| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412 |
- // Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <sys/param.h>
- #include "soc/soc_caps.h"
- #include "hal/adc_hal.h"
- #include "hal/adc_hal_conf.h"
- #include "hal/assert.h"
- #include "sdkconfig.h"
- #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
- #include "soc/gdma_channel.h"
- #include "soc/soc.h"
- #include "esp_rom_sys.h"
- typedef enum {
- ADC_EVENT_ADC1_DONE = BIT(0),
- ADC_EVENT_ADC2_DONE = BIT(1),
- } adc_hal_event_t;
- #endif
- void adc_hal_init(void)
- {
- // Set internal FSM wait time, fixed value.
- adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
- SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
- adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
- adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
- adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
- adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
- adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
- }
- #if SOC_ADC_ARBITER_SUPPORTED
- void adc_hal_arbiter_config(adc_arbiter_t *config)
- {
- adc_ll_set_arbiter_work_mode(config->mode);
- adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
- }
- #endif
- /*---------------------------------------------------------------
- ADC calibration setting
- ---------------------------------------------------------------*/
- #if SOC_ADC_CALIBRATION_V1_SUPPORTED
- void adc_hal_calibration_init(adc_ll_num_t adc_n)
- {
- adc_ll_calibration_init(adc_n);
- }
- static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
- void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
- {
- if (param != s_previous_init_code[adc_n]) {
- adc_ll_set_calibration_param(adc_n, param);
- s_previous_init_code[adc_n] = param;
- }
- }
- #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
- static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
- {
- #if CONFIG_IDF_TARGET_ESP32S2
- adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
- #else
- adc_hal_set_controller(adc_n, ADC_LL_CTRL_ARB); //Set controller
- #endif
- /* Enable/disable internal connect GND (for calibration). */
- if (internal_gnd) {
- adc_ll_rtc_disable_channel(adc_n);
- adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
- } else {
- adc_ll_rtc_enable_channel(adc_n, channel);
- adc_ll_set_atten(adc_n, channel, atten);
- }
- }
- static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
- {
- adc_ll_rtc_start_convert(adc_n, channel);
- while (adc_ll_rtc_convert_is_done(adc_n) != true);
- return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
- }
- #elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
- static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
- {
- adc_ll_onetime_sample_enable(ADC_NUM_1, false);
- adc_ll_onetime_sample_enable(ADC_NUM_2, false);
- /* Enable/disable internal connect GND (for calibration). */
- if (internal_gnd) {
- const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1) ? 0xF : 0x1;
- adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
- } else {
- adc_ll_onetime_set_channel(adc_n, channel);
- }
- adc_ll_onetime_set_atten(atten);
- adc_ll_onetime_sample_enable(adc_n, true);
- }
- static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
- {
- adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
- adc_ll_onetime_start(false);
- esp_rom_delay_us(5);
- adc_ll_onetime_start(true);
- while (!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
- uint32_t read_val = -1;
- if (adc_n == ADC_NUM_1) {
- read_val = adc_ll_adc1_read();
- } else if (adc_n == ADC_NUM_2) {
- read_val = adc_ll_adc2_read();
- if (adc_ll_analysis_raw_data(adc_n, read_val)) {
- return -1;
- }
- }
- return read_val;
- }
- #endif //CONFIG_IDF_TARGET_*
- #define ADC_HAL_CAL_TIMES (10)
- #define ADC_HAL_CAL_OFFSET_RANGE (4096)
- uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
- {
- if (adc_n == ADC_NUM_2) {
- adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
- adc_hal_arbiter_config(&config);
- }
- cal_setup(adc_n, channel, atten, internal_gnd);
- adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
- uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
- uint32_t code_sum = 0;
- uint32_t code_h = 0;
- uint32_t code_l = 0;
- uint32_t chk_code = 0;
- for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
- code_h = ADC_HAL_CAL_OFFSET_RANGE;
- code_l = 0;
- chk_code = (code_h + code_l) / 2;
- adc_ll_set_calibration_param(adc_n, chk_code);
- uint32_t self_cal = read_cal_channel(adc_n, channel);
- while (code_h - code_l > 1) {
- if (self_cal == 0) {
- code_h = chk_code;
- } else {
- code_l = chk_code;
- }
- chk_code = (code_h + code_l) / 2;
- adc_ll_set_calibration_param(adc_n, chk_code);
- self_cal = read_cal_channel(adc_n, channel);
- if ((code_h - code_l == 1)) {
- chk_code += 1;
- adc_ll_set_calibration_param(adc_n, chk_code);
- self_cal = read_cal_channel(adc_n, channel);
- }
- }
- code_list[rpt] = chk_code;
- code_sum += chk_code;
- }
- code_l = code_list[0];
- code_h = code_list[0];
- for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
- code_l = MIN(code_l, code_list[i]);
- code_h = MAX(code_h, code_list[i]);
- }
- chk_code = code_h + code_l;
- uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
- ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
- : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
- adc_ll_calibration_finish(adc_n);
- return ret;
- }
- #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
- #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
- //This feature is currently supported on ESP32C3, will be supported on other chips soon
- /*---------------------------------------------------------------
- DMA setting
