test_ds.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. /*
  2. * SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "unity.h"
  8. #include "soc/soc_caps.h"
  9. #if SOC_DIG_SIGN_SUPPORTED
  10. #if CONFIG_IDF_TARGET_ESP32S2
  11. #include "esp32s2/rom/efuse.h"
  12. #include "esp32s2/rom/digital_signature.h"
  13. #include "esp32s2/rom/aes.h"
  14. #include "esp32s2/rom/sha.h"
  15. #elif CONFIG_IDF_TARGET_ESP32C3
  16. #include "esp32c3/rom/efuse.h"
  17. #include "esp32c3/rom/digital_signature.h"
  18. #include "esp32c3/rom/hmac.h"
  19. #elif CONFIG_IDF_TARGET_ESP32S3
  20. #include "esp32s3/rom/efuse.h"
  21. #include "esp32s3/rom/digital_signature.h"
  22. #include "esp32s3/rom/aes.h"
  23. #include "esp32s3/rom/sha.h"
  24. #endif
  25. #include "esp_ds.h"
  26. #define NUM_RESULTS 10
  27. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  28. #define DS_MAX_BITS (4096)
  29. #elif CONFIG_IDF_TARGET_ESP32C3
  30. #define DS_MAX_BITS (ETS_DS_MAX_BITS)
  31. #endif
  32. typedef struct {
  33. uint8_t iv[ETS_DS_IV_LEN];
  34. ets_ds_p_data_t p_data;
  35. uint8_t expected_c[ETS_DS_C_LEN];
  36. uint8_t hmac_key_idx;
  37. uint32_t expected_results[NUM_RESULTS][DS_MAX_BITS / 32];
  38. } encrypt_testcase_t;
  39. // Generated header digital_signature_test_cases_<bits>.h (by gen_digital_signature_tests.py) defines
  40. // NUM_HMAC_KEYS, test_hmac_keys, NUM_MESSAGES, NUM_CASES, test_messages[], test_cases[]
  41. // Some adaptations were made: removed the 512 bit case and changed RSA lengths to the enums from esp_ds.h
  42. #if DS_MAX_BITS == 4096
  43. #define RSA_LEN (ESP_DS_RSA_4096)
  44. #include "digital_signature_test_cases_4096.h"
  45. #elif DS_MAX_BITS == 3072
  46. #define RSA_LEN (ESP_DS_RSA_3072)
  47. #include "digital_signature_test_cases_3072.h"
  48. #endif
  49. _Static_assert(NUM_RESULTS == NUM_MESSAGES, "expected_results size should be the same as NUM_MESSAGES in generated header");
  50. TEST_CASE("Digital Signature Parameter Encryption data NULL", "[hw_crypto] [ds]")
  51. {
  52. const char iv [32];
  53. esp_ds_p_data_t p_data;
  54. const char key [32];
  55. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(NULL, iv, &p_data, key));
  56. }
  57. TEST_CASE("Digital Signature Parameter Encryption iv NULL", "[hw_crypto] [ds]")
  58. {
  59. esp_ds_data_t data;
  60. esp_ds_p_data_t p_data;
  61. const char key [32];
  62. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, NULL, &p_data, key));
  63. }
  64. TEST_CASE("Digital Signature Parameter Encryption p_data NULL", "[hw_crypto] [ds]")
  65. {
  66. esp_ds_data_t data;
  67. const char iv [32];
  68. const char key [32];
  69. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, NULL, key));
  70. }
  71. TEST_CASE("Digital Signature Parameter Encryption key NULL", "[hw_crypto] [ds]")
  72. {
  73. esp_ds_data_t data;
  74. const char iv [32];
  75. esp_ds_p_data_t p_data;
  76. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, &p_data, NULL));
  77. }
  78. TEST_CASE("Digital Signature Parameter Encryption", "[hw_crypto] [ds]")
  79. {
  80. for (int i = 0; i < NUM_CASES; i++) {
  81. printf("Encrypting test case %d...\n", i);
  82. const encrypt_testcase_t *t = &test_cases[i];
  83. esp_ds_data_t result = { };
  84. esp_ds_p_data_t p_data;
  85. memcpy(p_data.Y, t->p_data.Y, DS_MAX_BITS / 8);
  86. memcpy(p_data.M, t->p_data.M, DS_MAX_BITS / 8);
  87. memcpy(p_data.Rb, t->p_data.Rb, DS_MAX_BITS / 8);
