rtc_time.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. /*
  2. * SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdint.h>
  7. #include "esp32c3/rom/ets_sys.h"
  8. #include "soc/rtc.h"
  9. #include "soc/rtc_cntl_reg.h"
  10. #include "soc/timer_group_reg.h"
  11. #include "esp_rom_sys.h"
  12. /* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
  13. * This feature counts the number of XTAL clock cycles within a given number of
  14. * RTC_SLOW_CLK cycles.
  15. *
  16. * Slow clock calibration feature has two modes of operation: one-off and cycling.
  17. * In cycling mode (which is enabled by default on SoC reset), counting of XTAL
  18. * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
  19. * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
  20. * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
  21. * enabled using TIMG_RTC_CALI_START bit.
  22. */
  23. /**
  24. * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
  25. * @param cal_clk which clock to calibrate
  26. * @param slowclk_cycles number of slow clock cycles to count
  27. * @return number of XTAL clock cycles within the given number of slow clock cycles
  28. */
  29. uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  30. {
  31. /* On ESP32C3, choosing RTC_CAL_RTC_MUX results in calibration of
  32. * the 150k RTC clock regardless of the currenlty selected SLOW_CLK.
  33. * On the ESP32, it used the currently selected SLOW_CLK.
  34. * The following code emulates ESP32 behavior:
  35. */
  36. if (cal_clk == RTC_CAL_RTC_MUX) {
  37. rtc_slow_freq_t slow_freq = rtc_clk_slow_freq_get();
  38. if (slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
  39. cal_clk = RTC_CAL_32K_XTAL;
  40. } else if (slow_freq == RTC_SLOW_FREQ_8MD256) {
  41. cal_clk = RTC_CAL_8MD256;
  42. }
  43. } else if (cal_clk == RTC_CAL_INTERNAL_OSC) {
  44. cal_clk = RTC_CAL_RTC_MUX;
  45. }
  46. /* Enable requested clock (150k clock is always on) */
  47. int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
  48. if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
  49. REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
  50. }
  51. if (cal_clk == RTC_CAL_8MD256) {
  52. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  53. }
  54. /* There may be another calibration process already running during we call this function,
  55. * so we should wait the last process is done.
  56. */
  57. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
  58. while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)
  59. && !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
  60. }
  61. /* Prepare calibration */
  62. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
  63. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
  64. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
  65. /* Figure out how long to wait for calibration to finish */
  66. /* Set timeout reg and expect time delay*/
  67. uint32_t expected_freq;
  68. if (cal_clk == RTC_CAL_32K_XTAL) {
  69. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_X32K_CAL_TIMEOUT_THRES(slowclk_cycles));
  70. expected_freq = RTC_SLOW_CLK_FREQ_32K;
  71. } else if (cal_clk == RTC_CAL_8MD256) {
  72. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_8MD256_CAL_TIMEOUT_THRES(slowclk_cycles));
  73. expected_freq = RTC_SLOW_CLK_FREQ_8MD256;
  74. } else {
  75. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(slowclk_cycles));
  76. expected_freq = RTC_SLOW_CLK_FREQ_150K;
  77. }
  78. uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
  79. /* Start calibration */
  80. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  81. SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  82. /* Wait for calibration to finish up to another us_time_estimate */
  83. esp_rom_delay_us(us_time_estimate);
  84. uint32_t cal_val;
  85. while (true) {
  86. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
  87. cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
  88. break;
  89. }
  90. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
  91. cal_val = 0;
  92. break;
  93. }
  94. }
  95. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  96. REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
  97. if (cal_clk == RTC_CAL_8MD256) {
  98. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  99. }
  100. return cal_val;
  101. }
  102. uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  103. {
  104. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  105. uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
  106. uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
  107. return ratio;
  108. }
  109. uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  110. {
  111. rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
  112. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  113. uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
  114. uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
  115. uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
  116. return period;
  117. }
  118. uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
  119. {
  120. /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
  121. * TODO: fix overflow.
  122. */
  123. return (time_in_us << RTC_CLK_CAL_FRACT) / period;
  124. }
  125. uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
  126. {
  127. return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
  128. }
  129. uint64_t rtc_time_get(void)
  130. {
  131. SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
  132. uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
  133. t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
  134. return t;
  135. }
  136. uint64_t rtc_light_slp_time_get(void)
  137. {
  138. uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG);
  139. t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32;
  140. uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
  141. t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
  142. return (t_wake - t_slp);
  143. }
  144. uint64_t rtc_deep_slp_time_get(void)
  145. {
  146. uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
  147. t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
  148. uint64_t t_wake = rtc_time_get();
  149. return (t_wake - t_slp);
  150. }
  151. void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
  152. {
  153. SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
  154. while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
  155. esp_rom_delay_us(1);
  156. }
  157. }
  158. uint32_t rtc_clk_freq_cal(uint32_t cal_val)
  159. {
  160. if (cal_val == 0) {
  161. return 0; // cal_val will be denominator, return 0 as the symbol of failure.
  162. }
  163. return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
  164. }