| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- /*
- * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include "sdkconfig.h"
- #if CONFIG_IDF_TARGET_ESP32
- #include <math.h>
- #include <stdio.h>
- #include "soc/cpu.h"
- #include "freertos/FreeRTOS.h"
- #include "freertos/task.h"
- #include "freertos/semphr.h"
- #include "unity.h"
- #include "test_utils.h"
- /* Note: these functions are included here for unit test purposes. They are not needed for writing
- * normal code. If writing standard C floating point code, libgcc should correctly include implementations
- * that use the floating point registers correctly. */
- static float addsf(float a, float b)
- {
- float result;
- asm volatile (
- "wfr f0, %1\n"
- "wfr f1, %2\n"
- "add.s f2, f0, f1\n"
- "rfr %0, f2\n"
- :"=r"(result):"r"(a), "r"(b)
- );
- return result;
- }
- static float mulsf(float a, float b)
- {
- float result;
- asm volatile (
- "wfr f0, %1\n"
- "wfr f1, %2\n"
- "mul.s f2, f0, f1\n"
- "rfr %0, f2\n"
- :"=r"(result):"r"(a), "r"(b)
- );
- return result;
- }
- static float divsf(float a, float b)
- {
- float result;
- asm volatile (
- "wfr f0, %1\n"
- "wfr f1, %2\n"
- "div0.s f3, f1 \n"
- "nexp01.s f4, f1 \n"
- "const.s f5, 1 \n"
- "maddn.s f5, f4, f3 \n"
- "mov.s f6, f3 \n"
- "mov.s f7, f1 \n"
- "nexp01.s f8, f0 \n"
- "maddn.s f6, f5, f3 \n"
- "const.s f5, 1 \n"
- "const.s f2, 0 \n"
- "neg.s f9, f8 \n"
- "maddn.s f5,f4,f6 \n"
- "maddn.s f2, f9, f3 \n"
- "mkdadj.s f7, f0 \n"
- "maddn.s f6,f5,f6 \n"
- "maddn.s f9,f4,f2 \n"
- "const.s f5, 1 \n"
- "maddn.s f5,f4,f6 \n"
- "maddn.s f2,f9,f6 \n"
- "neg.s f9, f8 \n"
- "maddn.s f6,f5,f6 \n"
- "maddn.s f9,f4,f2 \n"
- "addexpm.s f2, f7 \n"
- "addexp.s f6, f7 \n"
- "divn.s f2,f9,f6\n"
- "rfr %0, f2\n"
- :"=r"(result):"r"(a), "r"(b)
- );
- return result;
- }
- static float sqrtsf(float a)
- {
- float result;
- asm volatile (
- "wfr f0, %1\n"
- "sqrt0.s f2, f0\n"
- "const.s f5, 0\n"
- "maddn.s f5, f2, f2\n"
- "nexp01.s f3, f0\n"
- "const.s f4, 3\n"
- "addexp.s f3, f4\n"
- "maddn.s f4, f5, f3\n"
- "nexp01.s f5, f0\n"
- "neg.s f6, f5\n"
- "maddn.s f2, f4, f2\n"
- "const.s f1, 0\n"
- "const.s f4, 0\n"
- "const.s f7, 0\n"
- "maddn.s f1, f6, f2\n"
- "maddn.s f4, f2, f3\n"
- "const.s f6, 3\n"
- "maddn.s f7, f6, f2\n"
- "maddn.s f5, f1, f1\n"
- "maddn.s f6, f4, f2\n"
- "neg.s f3, f7\n"
- "maddn.s f1, f5, f3\n"
- "maddn.s f7, f6, f7\n"
- "mksadj.s f2, f0\n"
- "nexp01.s f5, f0\n"
- "maddn.s f5, f1, f1\n"
- "neg.s f3, f7\n"
- "addexpm.s f1, f2\n"
- "addexp.s f3, f2\n"
- "divn.s f1, f5, f3\n"
- "rfr %0, f1\n"
- :"=r"(result):"r"(a)
- );
- return result;
- }
- TEST_CASE("test FP add", "[fp]")
- {
- float a = 100.0f;
- float b = 0.5f;
- float c = addsf(a, b);
- float eps = c - 100.5f;
- printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
- TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
- }
- TEST_CASE("test FP mul", "[fp]")
- {
- float a = 100.0f;
- float b = 0.05f;
- float c = mulsf(a, b);
- float eps = c - 5.0f;
- printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
- TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
- }
- TEST_CASE("test FP div", "[fp]")
- {
- float a = 100.0f;
- float b = 5.0f;
- float c = divsf(a, b);
- float eps = c - 20.0f;
- printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
- TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
- }
- TEST_CASE("test FP sqrt", "[fp]")