  88. p_data.M_prime = t->p_data.M_prime;
  89. p_data.length = t->p_data.length;
  90. esp_err_t r = esp_ds_encrypt_params(&result, t->iv, &p_data,
  91. test_hmac_keys[t->hmac_key_idx]);
  92. printf("Encrypting test case %d done\n", i);
  93. TEST_ASSERT_EQUAL(ESP_OK, r);
  94. TEST_ASSERT_EQUAL(t->p_data.length, result.rsa_length);
  95. TEST_ASSERT_EQUAL_HEX8_ARRAY(t->iv, result.iv, ETS_DS_IV_LEN);
  96. TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_c, result.c, ETS_DS_C_LEN);
  97. }
  98. }
  99. TEST_CASE("Digital Signature start Invalid message", "[hw_crypto] [ds]")
  100. {
  101. esp_ds_data_t ds_data = { };
  102. ds_data.rsa_length = RSA_LEN;
  103. esp_ds_context_t *ctx;
  104. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(NULL, &ds_data, HMAC_KEY1, &ctx));
  105. }
  106. TEST_CASE("Digital Signature start Invalid data", "[hw_crypto] [ds]")
  107. {
  108. const char *message = "test";
  109. esp_ds_context_t *ctx;
  110. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, NULL, HMAC_KEY1, &ctx));
  111. }
  112. TEST_CASE("Digital Signature start Invalid context", "[hw_crypto] [ds]")
  113. {
  114. esp_ds_data_t ds_data = {};
  115. ds_data.rsa_length = RSA_LEN;
  116. const char *message = "test";
  117. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
  118. }
  119. TEST_CASE("Digital Signature RSA length 0", "[hw_crypto] [ds]")
  120. {
  121. esp_ds_data_t ds_data = {};
  122. ds_data.rsa_length = 0;
  123. const char *message = "test";
  124. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
  125. }
  126. TEST_CASE("Digital Signature RSA length too long", "[hw_crypto] [ds]")
  127. {
  128. esp_ds_data_t ds_data = {};
  129. ds_data.rsa_length = 128;
  130. const char *message = "test";
  131. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
  132. }
  133. TEST_CASE("Digital Signature start HMAC key out of range", "[hw_crypto] [ds]")
  134. {
  135. esp_ds_data_t ds_data = {};
  136. ds_data.rsa_length = RSA_LEN;
  137. esp_ds_context_t *ctx;
  138. const char *message = "test";
  139. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY5 + 1, &ctx));
  140. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY0 - 1, &ctx));
  141. }
  142. TEST_CASE("Digital Signature finish Invalid signature ptr", "[hw_crypto] [ds]")
  143. {
  144. esp_ds_context_t *ctx = NULL;
  145. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(NULL, ctx));
  146. }
  147. TEST_CASE("Digital Signature finish Invalid context", "[hw_crypto] [ds]")
  148. {
  149. uint8_t signature_data [128 * 4];
  150. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(signature_data, NULL));
  151. }
  152. TEST_CASE("Digital Signature Blocking Invalid message", "[hw_crypto] [ds]")
  153. {
  154. esp_ds_data_t ds_data = { };
  155. ds_data.rsa_length = RSA_LEN;
  156. uint8_t signature_data [128 * 4];
  157. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(NULL, &ds_data, HMAC_KEY1, signature_data));
  158. }
  159. TEST_CASE("Digital Signature Blocking Invalid data", "[hw_crypto] [ds]")
  160. {
  161. const char *message = "test";
  162. uint8_t signature_data [128 * 4];
  163. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, NULL, HMAC_KEY1, signature_data));
  164. }
  165. TEST_CASE("Digital Signature Blocking Invalid signature ptr", "[hw_crypto] [ds]")
  166. {
  167. esp_ds_data_t ds_data = {};
  168. ds_data.rsa_length = RSA_LEN;
