test_pm.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <time.h>
  4. #include <sys/time.h>
  5. #include <sys/param.h>
  6. #include "unity.h"
  7. #include "esp_pm.h"
  8. #include "esp_sleep.h"
  9. #include "freertos/FreeRTOS.h"
  10. #include "freertos/task.h"
  11. #include "freertos/semphr.h"
  12. #include "esp_log.h"
  13. #include "driver/timer.h"
  14. #include "driver/rtc_io.h"
  15. #include "soc/rtc_periph.h"
  16. #include "esp_rom_sys.h"
  17. #include "sdkconfig.h"
  18. #if CONFIG_IDF_TARGET_ESP32
  19. #include "esp32/clk.h"
  20. #include "esp32/ulp.h"
  21. #elif CONFIG_IDF_TARGET_ESP32S2
  22. #include "esp32s2/clk.h"
  23. #include "esp32s2/ulp.h"
  24. #elif CONFIG_IDF_TARGET_ESP32S3
  25. #include "esp32s3/clk.h"
  26. #include "esp32s3/ulp.h"
  27. #elif CONFIG_IDF_TARGET_ESP32C3
  28. #include "esp32c3/clk.h"
  29. #elif CONFIG_IDF_TARGET_ESP32H2
  30. #include "esp32h2/clk.h"
  31. #endif
  32. TEST_CASE("Can dump power management lock stats", "[pm]")
  33. {
  34. esp_pm_dump_locks(stdout);
  35. }
  36. #ifdef CONFIG_PM_ENABLE
  37. static void switch_freq(int mhz)
  38. {
  39. int xtal_freq = rtc_clk_xtal_freq_get();
  40. #if CONFIG_IDF_TARGET_ESP32
  41. esp_pm_config_esp32_t pm_config = {
  42. #elif CONFIG_IDF_TARGET_ESP32S2
  43. esp_pm_config_esp32s2_t pm_config = {
  44. #elif CONFIG_IDF_TARGET_ESP32S3
  45. esp_pm_config_esp32s3_t pm_config = {
  46. #elif CONFIG_IDF_TARGET_ESP32C3
  47. esp_pm_config_esp32c3_t pm_config = {
  48. #elif CONFIG_IDF_TARGET_ESP32H2
  49. esp_pm_config_esp32h2_t pm_config = {
  50. #endif
  51. .max_freq_mhz = mhz,
  52. .min_freq_mhz = MIN(mhz, xtal_freq),
  53. };
  54. ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
  55. printf("Waiting for frequency to be set to %d MHz...\n", mhz);
  56. while (esp_clk_cpu_freq() / MHZ != mhz) {
  57. vTaskDelay(pdMS_TO_TICKS(200));
  58. printf("Frequency is %d MHz\n", esp_clk_cpu_freq() / MHZ);
  59. }
  60. }
  61. #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
  62. static const int test_freqs[] = {40, 160, 80, 40, 80, 10, 80, 20, 40};
  63. #else
  64. static const int test_freqs[] = {240, 40, 160, 240, 80, 40, 240, 40, 80, 10, 80, 20, 40};
  65. #endif
  66. TEST_CASE("Can switch frequency using esp_pm_configure", "[pm]")
  67. {
  68. int orig_freq_mhz = esp_clk_cpu_freq() / MHZ;
  69. for (int i = 0; i < sizeof(test_freqs)/sizeof(int); i++) {
  70. switch_freq(test_freqs[i]);
  71. }
  72. switch_freq(orig_freq_mhz);
  73. }
  74. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  75. static void light_sleep_enable(void)
  76. {
  77. int cur_freq_mhz = esp_clk_cpu_freq() / MHZ;
  78. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  79. #if CONFIG_IDF_TARGET_ESP32
  80. esp_pm_config_esp32_t pm_config = {
  81. #elif CONFIG_IDF_TARGET_ESP32S2
  82. esp_pm_config_esp32s2_t pm_config = {
  83. #elif CONFIG_IDF_TARGET_ESP32S3
  84. esp_pm_config_esp32s3_t pm_config = {
  85. #elif CONFIG_IDF_TARGET_ESP32C3
  86. esp_pm_config_esp32c3_t pm_config = {
  87. #elif CONFIG_IDF_TARGET_ESP32H2
  88. esp_pm_config_esp32h2_t pm_config = {
  89. #endif
  90. .max_freq_mhz = cur_freq_mhz,
  91. .min_freq_mhz = xtal_freq,
  92. .light_sleep_enable = true
  93. };
  94. ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
  95. }
  96. static void light_sleep_disable(void)
  97. {
  98. int cur_freq_mhz = esp_clk_cpu_freq() / MHZ;
  99. #if CONFIG_IDF_TARGET_ESP32
  100. esp_pm_config_esp32_t pm_config = {
  101. #elif CONFIG_IDF_TARGET_ESP32S2
