test_time.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. #include <stdio.h>
  2. #include <math.h>
  3. #include "unity.h"
  4. #include "driver/adc.h"
  5. #include <time.h>
  6. #include <sys/time.h>
  7. #include "freertos/FreeRTOS.h"
  8. #include "freertos/task.h"
  9. #include "freertos/semphr.h"
  10. #include "sdkconfig.h"
  11. #include "soc/rtc.h"
  12. #include "soc/rtc_cntl_reg.h"
  13. #include "esp_system.h"
  14. #include "test_utils.h"
  15. #include "esp_log.h"
  16. #include "esp_rom_sys.h"
  17. #include "esp_system.h"
  18. #include "esp_timer.h"
  19. #include "esp_private/system_internal.h"
  20. #include "esp_private/esp_timer_private.h"
  21. #include "../priv_include/esp_time_impl.h"
  22. #include "esp_private/system_internal.h"
  23. #if CONFIG_IDF_TARGET_ESP32
  24. #include "esp32/clk.h"
  25. #include "esp32/rtc.h"
  26. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
  27. #elif CONFIG_IDF_TARGET_ESP32S2
  28. #include "esp32s2/clk.h"
  29. #include "esp32s2/rtc.h"
  30. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
  31. #elif CONFIG_IDF_TARGET_ESP32S3
  32. #include "esp32s3/clk.h"
  33. #include "esp32s3/rtc.h"
  34. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
  35. #elif CONFIG_IDF_TARGET_ESP32C3
  36. #include "esp32c3/clk.h"
  37. #include "esp32c3/rtc.h"
  38. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
  39. #elif CONFIG_IDF_TARGET_ESP32H2
  40. #include "esp32h2/clk.h"
  41. #include "esp32h2/rtc.h"
  42. #define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32H2_DEFAULT_CPU_FREQ_MHZ
  43. #endif
  44. #if portNUM_PROCESSORS == 2
  45. // This runs on APP CPU:
  46. static void time_adc_test_task(void* arg)
  47. {
  48. for (int i = 0; i < 200000; ++i) {
  49. // wait for 20us, reading one of RTC registers
  50. uint32_t ccount = xthal_get_ccount();
  51. while (xthal_get_ccount() - ccount < 20 * TARGET_DEFAULT_CPU_FREQ_MHZ) {
  52. volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
  53. (void) val;
  54. }
  55. }
  56. SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
  57. xSemaphoreGive(*p_done);
  58. vTaskDelay(1);
  59. vTaskDelete(NULL);
  60. }
  61. // https://github.com/espressif/arduino-esp32/issues/120
  62. TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
  63. {
  64. SemaphoreHandle_t done = xSemaphoreCreateBinary();
  65. xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);
  66. // This runs on PRO CPU:
  67. for (int i = 0; i < 4; ++i) {
  68. struct timeval tv_start;
  69. gettimeofday(&tv_start, NULL);
  70. vTaskDelay(1000/portTICK_PERIOD_MS);
  71. struct timeval tv_stop;
  72. gettimeofday(&tv_stop, NULL);
  73. float time_sec = tv_stop.tv_sec - tv_start.tv_sec + 1e-6f * (tv_stop.tv_usec - tv_start.tv_usec);
  74. printf("(0) time taken: %f sec\n", time_sec);
  75. TEST_ASSERT_TRUE(fabs(time_sec - 1.0f) < 0.1);
  76. }
  77. TEST_ASSERT_TRUE(xSemaphoreTake(done, 5000 / portTICK_RATE_MS));
  78. }
  79. #endif // portNUM_PROCESSORS == 2
  80. TEST_CASE("test adjtime function", "[newlib]")
  81. {
  82. struct timeval tv_time;
  83. struct timeval tv_delta;
  84. struct timeval tv_outdelta;
  85. TEST_ASSERT_EQUAL(adjtime(NULL, NULL), 0);
  86. tv_time.tv_sec = 5000;
  87. tv_time.tv_usec = 5000;
  88. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  89. tv_outdelta.tv_sec = 5;
  90. tv_outdelta.tv_usec = 5;
  91. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  92. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  93. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  94. tv_delta.tv_sec = INT_MAX / 1000000L;
  95. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  96. tv_delta.tv_sec = INT_MIN / 1000000L;
  97. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
  98. tv_delta.tv_sec = 0;
  99. tv_delta.tv_usec = -900000;
  100. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  101. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  102. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  103. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  104. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  105. tv_delta.tv_sec = -4;
