rtc_time.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdint.h>
  7. #include "esp_rom_sys.h"
  8. #include "soc/rtc.h"
  9. #include "soc/rtc_cntl_reg.h"
  10. #include "soc/timer_group_reg.h"
  11. /* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
  12. * This feature counts the number of XTAL clock cycles within a given number of
  13. * RTC_SLOW_CLK cycles.
  14. *
  15. * Slow clock calibration feature has two modes of operation: one-off and cycling.
  16. * In cycling mode (which is enabled by default on SoC reset), counting of XTAL
  17. * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
  18. * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
  19. * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
  20. * enabled using TIMG_RTC_CALI_START bit.
  21. */
  22. /**
  23. * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
  24. * @param cal_clk which clock to calibrate
  25. * @param slowclk_cycles number of slow clock cycles to count
  26. * @return number of XTAL clock cycles within the given number of slow clock cycles
  27. */
  28. uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  29. {
  30. /* On ESP32S3, choosing RTC_CAL_RTC_MUX results in calibration of
  31. * the 150k RTC clock regardless of the currenlty selected SLOW_CLK.
  32. * On the ESP32, it used the currently selected SLOW_CLK.
  33. * The following code emulates ESP32 behavior:
  34. */
  35. if (cal_clk == RTC_CAL_RTC_MUX) {
  36. rtc_slow_freq_t slow_freq = rtc_clk_slow_freq_get();
  37. if (slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
  38. cal_clk = RTC_CAL_32K_XTAL;
  39. } else if (slow_freq == RTC_SLOW_FREQ_8MD256) {
  40. cal_clk = RTC_CAL_8MD256;
  41. }
  42. } else if (cal_clk == RTC_CAL_INTERNAL_OSC) {
  43. cal_clk = RTC_CAL_RTC_MUX;
  44. }
  45. /* Enable requested clock (150k clock is always on) */
  46. int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
  47. if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
  48. REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
  49. }
  50. if (cal_clk == RTC_CAL_8MD256) {
  51. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  52. }
  53. /* There may be another calibration process already running during we call this function,
  54. * so we should wait the last process is done.
  55. */
  56. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
  57. while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)
  58. && !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
  59. }
  60. /* Prepare calibration */
  61. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
  62. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
  63. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
  64. /* Figure out how long to wait for calibration to finish */
  65. /* Set timeout reg and expect time delay*/
  66. uint32_t expected_freq;
  67. if (cal_clk == RTC_CAL_32K_XTAL) {
  68. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_X32K_CAL_TIMEOUT_THRES(slowclk_cycles));
  69. expected_freq = RTC_SLOW_CLK_FREQ_32K;
  70. } else if (cal_clk == RTC_CAL_8MD256) {
  71. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_8MD256_CAL_TIMEOUT_THRES(slowclk_cycles));
  72. expected_freq = RTC_SLOW_CLK_FREQ_8MD256;
  73. } else {
  74. REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(slowclk_cycles));
  75. expected_freq = RTC_SLOW_CLK_FREQ_150K;
  76. }
  77. uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
  78. /* Start calibration */
  79. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  80. SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  81. /* Wait for calibration to finish up to another us_time_estimate */
  82. esp_rom_delay_us(us_time_estimate);
  83. uint32_t cal_val;
  84. while (true) {
  85. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
  86. cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
  87. break;
  88. }
  89. if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
  90. cal_val = 0;
  91. break;
  92. }
  93. }
  94. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  95. REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
  96. if (cal_clk == RTC_CAL_8MD256) {
  97. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  98. }
  99. return cal_val;
  100. }
  101. uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  102. {
  103. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  104. uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
  105. uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
  106. return ratio;
  107. }
  108. uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  109. {
  110. rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
  111. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  112. uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
  113. uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
  114. uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
  115. return period;
  116. }
  117. uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
  118. {
  119. /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
  120. * TODO: fix overflow.
  121. */
  122. return (time_in_us << RTC_CLK_CAL_FRACT) / period;
  123. }
  124. uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
  125. {
  126. return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
  127. }
  128. uint64_t rtc_time_get(void)
  129. {
  130. SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
  131. uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
  132. t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
  133. return t;
  134. }
  135. uint64_t rtc_light_slp_time_get(void)
  136. {
  137. uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG);
  138. t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32;
  139. uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
  140. t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
  141. return (t_wake - t_slp);
  142. }
  143. uint64_t rtc_deep_slp_time_get(void)
  144. {
  145. uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
  146. t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
  147. uint64_t t_wake = rtc_time_get();
  148. return (t_wake - t_slp);
  149. }
  150. void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
  151. {
  152. SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
  153. while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
  154. esp_rom_delay_us(1);
  155. }
  156. }
  157. uint32_t rtc_clk_freq_cal(uint32_t cal_val)
  158. {
  159. if (cal_val == 0) {
  160. return 0; // cal_val will be denominator, return 0 as the symbol of failure.
  161. }
  162. return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
  163. }