sdmmc_cmd.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /*
  2. * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
  3. * Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include "sdmmc_common.h"
  18. static const char* TAG = "sdmmc_cmd";
  19. esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  20. {
  21. if (card->host.command_timeout_ms != 0) {
  22. cmd->timeout_ms = card->host.command_timeout_ms;
  23. } else if (cmd->timeout_ms == 0) {
  24. cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
  25. }
  26. int slot = card->host.slot;
  27. ESP_LOGV(TAG, "sending cmd slot=%d op=%d arg=%x flags=%x data=%p blklen=%d datalen=%d timeout=%d",
  28. slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, cmd->blklen, cmd->datalen, cmd->timeout_ms);
  29. esp_err_t err = (*card->host.do_transaction)(slot, cmd);
  30. if (err != 0) {
  31. ESP_LOGD(TAG, "cmd=%d, sdmmc_req_run returned 0x%x", cmd->opcode, err);
  32. return err;
  33. }
  34. int state = MMC_R1_CURRENT_STATE(cmd->response);
  35. ESP_LOGV(TAG, "cmd response %08x %08x %08x %08x err=0x%x state=%d",
  36. cmd->response[0],
  37. cmd->response[1],
  38. cmd->response[2],
  39. cmd->response[3],
  40. cmd->error,
  41. state);
  42. return cmd->error;
  43. }
  44. esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  45. {
  46. sdmmc_command_t app_cmd = {
  47. .opcode = MMC_APP_CMD,
  48. .flags = SCF_CMD_AC | SCF_RSP_R1,
  49. .arg = MMC_ARG_RCA(card->rca),
  50. };
  51. esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
  52. if (err != ESP_OK) {
  53. return err;
  54. }
  55. // Check APP_CMD status bit (only in SD mode)
  56. if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
  57. ESP_LOGW(TAG, "card doesn't support APP_CMD");
  58. return ESP_ERR_NOT_SUPPORTED;
  59. }
  60. return sdmmc_send_cmd(card, cmd);
  61. }
  62. esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
  63. {
  64. sdmmc_command_t cmd = {
  65. .opcode = MMC_GO_IDLE_STATE,
  66. .flags = SCF_CMD_BC | SCF_RSP_R0,
  67. };
  68. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  69. if (host_is_spi(card)) {
  70. /* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
  71. * SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
  72. * so don't expect the above command to succeed.
  73. * SCF_RSP_R1 flag below tells the lower layer to expect correct R1
  74. * response (in SPI mode).
  75. */
  76. (void) err;
  77. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  78. cmd.flags |= SCF_RSP_R1;
  79. err = sdmmc_send_cmd(card, &cmd);
  80. }
  81. if (err == ESP_OK) {
  82. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  83. }
  84. return err;
  85. }
  86. esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
  87. {
  88. const uint8_t pattern = 0xaa; /* any pattern will do here */
  89. sdmmc_command_t cmd = {
  90. .opcode = SD_SEND_IF_COND,
  91. .arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
  92. .flags = SCF_CMD_BCR | SCF_RSP_R7,
  93. };
  94. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  95. if (err != ESP_OK) {
  96. return err;
  97. }
  98. uint8_t response = cmd.response[0] & 0xff;
  99. if (response != pattern) {
  100. ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
  101. return ESP_ERR_INVALID_RESPONSE;
  102. }
  103. return ESP_OK;
  104. }
  105. esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
  106. {
  107. esp_err_t err;
  108. sdmmc_command_t cmd = {
  109. .arg = ocr,
  110. .flags = SCF_CMD_BCR | SCF_RSP_R3,
  111. .opcode = SD_APP_OP_COND
  112. };
  113. int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
  114. int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
  115. for (; nretries != 0; --nretries) {
  116. bzero(&cmd, sizeof cmd);
  117. cmd.arg = ocr;
  118. cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
  119. if (!card->is_mmc) { /* SD mode */
  120. cmd.opcode = SD_APP_OP_COND;
  121. err = sdmmc_send_app_cmd(card, &cmd);
  122. } else { /* MMC mode */
  123. cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
  124. cmd.arg |= MMC_OCR_SECTOR_MODE;
  125. cmd.opcode = MMC_SEND_OP_COND;
  126. err = sdmmc_send_cmd(card, &cmd);
  127. }
  128. if (err != ESP_OK) {
  129. if (--err_cnt == 0) {
  130. ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
  131. return err;
  132. } else {
  133. ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
  134. continue;
  135. }
  136. }
  137. // In SD protocol, card sets MEM_READY bit in OCR when it is ready.
