utility.c 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. /*
  2. * SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include "esp_efuse_utility.h"
  7. #include "soc/efuse_periph.h"
  8. #include "esp32s3/clk.h"
  9. #include "esp_log.h"
  10. #include "assert.h"
  11. #include "sdkconfig.h"
  12. #include <sys/param.h>
  13. #include "esp32s3/rom/efuse.h"
  14. static const char *TAG = "efuse";
  15. #ifdef CONFIG_EFUSE_VIRTUAL
  16. extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
  17. #endif // CONFIG_EFUSE_VIRTUAL
  18. /*Range addresses to read blocks*/
  19. const esp_efuse_range_addr_t range_read_addr_blocks[] = {
  20. {EFUSE_RD_WR_DIS_REG, EFUSE_RD_REPEAT_DATA4_REG}, // range address of EFUSE_BLK0 REPEAT
  21. {EFUSE_RD_MAC_SPI_SYS_0_REG, EFUSE_RD_MAC_SPI_SYS_5_REG}, // range address of EFUSE_BLK1 MAC_SPI_8M
  22. {EFUSE_RD_SYS_PART1_DATA0_REG, EFUSE_RD_SYS_PART1_DATA7_REG}, // range address of EFUSE_BLK2 SYS_DATA
  23. {EFUSE_RD_USR_DATA0_REG, EFUSE_RD_USR_DATA7_REG}, // range address of EFUSE_BLK3 USR_DATA
  24. {EFUSE_RD_KEY0_DATA0_REG, EFUSE_RD_KEY0_DATA7_REG}, // range address of EFUSE_BLK4 KEY0
  25. {EFUSE_RD_KEY1_DATA0_REG, EFUSE_RD_KEY1_DATA7_REG}, // range address of EFUSE_BLK5 KEY1
  26. {EFUSE_RD_KEY2_DATA0_REG, EFUSE_RD_KEY2_DATA7_REG}, // range address of EFUSE_BLK6 KEY2
  27. {EFUSE_RD_KEY3_DATA0_REG, EFUSE_RD_KEY3_DATA7_REG}, // range address of EFUSE_BLK7 KEY3
  28. {EFUSE_RD_KEY4_DATA0_REG, EFUSE_RD_KEY4_DATA7_REG}, // range address of EFUSE_BLK8 KEY4
  29. {EFUSE_RD_KEY5_DATA0_REG, EFUSE_RD_KEY5_DATA7_REG}, // range address of EFUSE_BLK9 KEY5
  30. {EFUSE_RD_SYS_PART2_DATA0_REG, EFUSE_RD_SYS_PART2_DATA7_REG} // range address of EFUSE_BLK10 KEY6
  31. };
  32. static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
  33. /*Range addresses to write blocks (it is not real regs, it is buffer) */
  34. const esp_efuse_range_addr_t range_write_addr_blocks[] = {
  35. {(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][5]},
  36. {(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][5]},
  37. {(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
  38. {(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
  39. {(uint32_t) &write_mass_blocks[EFUSE_BLK4][0], (uint32_t) &write_mass_blocks[EFUSE_BLK4][7]},
  40. {(uint32_t) &write_mass_blocks[EFUSE_BLK5][0], (uint32_t) &write_mass_blocks[EFUSE_BLK5][7]},
  41. {(uint32_t) &write_mass_blocks[EFUSE_BLK6][0], (uint32_t) &write_mass_blocks[EFUSE_BLK6][7]},
  42. {(uint32_t) &write_mass_blocks[EFUSE_BLK7][0], (uint32_t) &write_mass_blocks[EFUSE_BLK7][7]},
  43. {(uint32_t) &write_mass_blocks[EFUSE_BLK8][0], (uint32_t) &write_mass_blocks[EFUSE_BLK8][7]},
  44. {(uint32_t) &write_mass_blocks[EFUSE_BLK9][0], (uint32_t) &write_mass_blocks[EFUSE_BLK9][7]},
  45. {(uint32_t) &write_mass_blocks[EFUSE_BLK10][0], (uint32_t) &write_mass_blocks[EFUSE_BLK10][7]},
  46. };
  47. #ifndef CONFIG_EFUSE_VIRTUAL
  48. // Update Efuse timing configuration
  49. static esp_err_t esp_efuse_set_timing(void)
  50. {
  51. uint32_t clock_hz = esp_clk_apb_freq();
  52. return ets_efuse_set_timing(clock_hz) ? ESP_FAIL : ESP_OK;
  53. }
  54. #endif // ifndef CONFIG_EFUSE_VIRTUAL
  55. // Efuse read operation: copies data from physical efuses to efuse read registers.
  56. void esp_efuse_utility_clear_program_registers(void)
  57. {
  58. ets_efuse_read();
  59. ets_efuse_clear_program_registers();
  60. }
  61. // Burn values written to the efuse write registers
  62. void esp_efuse_utility_burn_chip(void)
  63. {
  64. #ifdef CONFIG_EFUSE_VIRTUAL
  65. ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
  66. for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
  67. int subblock = 0;
  68. for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
  69. virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
  70. }
  71. }
  72. #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
  73. esp_efuse_utility_write_efuses_to_flash();
  74. #endif
  75. #else
  76. if (esp_efuse_set_timing() != ESP_OK) {
  77. ESP_LOGE(TAG, "Efuse fields are not burnt");
  78. } else {
  79. // Permanently update values written to the efuse write registers
  80. // It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
  81. for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
  82. for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
  83. if (REG_READ(addr_wr_block) != 0) {
  84. if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
  85. uint8_t block_rs[12];
  86. ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
  87. memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
  88. }
  89. int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
  90. memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
  91. ets_efuse_program(num_block);
  92. break;
  93. }
  94. }
  95. }
  96. }
  97. #endif // CONFIG_EFUSE_VIRTUAL
  98. esp_efuse_utility_reset();
  99. }
  100. // After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
  101. // This function reads EFUSE_BLKx_WDATAx_REG registers, and checks possible to write these data with RS coding scheme.
  102. // The RS coding scheme does not require data changes for the encoded data. esp32s2 has special registers for this.
  103. // They will be filled during the burn operation.
  104. esp_err_t esp_efuse_utility_apply_new_coding_scheme()
  105. {
  106. // start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
  107. for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
  108. if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
  109. for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
  110. if (REG_READ(addr_wr_block)) {
  111. int num_reg = 0;
  112. for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++num_reg) {
  113. if (esp_efuse_utility_read_reg(num_block, num_reg)) {
  114. ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
  115. return ESP_ERR_CODING;
  116. }
  117. }
  118. break;
  119. }
  120. }
  121. }
  122. }
  123. return ESP_OK;
  124. }