  102. esp_pm_config_esp32s2_t pm_config = {
  103. #elif CONFIG_IDF_TARGET_ESP32S3
  104. esp_pm_config_esp32s3_t pm_config = {
  105. #elif CONFIG_IDF_TARGET_ESP32C3
  106. esp_pm_config_esp32c3_t pm_config = {
  107. #elif CONFIG_IDF_TARGET_ESP32H2
  108. esp_pm_config_esp32h2_t pm_config = {
  109. #endif
  110. .max_freq_mhz = cur_freq_mhz,
  111. .min_freq_mhz = cur_freq_mhz,
  112. };
  113. ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
  114. }
  115. TEST_CASE("Automatic light occurs when tasks are suspended", "[pm]")
  116. {
  117. /* To figure out if light sleep takes place, use Timer Group timer.
  118. * It will stop working while in light sleep.
  119. */
  120. timer_config_t config = {
  121. .counter_dir = TIMER_COUNT_UP,
  122. .divider = 80 /* 1 us per tick */
  123. };
  124. timer_init(TIMER_GROUP_0, TIMER_0, &config);
  125. timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0);
  126. timer_start(TIMER_GROUP_0, TIMER_0);
  127. light_sleep_enable();
  128. for (int ticks_to_delay = CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP;
  129. ticks_to_delay < CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP * 10;
  130. ++ticks_to_delay) {
  131. /* Wait until next tick */
  132. vTaskDelay(1);
  133. /* The following delay should cause light sleep to start */
  134. uint64_t count_start;
  135. timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_start);
  136. vTaskDelay(ticks_to_delay);
  137. uint64_t count_end;
  138. timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_end);
  139. int timer_diff_us = (int) (count_end - count_start);
  140. const int us_per_tick = 1 * portTICK_PERIOD_MS * 1000;
  141. printf("%d %d\n", ticks_to_delay * us_per_tick, timer_diff_us);
  142. TEST_ASSERT(timer_diff_us < ticks_to_delay * us_per_tick);
  143. }
  144. light_sleep_disable();
  145. }
  146. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  147. #if !DISABLED_FOR_TARGETS(ESP32C3)
  148. // No ULP on C3
  149. // Fix failure on ESP32 when running alone; passes when the previous test is run before this one
  150. TEST_CASE("Can wake up from automatic light sleep by GPIO", "[pm][ignore]")
  151. {
  152. #if CONFIG_IDF_TARGET_ESP32
  153. assert(CONFIG_ESP32_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
  154. #elif CONFIG_IDF_TARGET_ESP32S2
  155. assert(CONFIG_ESP32S2_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
  156. #elif CONFIG_IDF_TARGET_ESP32S3
  157. assert(CONFIG_ESP32S3_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ESP32_ULP_COPROC_RESERVE_MEM option set in menuconfig");
  158. #endif
  159. /* Set up GPIO used to wake up RTC */
  160. const int ext1_wakeup_gpio = 25;
  161. const int ext_rtc_io = RTCIO_GPIO25_CHANNEL;
  162. TEST_ESP_OK(rtc_gpio_init(ext1_wakeup_gpio));
  163. rtc_gpio_set_direction(ext1_wakeup_gpio, RTC_GPIO_MODE_INPUT_OUTPUT);
  164. rtc_gpio_set_level(ext1_wakeup_gpio, 0);
  165. /* Enable wakeup */
  166. TEST_ESP_OK(esp_sleep_enable_ext1_wakeup(1ULL << ext1_wakeup_gpio, ESP_EXT1_WAKEUP_ANY_HIGH));
  167. /* To simplify test environment, we'll use a ULP program to set GPIO high */
  168. ulp_insn_t ulp_code[] = {
  169. I_DELAY(65535), /* about 8ms, given 8MHz ULP clock */
  170. I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 0),
  171. I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 1),
  172. I_DELAY(1000),
  173. I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 0),
  174. I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 1),