  106. tv_delta.tv_usec = -900000;
  107. TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
  108. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  109. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
  110. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  111. // after settimeofday() adjtime() is stopped
  112. tv_delta.tv_sec = 15;
  113. tv_delta.tv_usec = 900000;
  114. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  115. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
  116. TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
  117. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  118. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  119. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  120. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  121. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  122. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  123. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  124. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  125. // after gettimeofday() adjtime() is not stopped
  126. tv_delta.tv_sec = 15;
  127. tv_delta.tv_usec = 900000;
  128. TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
  129. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  130. TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
  131. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  132. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  133. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  134. TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
  135. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  136. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
  137. TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
  138. tv_delta.tv_sec = 1;
  139. tv_delta.tv_usec = 0;
  140. TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
  141. vTaskDelay(1000 / portTICK_PERIOD_MS);
  142. TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
  143. TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
  144. // the correction will be equal to (1_000_000us >> 6) = 15_625 us.
  145. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec >= 15600);
  146. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec <= 15650);
  147. }
  148. static volatile bool exit_flag;
  149. static void adjtimeTask2(void *pvParameters)
  150. {
  151. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  152. struct timeval delta = {.tv_sec = 0, .tv_usec = 0};
  153. struct timeval outdelta;
  154. // although exit flag is set in another task, checking (exit_flag == false) is safe
  155. while (exit_flag == false) {
  156. delta.tv_sec += 1;
  157. delta.tv_usec = 900000;
  158. if (delta.tv_sec >= 2146) delta.tv_sec = 1;
  159. adjtime(&delta, &outdelta);
  160. }
  161. xSemaphoreGive(*sema);
  162. vTaskDelete(NULL);
  163. }
  164. static void timeTask(void *pvParameters)
  165. {
  166. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  167. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  168. // although exit flag is set in another task, checking (exit_flag == false) is safe
  169. while (exit_flag == false) {
  170. tv_time.tv_sec += 1;
  171. settimeofday(&tv_time, NULL);
  172. gettimeofday(&tv_time, NULL);
  173. }
  174. xSemaphoreGive(*sema);
  175. vTaskDelete(NULL);
  176. }
  177. TEST_CASE("test for no interlocking adjtime, gettimeofday and settimeofday functions", "[newlib]")
  178. {
  179. TaskHandle_t th[4];
  180. exit_flag = false;
  181. struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
  182. TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
  183. const int max_tasks = 2;
  184. xSemaphoreHandle exit_sema[max_tasks];
  185. for (int i = 0; i < max_tasks; ++i) {
  186. exit_sema[i] = xSemaphoreCreateBinary();
  187. }
  188. #ifndef CONFIG_FREERTOS_UNICORE
  189. printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask \n");
  190. xTaskCreatePinnedToCore(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0], 0);