- {
- float a = 100.0f;
- float c = sqrtsf(a);
- float eps = c - 10.0f;
- printf("a=%g c=%g eps=%g\r\n", a, c, eps);
- TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
- }
- struct TestFPState {
- int fail;
- SemaphoreHandle_t done;
- };
- static const int testFpIter = 100000;
- static void tskTestFP(void *pvParameters)
- {
- struct TestFPState *state = (struct TestFPState *) pvParameters;
- for (int i = 0; i < testFpIter; ++i) {
- // calculate zero in a slightly obscure way
- float y = sqrtsf(addsf(1.0f, divsf(mulsf(sqrtsf(2), sqrtsf(2)), 2.0f)));
- y = mulsf(y, y);
- y = addsf(y, -2.0f);
- // check that result is not far from zero
- float eps = fabs(y);
- if (eps > 1e-6f) {
- state->fail++;
- printf("%s: i=%d y=%f eps=%f\r\n", __func__, i, y, eps);
- }
- }
- TEST_ASSERT(xSemaphoreGive(state->done));
- vTaskDelete(NULL);
- }
- TEST_CASE("context switch saves FP registers", "[fp]")
- {
- struct TestFPState state = {
- .done = xSemaphoreCreateCounting(4, 0)
- };
- TEST_ASSERT_NOT_NULL(state.done);
- const int prio = UNITY_FREERTOS_PRIORITY + 1;
- TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk1", 2048, &state, prio, NULL, 0));
- TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk2", 2048, &state, prio, NULL, 0));
- TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk3", 2048, &state, prio, NULL, portNUM_PROCESSORS - 1));
- TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk4", 2048, &state, prio, NULL, 0));
- for (int i = 0; i < 4; ++i) {
- TEST_ASSERT(xSemaphoreTake(state.done, pdMS_TO_TICKS(5000)));
- }
- vSemaphoreDelete(state.done);
- if (state.fail) {
- const int total = testFpIter * 4;
- printf("Failed: %d, total: %d\r\n", state.fail, total);
- }
- TEST_ASSERT(state.fail == 0);
- }
- /* Note: not static, to avoid optimisation of const result */
- float IRAM_ATTR test_fp_benchmark_fp_divide(int counts, unsigned *cycles)
- {
- float f = MAXFLOAT;
- uint32_t before, after;
- RSR(CCOUNT, before);
- for (int i = 0; i < counts; i++) {
- f /= 1.000432f;
- }
- RSR(CCOUNT, after);
- *cycles = (after - before) / counts;
- return f;
- }
- TEST_CASE("floating point division performance", "[fp]")
- {
- const unsigned COUNTS = 1000;
- unsigned cycles = 0;
- // initialize fpu
- volatile __attribute__((unused)) float dummy = sqrtf(rand());
- float f = test_fp_benchmark_fp_divide(COUNTS, &cycles);
- printf("%d divisions from %f = %f\n", COUNTS, MAXFLOAT, f);
- printf("Per division = %d cycles\n", cycles);
- TEST_PERFORMANCE_LESS_THAN(CYCLES_PER_DIV, "%d cycles", cycles);
- }
- /* Note: not static, to avoid optimisation of const result */
- float IRAM_ATTR test_fp_benchmark_fp_sqrt(int counts, unsigned *cycles)
- {
- float f = MAXFLOAT;
- uint32_t before, after;
- RSR(CCOUNT, before);
- for (int i = 0; i < counts; i++) {
- f = sqrtf(f);
- }
- RSR(CCOUNT, after);
- *cycles = (after - before) / counts;
- return f;
- }
- TEST_CASE("floating point square root performance", "[fp]")
- {
- const unsigned COUNTS = 200;
- unsigned cycles = 0;
- // initialize fpu
- volatile float __attribute__((unused)) dummy = sqrtf(rand());
- float f = test_fp_benchmark_fp_sqrt(COUNTS, &cycles);
- printf("%d square roots from %f = %f\n", COUNTS, MAXFLOAT, f);
- printf("Per sqrt = %d cycles\n", cycles);
- TEST_PERFORMANCE_LESS_THAN(CYCLES_PER_SQRT, "%d cycles", cycles);
- }
- #endif // CONFIG_IDF_TARGET_ESP32
|