  175. I_END(),
  176. I_HALT()
  177. };
  178. TEST_ESP_OK(ulp_set_wakeup_period(0, 1000 /* us */));
  179. size_t size = sizeof(ulp_code)/sizeof(ulp_insn_t);
  180. TEST_ESP_OK(ulp_process_macros_and_load(0, ulp_code, &size));
  181. light_sleep_enable();
  182. int rtcio_num = rtc_io_number_get(ext1_wakeup_gpio);
  183. for (int i = 0; i < 10; ++i) {
  184. /* Set GPIO low */
  185. REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
  186. rtc_gpio_set_level(ext1_wakeup_gpio, 0);
  187. REG_SET_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
  188. /* Wait for the next tick */
  189. vTaskDelay(1);
  190. /* Start ULP program */
  191. ulp_run(0);
  192. const int delay_ms = 200;
  193. const int delay_ticks = delay_ms / portTICK_PERIOD_MS;
  194. int64_t start_rtc = esp_clk_rtc_time();
  195. int64_t start_hs = esp_timer_get_time();
  196. uint32_t start_tick = xTaskGetTickCount();
  197. /* Will enter sleep here */
  198. vTaskDelay(delay_ticks);
  199. int64_t end_rtc = esp_clk_rtc_time();
  200. int64_t end_hs = esp_timer_get_time();
  201. uint32_t end_tick = xTaskGetTickCount();
  202. printf("%lld %lld %u\n", end_rtc - start_rtc, end_hs - start_hs, end_tick - start_tick);
  203. TEST_ASSERT_INT32_WITHIN(3, delay_ticks, end_tick - start_tick);
  204. TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_hs - start_hs);
  205. TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_rtc - start_rtc);
  206. }
  207. REG_CLR_BIT(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].hold_force);
  208. rtc_gpio_deinit(ext1_wakeup_gpio);
  209. light_sleep_disable();
  210. }
  211. #endif //!DISABLED_FOR_TARGETS(ESP32C3)
  212. #endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  213. typedef struct {
  214. int delay_us;
  215. int result;
  216. SemaphoreHandle_t done;
  217. } delay_test_arg_t;
  218. static void test_delay_task(void* p)
  219. {
  220. delay_test_arg_t* arg = (delay_test_arg_t*) p;
  221. vTaskDelay(1);
  222. uint64_t start = esp_clk_rtc_time();
  223. vTaskDelay(arg->delay_us / portTICK_PERIOD_MS / 1000);
  224. uint64_t stop = esp_clk_rtc_time();
  225. arg->result = (int) (stop - start);
  226. xSemaphoreGive(arg->done);
  227. vTaskDelete(NULL);
  228. }
  229. TEST_CASE("vTaskDelay duration is correct with light sleep enabled", "[pm]")
  230. {
  231. light_sleep_enable();
  232. delay_test_arg_t args = {
  233. .done = xSemaphoreCreateBinary()
  234. };
  235. const int delays[] = { 10, 20, 50, 100, 150, 200, 250 };
  236. const int delays_count = sizeof(delays) / sizeof(delays[0]);
  237. for (int i = 0; i < delays_count; ++i) {
  238. int delay_ms = delays[i];
  239. args.delay_us = delay_ms * 1000;
  240. xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 0);
  241. TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) );
  242. printf("CPU0: %d %d\n", args.delay_us, args.result);
  243. TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
  244. #if portNUM_PROCESSORS == 2
  245. xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 1);
  246. TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) );
  247. printf("CPU1: %d %d\n", args.delay_us, args.result);
  248. TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
  249. #endif
  250. }
  251. vSemaphoreDelete(args.done);
  252. light_sleep_disable();
  253. }
  254. /* This test is similar to the one in test_esp_timer.c, but since we can't use
  255. * ref_clock, this test uses RTC clock for timing. Also enables automatic
  256. * light sleep.