- ---------------------------------------------------------------*/
- void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
- {
- hal->dev = &GDMA;
- hal->desc_dummy_head.next = hal->rx_desc;
- hal->desc_max_num = config->desc_max_num;
- hal->dma_chan = config->dma_chan;
- hal->eof_num = config->eof_num;
- }
- void adc_hal_digi_init(adc_hal_context_t *hal)
- {
- gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, UINT32_MAX);
- gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, GDMA_LL_EVENT_RX_SUC_EOF, true);
- adc_ll_digi_dma_set_eof_num(hal->eof_num);
- adc_ll_onetime_sample_enable(ADC_NUM_1, false);
- adc_ll_onetime_sample_enable(ADC_NUM_2, false);
- }
- void adc_hal_fifo_reset(adc_hal_context_t *hal)
- {
- adc_ll_digi_reset();
- gdma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
- }
- static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
- {
- HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
- HAL_ASSERT((size % 4) == 0);
- uint32_t n = 0;
- while (num--) {
- desc[n].dw0.size = size;
- desc[n].dw0.suc_eof = 0;
- desc[n].dw0.owner = 1;
- desc[n].buffer = data_buf;
- desc[n].next = &desc[n + 1];
- data_buf += size;
- n++;
- }
- desc[n - 1].next = NULL;
- }
- void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf)
- {
- //reset the current descriptor address
- hal->cur_desc_ptr = &hal->desc_dummy_head;
- adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
- gdma_ll_rx_set_desc_addr(hal->dev, hal->dma_chan, (uint32_t)hal->rx_desc);
- gdma_ll_rx_start(hal->dev, hal->dma_chan);
- }
- void adc_hal_digi_start(adc_hal_context_t *hal)
- {
- //the ADC data will be sent to the DMA
- adc_ll_digi_dma_enable();
- //enable sar adc timer
- adc_ll_digi_trigger_enable();
- }
- adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
- {
- HAL_ASSERT(hal->cur_desc_ptr);
- if (!hal->cur_desc_ptr->next) {
- return ADC_HAL_DMA_DESC_NULL;
- }
- if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
- return ADC_HAL_DMA_DESC_WAITING;
- }
- hal->cur_desc_ptr = hal->cur_desc_ptr->next;
- *cur_desc = hal->cur_desc_ptr;
- return ADC_HAL_DMA_DESC_VALID;
- }
- void adc_hal_digi_rxdma_stop(adc_hal_context_t *hal)
- {
- gdma_ll_rx_stop(hal->dev, hal->dma_chan);
- }
- void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
- {
- gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, mask);
- }
- void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
- {
- gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, mask, false);
- }
- void adc_hal_digi_stop(adc_hal_context_t *hal)
- {
- //Set to 0: the ADC data won't be sent to the DMA
- adc_ll_digi_dma_disable();
- //disable sar adc timer
- adc_ll_digi_trigger_disable();
- }
- /*---------------------------------------------------------------
- Single Read
- ---------------------------------------------------------------*/
- //--------------------INTR-------------------------------//
- static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
- {
- adc_ll_intr_t intr_mask = 0;
- if (event & ADC_EVENT_ADC1_DONE) {
- intr_mask |= ADC_LL_INTR_ADC1_DONE;
- }
- if (event & ADC_EVENT_ADC2_DONE) {
- intr_mask |= ADC_LL_INTR_ADC2_DONE;
- }
- return intr_mask;
- }
- static void adc_hal_intr_clear(adc_hal_event_t event)
- {
- adc_ll_intr_clear(get_event_intr(event));
- }
- static bool adc_hal_intr_get_raw(adc_hal_event_t event)
- {
- return adc_ll_intr_get_raw(get_event_intr(event));
- }
- //--------------------Single Read-------------------------------//
- static void adc_hal_onetime_start(void)
- {
- /**
- * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
- * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
- * clock cycle.
- *
- * This limitation will be removed in hardware future versions.
- *
- */
- uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
- //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
- uint32_t delay = (1000 * 1000) / digi_clk + 1;
- //3 ADC digital controller clock cycle
- delay = delay * 3;
- //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
- if (digi_clk >= APB_CLK_FREQ / 8) {
- delay = 0;
- }
- adc_ll_onetime_start(false);
- esp_rom_delay_us(delay);
- adc_ll_onetime_start(true);
- //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
- }
- static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
- {
- if (adc_n == ADC_NUM_1) {
- *out_raw = adc_ll_adc1_read();
- } else if (adc_n == ADC_NUM_2) {
- *out_raw = adc_ll_adc2_read();
- if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
- return ESP_ERR_INVALID_STATE;
- }
- }
- return ESP_OK;
- }
- esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
- {
- esp_err_t ret;
- adc_hal_event_t event;
- if (adc_n == ADC_NUM_1) {
- event = ADC_EVENT_ADC1_DONE;
- } else {
- event = ADC_EVENT_ADC2_DONE;
- }
- adc_hal_intr_clear(event);
- adc_ll_onetime_sample_enable(ADC_NUM_1, false);
- adc_ll_onetime_sample_enable(ADC_NUM_2, false);
- adc_ll_onetime_sample_enable(adc_n, true);
- adc_ll_onetime_set_channel(adc_n, channel);
- //Trigger single read.
- adc_hal_onetime_start();
- while (!adc_hal_intr_get_raw(event));
- ret = adc_hal_single_read(adc_n, out_raw);
- //HW workaround: when enabling periph clock, this should be false
- adc_ll_onetime_sample_enable(adc_n, false);
- return ret;
- }
- #else // !CONFIG_IDF_TARGET_ESP32C3 && !CONFIG_IDF_TARGET_ESP32H2
- esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
- {
- adc_ll_rtc_enable_channel(adc_n, channel);
- adc_ll_rtc_start_convert(adc_n, channel);
- while (adc_ll_rtc_convert_is_done(adc_n) != true);
- *out_raw = adc_ll_rtc_get_convert_value(adc_n);
- if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
- return ESP_ERR_INVALID_STATE;
- }
- return ESP_OK;
- }
- #endif //#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C3
|