  138. // In SPI protocol, card clears IDLE_STATE bit in R1 response.
  139. if (!host_is_spi(card)) {
  140. if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
  141. ocr == 0) {
  142. break;
  143. }
  144. } else {
  145. if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
  146. break;
  147. }
  148. }
  149. vTaskDelay(10 / portTICK_PERIOD_MS);
  150. }
  151. if (nretries == 0) {
  152. return ESP_ERR_TIMEOUT;
  153. }
  154. if (ocrp) {
  155. *ocrp = MMC_R3(cmd.response);
  156. }
  157. return ESP_OK;
  158. }
  159. esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
  160. {
  161. assert(ocrp);
  162. sdmmc_command_t cmd = {
  163. .opcode = SD_READ_OCR,
  164. .flags = SCF_CMD_BCR | SCF_RSP_R2
  165. };
  166. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  167. if (err != ESP_OK) {
  168. return err;
  169. }
  170. *ocrp = SD_SPI_R3(cmd.response);
  171. return ESP_OK;
  172. }
  173. esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
  174. {
  175. assert(out_raw_cid);
  176. sdmmc_command_t cmd = {
  177. .opcode = MMC_ALL_SEND_CID,
  178. .flags = SCF_CMD_BCR | SCF_RSP_R2
  179. };
  180. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  181. if (err != ESP_OK) {
  182. return err;
  183. }
  184. memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
  185. return ESP_OK;
  186. }
  187. esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
  188. {
  189. assert(out_cid);
  190. assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
  191. assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
  192. sdmmc_response_t buf;
  193. sdmmc_command_t cmd = {
  194. .opcode = MMC_SEND_CID,
  195. .flags = SCF_CMD_READ | SCF_CMD_ADTC,
  196. .arg = 0,
  197. .data = &buf[0],
  198. .datalen = sizeof(buf)
  199. };
  200. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  201. if (err != ESP_OK) {
  202. return err;
  203. }
  204. sdmmc_flip_byte_order(buf, sizeof(buf));
  205. return sdmmc_decode_cid(buf, out_cid);
  206. }
  207. esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
  208. {
  209. assert(out_rca);
  210. sdmmc_command_t cmd = {
  211. .opcode = SD_SEND_RELATIVE_ADDR,
  212. .flags = SCF_CMD_BCR | SCF_RSP_R6
  213. };
  214. /* MMC cards expect us to set the RCA.
  215. * Set RCA to 1 since we don't support multiple cards on the same bus, for now.
  216. */
  217. uint16_t mmc_rca = 1;
  218. if (card->is_mmc) {
  219. cmd.arg = MMC_ARG_RCA(mmc_rca);
  220. }
  221. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  222. if (err != ESP_OK) {
  223. return err;
  224. }
  225. *out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response);
  226. return ESP_OK;
  227. }
  228. esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
  229. {
  230. sdmmc_command_t cmd = {
  231. .opcode = MMC_SET_BLOCKLEN,
  232. .arg = csd->sector_size,
  233. .flags = SCF_CMD_AC | SCF_RSP_R1
  234. };
  235. return sdmmc_send_cmd(card, &cmd);
  236. }
  237. esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
  238. {
  239. /* The trick with SEND_CSD is that in SPI mode, it acts as a data read
  240. * command, while in SD mode it is an AC command with R2 response.