  257. */
  258. TEST_CASE("esp_timer produces correct delays with light sleep", "[pm]")
  259. {
  260. // no, we can't make this a const size_t (§6.7.5.2)
  261. #define NUM_INTERVALS 16
  262. typedef struct {
  263. esp_timer_handle_t timer;
  264. size_t cur_interval;
  265. int intervals[NUM_INTERVALS];
  266. int64_t t_start;
  267. SemaphoreHandle_t done;
  268. } test_args_t;
  269. void timer_func(void* arg)
  270. {
  271. test_args_t* p_args = (test_args_t*) arg;
  272. int64_t t_end = esp_clk_rtc_time();
  273. int32_t ms_diff = (t_end - p_args->t_start) / 1000;
  274. printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
  275. p_args->intervals[p_args->cur_interval++] = ms_diff;
  276. // Deliberately make timer handler run longer.
  277. // We check that this doesn't affect the result.
  278. esp_rom_delay_us(10*1000);
  279. if (p_args->cur_interval == NUM_INTERVALS) {
  280. printf("done\n");
  281. TEST_ESP_OK(esp_timer_stop(p_args->timer));
  282. xSemaphoreGive(p_args->done);
  283. }
  284. }
  285. light_sleep_enable();
  286. const int delay_ms = 100;
  287. test_args_t args = {0};
  288. esp_timer_handle_t timer1;
  289. esp_timer_create_args_t create_args = {
  290. .callback = &timer_func,
  291. .arg = &args,
  292. .name = "timer1",
  293. };
  294. TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
  295. args.timer = timer1;
  296. args.t_start = esp_clk_rtc_time();
  297. args.done = xSemaphoreCreateBinary();
  298. TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
  299. TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
  300. TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
  301. for (size_t i = 0; i < NUM_INTERVALS; ++i) {
  302. TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
  303. }
  304. TEST_ESP_OK( esp_timer_dump(stdout) );
  305. TEST_ESP_OK( esp_timer_delete(timer1) );
  306. vSemaphoreDelete(args.done);
  307. light_sleep_disable();
  308. #undef NUM_INTERVALS
  309. }
  310. static void timer_cb1(void *arg)
  311. {
  312. ++*((int*) arg);
  313. }
  314. TEST_CASE("esp_timer with SKIP_UNHANDLED_EVENTS does not wake up CPU from sleep", "[pm]")
  315. {
  316. int count_calls = 0;
  317. int timer_interval_ms = 50;
  318. const esp_timer_create_args_t timer_args = {
  319. .name = "timer_cb1",
  320. .arg = &count_calls,
  321. .callback = &timer_cb1,
  322. .skip_unhandled_events = true,
  323. };
  324. esp_timer_handle_t periodic_timer;
  325. esp_timer_create(&timer_args, &periodic_timer);
  326. TEST_ESP_OK(esp_timer_start_periodic(periodic_timer, timer_interval_ms * 1000));
  327. light_sleep_enable();
  328. const unsigned count_delays = 5;
  329. unsigned i = count_delays;
  330. while (i-- > 0) {
  331. vTaskDelay(pdMS_TO_TICKS(500));
  332. }
  333. TEST_ASSERT_INT_WITHIN(1, count_delays, count_calls);
  334. light_sleep_disable();
  335. TEST_ESP_OK(esp_timer_stop(periodic_timer));
  336. TEST_ESP_OK(esp_timer_dump(stdout));
  337. TEST_ESP_OK(esp_timer_delete(periodic_timer));
  338. }
  339. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  340. #endif // CONFIG_PM_ENABLE