  191. xTaskCreatePinnedToCore(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1], 1);
  192. #else
  193. printf("Only one CPU. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask\n");
  194. xTaskCreate(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0]);
  195. xTaskCreate(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1]);
  196. #endif
  197. printf("start wait for 5 seconds\n");
  198. vTaskDelay(5000 / portTICK_PERIOD_MS);
  199. // set exit flag to let thread exit
  200. exit_flag = true;
  201. for (int i = 0; i < max_tasks; ++i) {
  202. if (!xSemaphoreTake(exit_sema[i], 2000/portTICK_PERIOD_MS)) {
  203. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  204. }
  205. vSemaphoreDelete(exit_sema[i]);
  206. }
  207. }
  208. #ifndef CONFIG_FREERTOS_UNICORE
  209. #define ADJTIME_CORRECTION_FACTOR 6
  210. static int64_t result_adjtime_correction_us[2];
  211. static void get_time_task(void *pvParameters)
  212. {
  213. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  214. struct timeval tv_time;
  215. // although exit flag is set in another task, checking (exit_flag == false) is safe
  216. while (exit_flag == false) {
  217. gettimeofday(&tv_time, NULL);
  218. vTaskDelay(1500 / portTICK_PERIOD_MS);
  219. }
  220. xSemaphoreGive(*sema);
  221. vTaskDelete(NULL);
  222. }
  223. static void start_measure(int64_t* sys_time, int64_t* real_time)
  224. {
  225. struct timeval tv_time;
  226. // there shouldn't be much time between gettimeofday and esp_timer_get_time
  227. gettimeofday(&tv_time, NULL);
  228. *real_time = esp_timer_get_time();
  229. *sys_time = (int64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec;
  230. }
  231. static int64_t calc_correction(const char* tag, int64_t* sys_time, int64_t* real_time)
  232. {
  233. int64_t dt_real_time_us = real_time[1] - real_time[0];
  234. int64_t dt_sys_time_us = sys_time[1] - sys_time[0];
  235. int64_t calc_correction_us = dt_real_time_us >> ADJTIME_CORRECTION_FACTOR;
  236. int64_t real_correction_us = dt_sys_time_us - dt_real_time_us;
  237. int64_t error_us = calc_correction_us - real_correction_us;
  238. printf("%s: dt_real_time = %lli us, dt_sys_time = %lli us, calc_correction = %lli us, error = %lli us\n",
  239. tag, dt_real_time_us, dt_sys_time_us, calc_correction_us, error_us);
  240. TEST_ASSERT_TRUE(dt_sys_time_us > 0 && dt_real_time_us > 0);
  241. TEST_ASSERT_INT_WITHIN(100, 0, error_us);
  242. return real_correction_us;
  243. }
  244. static void measure_time_task(void *pvParameters)
  245. {
  246. xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
  247. int64_t main_real_time_us[2];
  248. int64_t main_sys_time_us[2];
  249. struct timeval tv_time = {.tv_sec = 1550000000, .tv_usec = 0};
  250. TEST_ASSERT_EQUAL(0, settimeofday(&tv_time, NULL));
  251. struct timeval delta = {.tv_sec = 2000, .tv_usec = 900000};
  252. adjtime(&delta, NULL);
  253. gettimeofday(&tv_time, NULL);
  254. start_measure(&main_sys_time_us[0], &main_real_time_us[0]);
  255. {
  256. int64_t real_time_us[2] = { main_real_time_us[0], 0};
  257. int64_t sys_time_us[2] = { main_sys_time_us[0], 0};
  258. // although exit flag is set in another task, checking (exit_flag == false) is safe
  259. while (exit_flag == false) {
  260. vTaskDelay(2000 / portTICK_PERIOD_MS);
  261. start_measure(&sys_time_us[1], &real_time_us[1]);
  262. result_adjtime_correction_us[1] += calc_correction("measure", sys_time_us, real_time_us);
  263. sys_time_us[0] = sys_time_us[1];
  264. real_time_us[0] = real_time_us[1];
  265. }
  266. main_sys_time_us[1] = sys_time_us[1];
  267. main_real_time_us[1] = real_time_us[1];
  268. }
  269. result_adjtime_correction_us[0] = calc_correction("main", main_sys_time_us, main_real_time_us);
  270. int64_t delta_us = result_adjtime_correction_us[0] - result_adjtime_correction_us[1];
  271. printf("\nresult of adjtime correction: %lli us, %lli us. delta = %lli us\n", result_adjtime_correction_us[0], result_adjtime_correction_us[1], delta_us);
  272. TEST_ASSERT_INT_WITHIN(100, 0, delta_us);
  273. xSemaphoreGive(*sema);