  241. */
  242. sdmmc_response_t spi_buf;
  243. const bool is_spi = host_is_spi(card);
  244. sdmmc_command_t cmd = {
  245. .opcode = MMC_SEND_CSD,
  246. .arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
  247. .flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
  248. (SCF_CMD_AC | SCF_RSP_R2),
  249. .data = is_spi ? &spi_buf[0] : 0,
  250. .datalen = is_spi ? sizeof(spi_buf) : 0,
  251. };
  252. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  253. if (err != ESP_OK) {
  254. return err;
  255. }
  256. uint32_t* ptr = cmd.response;
  257. if (is_spi) {
  258. sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf));
  259. ptr = spi_buf;
  260. }
  261. if (card->is_mmc) {
  262. err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
  263. } else {
  264. err = sdmmc_decode_csd(ptr, out_csd);
  265. }
  266. return err;
  267. }
  268. esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
  269. {
  270. /* Don't expect to see a response when de-selecting a card */
  271. uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
  272. sdmmc_command_t cmd = {
  273. .opcode = MMC_SELECT_CARD,
  274. .arg = MMC_ARG_RCA(rca),
  275. .flags = SCF_CMD_AC | response
  276. };
  277. return sdmmc_send_cmd(card, &cmd);
  278. }
  279. esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
  280. {
  281. size_t datalen = 8;
  282. uint32_t* buf = (uint32_t*) heap_caps_malloc(datalen, MALLOC_CAP_DMA);
  283. if (buf == NULL) {
  284. return ESP_ERR_NO_MEM;
  285. }
  286. sdmmc_command_t cmd = {
  287. .data = buf,
  288. .datalen = datalen,
  289. .blklen = datalen,
  290. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  291. .opcode = SD_APP_SEND_SCR
  292. };
  293. esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
  294. if (err == ESP_OK) {
  295. err = sdmmc_decode_scr(buf, out_scr);
  296. }
  297. free(buf);
  298. return err;
  299. }
  300. esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
  301. {
  302. sdmmc_command_t cmd = {
  303. .opcode = SD_APP_SET_BUS_WIDTH,
  304. .flags = SCF_RSP_R1 | SCF_CMD_AC,
  305. .arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
  306. };
  307. return sdmmc_send_app_cmd(card, &cmd);
  308. }
  309. esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
  310. {
  311. assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
  312. sdmmc_command_t cmd = {
  313. .opcode = SD_CRC_ON_OFF,
  314. .arg = crc_enable ? 1 : 0,
  315. .flags = SCF_CMD_AC | SCF_RSP_R1
  316. };
  317. return sdmmc_send_cmd(card, &cmd);
  318. }
  319. esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
  320. {
  321. sdmmc_command_t cmd = {
  322. .opcode = MMC_SEND_STATUS,
  323. .arg = MMC_ARG_RCA(card->rca),
  324. .flags = SCF_CMD_AC | SCF_RSP_R1
  325. };
  326. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  327. if (err != ESP_OK) {
  328. return err;
  329. }
  330. if (out_status) {
  331. *out_status = MMC_R1(cmd.response);
  332. }
  333. return ESP_OK;
  334. }
  335. esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
  336. size_t start_block, size_t block_count)
  337. {
  338. esp_err_t err = ESP_OK;
  339. size_t block_size = card->csd.sector_size;
  340. if (esp_ptr_dma_capable(src) && (intptr_t)src % 4 == 0) {
  341. err = sdmmc_write_sectors_dma(card, src, start_block, block_count);
  342. } else {
  343. // SDMMC peripheral needs DMA-capable buffers. Split the write into
  344. // separate single block writes, if needed, and allocate a temporary
  345. // DMA-capable buffer.