  169. const char *message = "test";
  170. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, NULL));
  171. }
  172. TEST_CASE("Digital Signature Blocking RSA length 0", "[hw_crypto] [ds]")
  173. {
  174. esp_ds_data_t ds_data = {};
  175. ds_data.rsa_length = 0;
  176. const char *message = "test";
  177. uint8_t signature_data [128 * 4];
  178. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
  179. }
  180. TEST_CASE("Digital Signature Blocking RSA length too long", "[hw_crypto] [ds]")
  181. {
  182. esp_ds_data_t ds_data = {};
  183. ds_data.rsa_length = 128;
  184. const char *message = "test";
  185. uint8_t signature_data [128 * 4];
  186. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
  187. }
  188. TEST_CASE("Digital Signature Blocking HMAC key out of range", "[hw_crypto] [ds]")
  189. {
  190. esp_ds_data_t ds_data = {};
  191. ds_data.rsa_length = 127;
  192. const char *message = "test";
  193. uint8_t signature_data [128 * 4];
  194. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY5 + 1, signature_data));
  195. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY0 - 1, signature_data));
  196. }
  197. #if CONFIG_IDF_ENV_FPGA
  198. static void burn_hmac_keys(void)
  199. {
  200. printf("Burning %d HMAC keys to efuse...\n", NUM_HMAC_KEYS);
  201. for (int i = 0; i < NUM_HMAC_KEYS; i++) {
  202. // TODO: vary the purpose across the keys
  203. ets_efuse_purpose_t purpose = ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE;
  204. // starting from block 1, block 0 occupied with HMAC upstream test key
  205. int __attribute__((unused)) ets_status = ets_efuse_write_key(ETS_EFUSE_BLOCK_KEY1 + i,
  206. purpose,
  207. test_hmac_keys[i], 32);
  208. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  209. if (ets_status == ESP_OK) {
  210. printf("written DS test key to block [%d]!\n", ETS_EFUSE_BLOCK_KEY1 + i);
  211. } else {
  212. printf("writing DS test key to block [%d] failed, maybe written already\n", ETS_EFUSE_BLOCK_KEY1 + i);
  213. }
  214. #endif
  215. }
  216. #if CONFIG_IDF_TARGET_ESP32C3
  217. /* verify the keys are what we expect (possibly they're already burned, doesn't matter but they have to match) */
  218. uint8_t block_compare[32];
  219. for (int i = 0; i < NUM_HMAC_KEYS; i++) {
  220. printf("Checking key %d...\n", i);
  221. memcpy(block_compare, (void *)ets_efuse_get_read_register_address(ETS_EFUSE_BLOCK_KEY1 + i), 32);
  222. TEST_ASSERT_EQUAL_HEX8_ARRAY(test_hmac_keys[i], block_compare, 32);
  223. }
  224. #endif
  225. }
  226. // This test uses the HMAC_KEY0 eFuse key which hasn't been burned by burn_hmac_keys().
  227. // HMAC_KEY0 is usually used for HMAC upstream (user access) tests.
  228. TEST_CASE("Digital Signature wrong HMAC key purpose (FPGA only)", "[hw_crypto] [ds]")
  229. {
  230. esp_ds_data_t ds_data = {};
  231. ds_data.rsa_length = RSA_LEN;
  232. esp_ds_context_t *ctx;
  233. const char *message = "test";
  234. // HMAC fails in that case because it checks for the correct purpose
  235. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  236. TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
  237. #elif CONFIG_IDF_TARGET_ESP32C3
  238. TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
  239. #endif
  240. }
  241. // This test uses the HMAC_KEY0 eFuse key which hasn't been burned by burn_hmac_keys().
  242. // HMAC_KEY0 is usually used for HMAC upstream (user access) tests.