  274. vTaskDelete(NULL);
  275. }
  276. TEST_CASE("test time adjustment happens linearly", "[newlib][timeout=15]")
  277. {
  278. exit_flag = false;
  279. xSemaphoreHandle exit_sema[2];
  280. for (int i = 0; i < 2; ++i) {
  281. exit_sema[i] = xSemaphoreCreateBinary();
  282. result_adjtime_correction_us[i] = 0;
  283. }
  284. xTaskCreatePinnedToCore(get_time_task, "get_time_task", 4096, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
  285. xTaskCreatePinnedToCore(measure_time_task, "measure_time_task", 4096, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
  286. printf("start waiting for 10 seconds\n");
  287. vTaskDelay(10000 / portTICK_PERIOD_MS);
  288. // set exit flag to let thread exit
  289. exit_flag = true;
  290. for (int i = 0; i < 2; ++i) {
  291. if (!xSemaphoreTake(exit_sema[i], 2100/portTICK_PERIOD_MS)) {
  292. TEST_FAIL_MESSAGE("exit_sema not released by test task");
  293. }
  294. }
  295. for (int i = 0; i < 2; ++i) {
  296. vSemaphoreDelete(exit_sema[i]);
  297. }
  298. }
  299. #endif
  300. void test_posix_timers_clock (void)
  301. {
  302. #ifndef _POSIX_TIMERS
  303. TEST_ASSERT_MESSAGE(false, "_POSIX_TIMERS - is not defined");
  304. #endif
  305. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER )
  306. printf("CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ");
  307. #endif
  308. #if defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  309. printf("CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER ");
  310. #endif
  311. #ifdef CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS
  312. printf("External (crystal) Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  313. #else
  314. printf("Internal Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
  315. #endif
  316. TEST_ASSERT(clock_settime(CLOCK_REALTIME, NULL) == -1);
  317. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, NULL) == -1);
  318. TEST_ASSERT(clock_getres(CLOCK_REALTIME, NULL) == -1);
  319. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, NULL) == -1);
  320. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, NULL) == -1);
  321. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, NULL) == -1);
  322. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) || defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  323. struct timeval now = {0};
  324. now.tv_sec = 10L;
  325. now.tv_usec = 100000L;
  326. TEST_ASSERT(settimeofday(&now, NULL) == 0);
  327. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  328. struct timespec ts = {0};
  329. TEST_ASSERT(clock_settime(0xFFFFFFFF, &ts) == -1);
  330. TEST_ASSERT(clock_gettime(0xFFFFFFFF, &ts) == -1);
  331. TEST_ASSERT(clock_getres(0xFFFFFFFF, &ts) == 0);
  332. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == 0);
  333. TEST_ASSERT(now.tv_sec == ts.tv_sec);
  334. TEST_ASSERT_INT_WITHIN(5000000L, ts.tv_nsec, now.tv_usec * 1000L);
  335. ts.tv_sec = 20;
  336. ts.tv_nsec = 100000000L;
  337. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
  338. TEST_ASSERT(gettimeofday(&now, NULL) == 0);
  339. TEST_ASSERT_EQUAL(ts.tv_sec, now.tv_sec);
  340. TEST_ASSERT_INT_WITHIN(5000L, ts.tv_nsec / 1000L, now.tv_usec);
  341. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  342. uint64_t delta_monotonic_us = 0;
  343. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER )
  344. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  345. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  346. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  347. TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
  348. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  349. delta_monotonic_us = esp_system_get_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  350. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  351. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  352. #elif defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  353. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
  354. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  355. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