  346. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  347. if (tmp_buf == NULL) {
  348. return ESP_ERR_NO_MEM;
  349. }
  350. const uint8_t* cur_src = (const uint8_t*) src;
  351. for (size_t i = 0; i < block_count; ++i) {
  352. memcpy(tmp_buf, cur_src, block_size);
  353. cur_src += block_size;
  354. err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1);
  355. if (err != ESP_OK) {
  356. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  357. __func__, err, start_block, i);
  358. break;
  359. }
  360. }
  361. free(tmp_buf);
  362. }
  363. return err;
  364. }
  365. esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
  366. size_t start_block, size_t block_count)
  367. {
  368. if (start_block + block_count > card->csd.capacity) {
  369. return ESP_ERR_INVALID_SIZE;
  370. }
  371. size_t block_size = card->csd.sector_size;
  372. sdmmc_command_t cmd = {
  373. .flags = SCF_CMD_ADTC | SCF_RSP_R1,
  374. .blklen = block_size,
  375. .data = (void*) src,
  376. .datalen = block_count * block_size,
  377. .timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
  378. };
  379. if (block_count == 1) {
  380. cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
  381. } else {
  382. cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
  383. }
  384. if (card->ocr & SD_OCR_SDHC_CAP) {
  385. cmd.arg = start_block;
  386. } else {
  387. cmd.arg = start_block * block_size;
  388. }
  389. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  390. if (err != ESP_OK) {
  391. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  392. return err;
  393. }
  394. uint32_t status = 0;
  395. size_t count = 0;
  396. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  397. // TODO: add some timeout here
  398. err = sdmmc_send_cmd_send_status(card, &status);
  399. if (err != ESP_OK) {
  400. return err;
  401. }
  402. if (++count % 10 == 0) {
  403. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  404. }
  405. }
  406. return ESP_OK;
  407. }
  408. esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
  409. size_t start_block, size_t block_count)
  410. {
  411. esp_err_t err = ESP_OK;
  412. size_t block_size = card->csd.sector_size;
  413. if (esp_ptr_dma_capable(dst) && (intptr_t)dst % 4 == 0) {
  414. err = sdmmc_read_sectors_dma(card, dst, start_block, block_count);
  415. } else {
  416. // SDMMC peripheral needs DMA-capable buffers. Split the read into
  417. // separate single block reads, if needed, and allocate a temporary
  418. // DMA-capable buffer.
  419. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  420. if (tmp_buf == NULL) {
  421. return ESP_ERR_NO_MEM;
  422. }
  423. uint8_t* cur_dst = (uint8_t*) dst;
  424. for (size_t i = 0; i < block_count; ++i) {
  425. err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1);
  426. if (err != ESP_OK) {
  427. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  428. __func__, err, start_block, i);
  429. break;
  430. }
  431. memcpy(cur_dst, tmp_buf, block_size);
  432. cur_dst += block_size;
  433. }
  434. free(tmp_buf);
  435. }
  436. return err;
  437. }
  438. esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
  439. size_t start_block, size_t block_count)
  440. {
  441. if (start_block + block_count > card->csd.capacity) {
  442. return ESP_ERR_INVALID_SIZE;
  443. }
  444. size_t block_size = card->csd.sector_size;
  445. sdmmc_command_t cmd = {
  446. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  447. .blklen = block_size,
  448. .data = (void*) dst,
  449. .datalen = block_count * block_size
  450. };
  451. if (block_count == 1) {
  452. cmd.opcode = MMC_READ_BLOCK_SINGLE;
  453. } else {
  454. cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
  455. }
  456. if (card->ocr & SD_OCR_SDHC_CAP) {
  457. cmd.arg = start_block;
  458. } else {
  459. cmd.arg = start_block * block_size;
  460. }
  461. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  462. if (err != ESP_OK) {
  463. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  464. return err;
  465. }
  466. uint32_t status = 0;
  467. size_t count = 0;
  468. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  469. // TODO: add some timeout here
  470. err = sdmmc_send_cmd_send_status(card, &status);
  471. if (err != ESP_OK) {
  472. return err;
  473. }
  474. if (++count % 10 == 0) {
  475. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  476. }
  477. }
  478. return ESP_OK;
  479. }