  243. TEST_CASE("Digital Signature Blocking wrong HMAC key purpose (FPGA only)", "[hw_crypto] [ds]")
  244. {
  245. esp_ds_data_t ds_data = {};
  246. ds_data.rsa_length = RSA_LEN;
  247. const char *message = "test";
  248. uint8_t signature_data [128 * 4];
  249. // HMAC fails in that case because it checks for the correct purpose
  250. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  251. TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
  252. #elif CONFIG_IDF_TARGET_ESP32C3
  253. TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
  254. #endif
  255. }
  256. TEST_CASE("Digital Signature Operation (FPGA only)", "[hw_crypto] [ds]")
  257. {
  258. burn_hmac_keys();
  259. for (int i = 0; i < NUM_CASES; i++) {
  260. printf("Running test case %d...\n", i);
  261. const encrypt_testcase_t *t = &test_cases[i];
  262. // copy encrypt parameter test case into ds_data structure
  263. esp_ds_data_t ds_data = { };
  264. memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
  265. memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
  266. ds_data.rsa_length = t->p_data.length;
  267. for (int j = 0; j < NUM_MESSAGES; j++) {
  268. uint8_t signature[DS_MAX_BITS / 8] = { 0 };
  269. printf(" ... message %d\n", j);
  270. esp_ds_context_t *esp_ds_ctx;
  271. esp_err_t ds_r = esp_ds_start_sign(test_messages[j],
  272. &ds_data,
  273. t->hmac_key_idx + 1,
  274. &esp_ds_ctx);
  275. TEST_ASSERT_EQUAL(ESP_OK, ds_r);
  276. ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
  277. TEST_ASSERT_EQUAL(ESP_OK, ds_r);
  278. TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[j], signature, sizeof(signature));
  279. }
  280. #if CONFIG_IDF_TARGET_ESP32C3
  281. ets_hmac_invalidate_downstream(ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE);
  282. #endif
  283. }
  284. }
  285. TEST_CASE("Digital Signature Blocking Operation (FPGA only)", "[hw_crypto] [ds]")
  286. {
  287. burn_hmac_keys();
  288. for (int i = 0; i < NUM_CASES; i++) {
  289. printf("Running test case %d...\n", i);
  290. const encrypt_testcase_t *t = &test_cases[i];
  291. // copy encrypt parameter test case into ds_data structure
  292. esp_ds_data_t ds_data = { };
  293. memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
  294. memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
  295. ds_data.rsa_length = t->p_data.length;
  296. uint8_t signature[DS_MAX_BITS / 8] = { 0 };
  297. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  298. esp_ds_context_t *esp_ds_ctx;
  299. esp_err_t ds_r = esp_ds_start_sign(test_messages[0],
  300. &ds_data,
  301. t->hmac_key_idx + 1,
  302. &esp_ds_ctx);
  303. TEST_ASSERT_EQUAL(ESP_OK, ds_r);
  304. ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
  305. TEST_ASSERT_EQUAL(ESP_OK, ds_r);
  306. #elif CONFIG_IDF_TARGET_ESP32C3
  307. esp_err_t ds_r = esp_ds_sign(test_messages[0],
  308. &ds_data,
  309. t->hmac_key_idx + 1,
  310. signature);
  311. TEST_ASSERT_EQUAL(ESP_OK, ds_r);
  312. #endif
  313. TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[0], signature, sizeof(signature));
  314. }
  315. }
  316. TEST_CASE("Digital Signature Invalid Data (FPGA only)", "[hw_crypto] [ds]")
  317. {
  318. burn_hmac_keys();
  319. // Set up a valid test case
  320. const encrypt_testcase_t *t = &test_cases[0];
  321. esp_ds_data_t ds_data = { };
  322. memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
  323. memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
  324. ds_data.rsa_length = t->p_data.length;
  325. uint8_t signature[DS_MAX_BITS / 8] = { 0 };
  326. const uint8_t zero[DS_MAX_BITS / 8] = { 0 };
  327. // Corrupt the IV one bit at a time, rerun and expect failure
  328. for (int bit = 0; bit < 128; bit++) {
  329. printf("Corrupting IV bit %d...\n", bit);
  330. ds_data.iv[bit / 8] ^= 1 << (bit % 8);
  331. esp_ds_context_t *esp_ds_ctx;
  332. esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
  333. TEST_ASSERT_EQUAL(ESP_OK, ds_r);
  334. ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
  335. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  336. TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
  337. #elif CONFIG_IDF_TARGET_ESP32C3
  338. TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
  339. #endif
  340. TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
  341. ds_data.iv[bit / 8] ^= 1 << (bit % 8);
  342. }
  343. // Corrupt encrypted key data one bit at a time, rerun and expect failure
  344. printf("Corrupting C...\n");
  345. for (int bit = 0; bit < ETS_DS_C_LEN * 8; bit++) {
  346. printf("Corrupting C bit %d...\n", bit);
  347. ds_data.c[bit / 8] ^= 1 << (bit % 8);
  348. esp_ds_context_t *esp_ds_ctx;
  349. esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
  350. TEST_ASSERT_EQUAL(ESP_OK, ds_r);
  351. ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
  352. #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  353. TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
  354. #elif CONFIG_IDF_TARGET_ESP32C3
  355. TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
  356. #endif
  357. TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
  358. ds_data.c[bit / 8] ^= 1 << (bit % 8);
  359. }
  360. }
  361. #endif // CONFIG_IDF_ENV_FPGA
  362. #endif // SOC_DIG_SIGN_SUPPORTED