  356. TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
  357. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
  358. delta_monotonic_us = esp_clk_rtc_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
  359. TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
  360. TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
  361. #endif // CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER
  362. #else
  363. struct timespec ts = {0};
  364. TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == -1);
  365. TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == -1);
  366. TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == -1);
  367. TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
  368. TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == -1);
  369. TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == -1);
  370. #endif // defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) || defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  371. }
  372. TEST_CASE("test posix_timers clock_... functions", "[newlib]")
  373. {
  374. test_posix_timers_clock();
  375. }
  376. #ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
  377. #include <string.h>
  378. static struct timeval get_time(const char *desc, char *buffer)
  379. {
  380. struct timeval timestamp;
  381. gettimeofday(&timestamp, NULL);
  382. struct tm* tm_info = localtime(&timestamp.tv_sec);
  383. strftime(buffer, 32, "%c", tm_info);
  384. ESP_LOGI("TAG", "%s: %016llX (%s)", desc, timestamp.tv_sec, buffer);
  385. return timestamp;
  386. }
  387. TEST_CASE("test time_t wide 64 bits", "[newlib]")
  388. {
  389. static char buffer[32];
  390. ESP_LOGI("TAG", "sizeof(time_t): %d (%d-bit)", sizeof(time_t), sizeof(time_t)*8);
  391. TEST_ASSERT_EQUAL(8, sizeof(time_t));
  392. struct tm tm = {4, 14, 3, 19, 0, 138, 0, 0, 0};
  393. struct timeval timestamp = { mktime(&tm), 0 };
  394. ESP_LOGI("TAG", "timestamp: %016llX", timestamp.tv_sec);
  395. settimeofday(&timestamp, NULL);
  396. get_time("Set time", buffer);
  397. while (timestamp.tv_sec < 0x80000003LL) {
  398. vTaskDelay(1000 / portTICK_PERIOD_MS);
  399. timestamp = get_time("Time now", buffer);
  400. }
  401. TEST_ASSERT_EQUAL_MEMORY("Tue Jan 19 03:14:11 2038", buffer, strlen(buffer));
  402. }
  403. TEST_CASE("test time functions wide 64 bits", "[newlib]")
  404. {
  405. static char origin_buffer[32];
  406. char strftime_buf[64];
  407. int year = 2018;
  408. struct tm tm = {0, 14, 3, 19, 0, year - 1900, 0, 0, 0};
  409. time_t t = mktime(&tm);
  410. while (year < 2119) {
  411. struct timeval timestamp = { t, 0 };
  412. ESP_LOGI("TAG", "year: %d", year);
  413. settimeofday(&timestamp, NULL);
  414. get_time("Time now", origin_buffer);
  415. vTaskDelay(10 / portTICK_PERIOD_MS);
  416. t += 86400 * 366;
  417. struct tm timeinfo = { 0 };
  418. time_t now;
  419. time(&now);
  420. localtime_r(&now, &timeinfo);
  421. time_t t = mktime(&timeinfo);
  422. ESP_LOGI("TAG", "Test mktime(). Time: %016llX", t);
  423. TEST_ASSERT_EQUAL(timestamp.tv_sec, t);
  424. // mktime() has error in newlib-3.0.0. It fixed in newlib-3.0.0.20180720
  425. TEST_ASSERT_EQUAL((timestamp.tv_sec >> 32), (t >> 32));
  426. strftime(strftime_buf, sizeof(strftime_buf), "%c", &timeinfo);
  427. ESP_LOGI("TAG", "Test time() and localtime_r(). Time: %s", strftime_buf);
  428. TEST_ASSERT_EQUAL(timeinfo.tm_year, year - 1900);
  429. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  430. struct tm *tm2 = localtime(&now);
  431. strftime(strftime_buf, sizeof(strftime_buf), "%c", tm2);
  432. ESP_LOGI("TAG", "Test localtime(). Time: %s", strftime_buf);
  433. TEST_ASSERT_EQUAL(tm2->tm_year, year - 1900);
  434. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  435. struct tm *gm = gmtime(&now);
  436. strftime(strftime_buf, sizeof(strftime_buf), "%c", gm);
  437. ESP_LOGI("TAG", "Test gmtime(). Time: %s", strftime_buf);
  438. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
  439. const char* time_str1 = ctime(&now);
  440. ESP_LOGI("TAG", "Test ctime(). Time: %s", time_str1);
  441. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str1, strlen(origin_buffer));
  442. const char* time_str2 = asctime(&timeinfo);
  443. ESP_LOGI("TAG", "Test asctime(). Time: %s", time_str2);
  444. TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str2, strlen(origin_buffer));
  445. printf("\n");
  446. ++year;
  447. }
  448. }
  449. #endif // CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
  450. #if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) && defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
  451. extern int64_t s_microseconds_offset;
  452. static const uint64_t s_start_timestamp = 1606838354;
  453. static RTC_NOINIT_ATTR uint64_t s_saved_time;
  454. static RTC_NOINIT_ATTR uint64_t s_time_in_reboot;
  455. typedef enum {
  456. TYPE_REBOOT_ABORT = 0,
  457. TYPE_REBOOT_RESTART,
  458. } type_reboot_t;
  459. static void print_counters(void)
  460. {
  461. int64_t frc = esp_system_get_time();
  462. int64_t rtc = esp_rtc_get_time_us();
  463. uint64_t boot_time = esp_time_impl_get_boot_time();
  464. printf("\tFRC %lld (us)\n", frc);
  465. printf("\tRTC %lld (us)\n", rtc);
  466. printf("\tBOOT %lld (us)\n", boot_time);
  467. printf("\ts_microseconds_offset %lld (us)\n", s_microseconds_offset);
  468. printf("delta RTC - FRC counters %lld (us)\n", rtc - frc);
  469. }
  470. static void set_initial_condition(type_reboot_t type_reboot, int error_time)
  471. {
  472. print_counters();
  473. struct timeval tv = { .tv_sec = s_start_timestamp, .tv_usec = 0, };
  474. settimeofday(&tv, NULL);
  475. printf("set timestamp %lld (s)\n", s_start_timestamp);
  476. print_counters();
  477. int delay_s = abs(error_time) * 2;
  478. printf("Waiting for %d (s) ...\n", delay_s);
  479. vTaskDelay(delay_s * 1000 / portTICK_RATE_MS);
  480. print_counters();
  481. printf("FRC counter increased to %d (s)\n", error_time);
  482. esp_timer_private_advance(error_time * 1000000ULL);
  483. print_counters();
  484. gettimeofday(&tv, NULL);
  485. s_saved_time = tv.tv_sec;
  486. printf("s_saved_time %lld (s)\n", s_saved_time);
  487. int dt = s_saved_time - s_start_timestamp;
  488. printf("delta timestamp = %d (s)\n", dt);
  489. TEST_ASSERT_GREATER_OR_EQUAL(error_time, dt);
  490. s_time_in_reboot = esp_rtc_get_time_us();
  491. if (type_reboot == TYPE_REBOOT_ABORT) {
  492. printf("Update boot time based on diff\n");
  493. esp_sync_counters_rtc_and_frc();
  494. print_counters();
  495. printf("reboot as abort\n");
  496. abort();
  497. } else if (type_reboot == TYPE_REBOOT_RESTART) {
  498. printf("reboot as restart\n");
  499. esp_restart();
  500. }
  501. }
  502. static void set_timestamp1(void)
  503. {
  504. set_initial_condition(TYPE_REBOOT_ABORT, 5);
  505. }
  506. static void set_timestamp2(void)
  507. {
  508. set_initial_condition(TYPE_REBOOT_RESTART, 5);
  509. }
  510. static void set_timestamp3(void)
  511. {
  512. set_initial_condition(TYPE_REBOOT_RESTART, -5);
  513. }
  514. static void check_time(void)
  515. {
  516. print_counters();
  517. int latency_before_run_ut = 1 + (esp_rtc_get_time_us() - s_time_in_reboot) / 1000000;
  518. struct timeval tv;
  519. gettimeofday(&tv, NULL);
  520. printf("timestamp %ld (s)\n", tv.tv_sec);
  521. int dt = tv.tv_sec - s_saved_time;
  522. printf("delta timestamp = %d (s)\n", dt);
  523. TEST_ASSERT_GREATER_OR_EQUAL(0, dt);
  524. TEST_ASSERT_LESS_OR_EQUAL(latency_before_run_ut, dt);
  525. }
  526. TEST_CASE_MULTIPLE_STAGES("Timestamp after abort is correct in case RTC & FRC have + big error", "[newlib][reset=abort,SW_CPU_RESET]", set_timestamp1, check_time);
  527. TEST_CASE_MULTIPLE_STAGES("Timestamp after restart is correct in case RTC & FRC have + big error", "[newlib][reset=SW_CPU_RESET]", set_timestamp2, check_time);
  528. TEST_CASE_MULTIPLE_STAGES("Timestamp after restart is correct in case RTC & FRC have - big error", "[newlib][reset=SW_CPU_RESET]", set_timestamp3, check_time);
  529. #endif // CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER && CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER