esp_spi_flash.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #ifndef ESP_SPI_FLASH_H
  14. #define ESP_SPI_FLASH_H
  15. #include <stdint.h>
  16. #include <stdbool.h>
  17. #include <stddef.h>
  18. #include "esp_err.h"
  19. #include "sdkconfig.h"
  20. #include "esp_spi_flash_counters.h"
  21. #ifdef __cplusplus
  22. extern "C" {
  23. #endif
  24. #define ESP_ERR_FLASH_OP_FAIL (ESP_ERR_FLASH_BASE + 1)
  25. #define ESP_ERR_FLASH_OP_TIMEOUT (ESP_ERR_FLASH_BASE + 2)
  26. #define SPI_FLASH_SEC_SIZE 4096 /**< SPI Flash sector size */
  27. #define SPI_FLASH_MMU_PAGE_SIZE 0x10000 /**< Flash cache MMU mapping page size */
  28. typedef enum {
  29. FLASH_WRAP_MODE_8B = 0,
  30. FLASH_WRAP_MODE_16B = 2,
  31. FLASH_WRAP_MODE_32B = 4,
  32. FLASH_WRAP_MODE_64B = 6,
  33. FLASH_WRAP_MODE_DISABLE = 1
  34. } spi_flash_wrap_mode_t;
  35. /**
  36. * @brief set wrap mode of flash
  37. *
  38. * @param mode: wrap mode support disable, 16 32, 64 byte
  39. *
  40. * @return esp_err_t : ESP_OK for successful.
  41. *
  42. */
  43. esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode);
  44. /**
  45. * @brief Initialize SPI flash access driver
  46. *
  47. * This function must be called exactly once, before any other
  48. * spi_flash_* functions are called.
  49. * Currently this function is called from startup code. There is
  50. * no need to call it from application code.
  51. *
  52. */
  53. void spi_flash_init(void);
  54. /**
  55. * @brief Get flash chip size, as set in binary image header
  56. *
  57. * @note This value does not necessarily match real flash size.
  58. *
  59. * @return size of flash chip, in bytes
  60. */
  61. size_t spi_flash_get_chip_size(void);
  62. /**
  63. * @brief Erase the Flash sector.
  64. *
  65. * @param sector: Sector number, the count starts at sector 0, 4KB per sector.
  66. *
  67. * @return esp_err_t
  68. */
  69. esp_err_t spi_flash_erase_sector(size_t sector);
  70. /**
  71. * @brief Erase a range of flash sectors
  72. *
  73. * @param start_address Address where erase operation has to start.
  74. * Must be 4kB-aligned
  75. * @param size Size of erased range, in bytes. Must be divisible by 4kB.
  76. *
  77. * @return esp_err_t
  78. */
  79. esp_err_t spi_flash_erase_range(size_t start_address, size_t size);
  80. /**
  81. * @brief Write data to Flash.
  82. *
  83. * @note For fastest write performance, write a 4 byte aligned size at a
  84. * 4 byte aligned offset in flash from a source buffer in DRAM. Varying any of
  85. * these parameters will still work, but will be slower due to buffering.
  86. *
  87. * @note Writing more than 8KB at a time will be split into multiple
  88. * write operations to avoid disrupting other tasks in the system.
  89. *
  90. * @param dest_addr Destination address in Flash.
  91. * @param src Pointer to the source buffer.
  92. * @param size Length of data, in bytes.
  93. *
  94. * @return esp_err_t
  95. */
  96. esp_err_t spi_flash_write(size_t dest_addr, const void *src, size_t size);
  97. /**
  98. * @brief Write data encrypted to Flash.
  99. *
  100. * @note Flash encryption must be enabled for this function to work.
  101. *
  102. * @note Flash encryption must be enabled when calling this function.
  103. * If flash encryption is disabled, the function returns
  104. * ESP_ERR_INVALID_STATE. Use esp_flash_encryption_enabled()
  105. * function to determine if flash encryption is enabled.
  106. *
  107. * @note Both dest_addr and size must be multiples of 16 bytes. For
  108. * absolute best performance, both dest_addr and size arguments should
  109. * be multiples of 32 bytes.
  110. *
  111. * @param dest_addr Destination address in Flash. Must be a multiple of 16 bytes.
  112. * @param src Pointer to the source buffer.
  113. * @param size Length of data, in bytes. Must be a multiple of 16 bytes.
  114. *
  115. * @return esp_err_t
  116. */
  117. esp_err_t spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size);
  118. /**
  119. * @brief Read data from Flash.
  120. *
  121. * @note For fastest read performance, all parameters should be
  122. * 4 byte aligned. If source address and read size are not 4 byte
  123. * aligned, read may be split into multiple flash operations. If
  124. * destination buffer is not 4 byte aligned, a temporary buffer will
  125. * be allocated on the stack.
  126. *
  127. * @note Reading more than 16KB of data at a time will be split
  128. * into multiple reads to avoid disruption to other tasks in the
  129. * system. Consider using spi_flash_mmap() to read large amounts
  130. * of data.
  131. *
  132. * @param src_addr source address of the data in Flash.
  133. * @param dest pointer to the destination buffer
  134. * @param size length of data
  135. *
  136. *
  137. * @return esp_err_t
  138. */
  139. esp_err_t spi_flash_read(size_t src_addr, void *dest, size_t size);
  140. /**
  141. * @brief Read data from Encrypted Flash.
  142. *
  143. * If flash encryption is enabled, this function will transparently decrypt data as it is read.
  144. * If flash encryption is not enabled, this function behaves the same as spi_flash_read().
  145. *
  146. * See esp_flash_encryption_enabled() for a function to check if flash encryption is enabled.
  147. *
  148. * @param src source address of the data in Flash.
  149. * @param dest pointer to the destination buffer
  150. * @param size length of data
  151. *
  152. * @return esp_err_t
  153. */
  154. esp_err_t spi_flash_read_encrypted(size_t src, void *dest, size_t size);
  155. /**
  156. * @brief Enumeration which specifies memory space requested in an mmap call
  157. */
  158. typedef enum {
  159. SPI_FLASH_MMAP_DATA, /**< map to data memory (Vaddr0), allows byte-aligned access, 4 MB total */
  160. SPI_FLASH_MMAP_INST, /**< map to instruction memory (Vaddr1-3), allows only 4-byte-aligned access, 11 MB total */
  161. } spi_flash_mmap_memory_t;
  162. /**
  163. * @brief Opaque handle for memory region obtained from spi_flash_mmap.
  164. */
  165. typedef uint32_t spi_flash_mmap_handle_t;
  166. /**
  167. * @brief Map region of flash memory into data or instruction address space
  168. *
  169. * This function allocates sufficient number of 64kB MMU pages and configures
  170. * them to map the requested region of flash memory into the address space.
  171. * It may reuse MMU pages which already provide the required mapping.
  172. *
  173. * As with any allocator, if mmap/munmap are heavily used then the address space
  174. * may become fragmented. To troubleshoot issues with page allocation, use
  175. * spi_flash_mmap_dump() function.
  176. *
  177. * @param src_addr Physical address in flash where requested region starts.
  178. * This address *must* be aligned to 64kB boundary
  179. * (SPI_FLASH_MMU_PAGE_SIZE)
  180. * @param size Size of region to be mapped. This size will be rounded
  181. * up to a 64kB boundary
  182. * @param memory Address space where the region should be mapped (data or instruction)
  183. * @param[out] out_ptr Output, pointer to the mapped memory region
  184. * @param[out] out_handle Output, handle which should be used for spi_flash_munmap call
  185. *
  186. * @return ESP_OK on success, ESP_ERR_NO_MEM if pages can not be allocated
  187. */
  188. esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
  189. const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
  190. /**
  191. * @brief Map sequences of pages of flash memory into data or instruction address space
  192. *
  193. * This function allocates sufficient number of 64kB MMU pages and configures
  194. * them to map the indicated pages of flash memory contiguously into address space.
  195. * In this respect, it works in a similar way as spi_flash_mmap() but it allows mapping
  196. * a (maybe non-contiguous) set of pages into a contiguous region of memory.
  197. *
  198. * @param pages An array of numbers indicating the 64kB pages in flash to be mapped
  199. * contiguously into memory. These indicate the indexes of the 64kB pages,
  200. * not the byte-size addresses as used in other functions.
  201. * Array must be located in internal memory.
  202. * @param page_count Number of entries in the pages array
  203. * @param memory Address space where the region should be mapped (instruction or data)
  204. * @param[out] out_ptr Output, pointer to the mapped memory region
  205. * @param[out] out_handle Output, handle which should be used for spi_flash_munmap call
  206. *
  207. * @return
  208. * - ESP_OK on success
  209. * - ESP_ERR_NO_MEM if pages can not be allocated
  210. * - ESP_ERR_INVALID_ARG if pagecount is zero or pages array is not in
  211. * internal memory
  212. */
  213. esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
  214. const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
  215. /**
  216. * @brief Release region previously obtained using spi_flash_mmap
  217. *
  218. * @note Calling this function will not necessarily unmap memory region.
  219. * Region will only be unmapped when there are no other handles which
  220. * reference this region. In case of partially overlapping regions
  221. * it is possible that memory will be unmapped partially.
  222. *
  223. * @param handle Handle obtained from spi_flash_mmap
  224. */
  225. void spi_flash_munmap(spi_flash_mmap_handle_t handle);
  226. /**
  227. * @brief Display information about mapped regions
  228. *
  229. * This function lists handles obtained using spi_flash_mmap, along with range
  230. * of pages allocated to each handle. It also lists all non-zero entries of
  231. * MMU table and corresponding reference counts.
  232. */
  233. void spi_flash_mmap_dump(void);
  234. /**
  235. * @brief get free pages number which can be mmap
  236. *
  237. * This function will return number of free pages available in mmu table. This could be useful
  238. * before calling actual spi_flash_mmap (maps flash range to DCache or ICache memory) to check
  239. * if there is sufficient space available for mapping.
  240. *
  241. * @param memory memory type of MMU table free page
  242. *
  243. * @return number of free pages which can be mmaped
  244. */
  245. uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory);
  246. #define SPI_FLASH_CACHE2PHYS_FAIL UINT32_MAX /*<! Result from spi_flash_cache2phys() if flash cache address is invalid */
  247. /**
  248. * @brief Given a memory address where flash is mapped, return the corresponding physical flash offset.
  249. *
  250. * Cache address does not have have been assigned via spi_flash_mmap(), any address in memory mapped flash space can be looked up.
  251. *
  252. * @param cached Pointer to flashed cached memory.
  253. *
  254. * @return
  255. * - SPI_FLASH_CACHE2PHYS_FAIL If cache address is outside flash cache region, or the address is not mapped.
  256. * - Otherwise, returns physical offset in flash
  257. */
  258. size_t spi_flash_cache2phys(const void *cached);
  259. /** @brief Given a physical offset in flash, return the address where it is mapped in the memory space.
  260. *
  261. * Physical address does not have to have been assigned via spi_flash_mmap(), any address in flash can be looked up.
  262. *
  263. * @note Only the first matching cache address is returned. If MMU flash cache table is configured so multiple entries
  264. * point to the same physical address, there may be more than one cache address corresponding to that physical
  265. * address. It is also possible for a single physical address to be mapped to both the IROM and DROM regions.
  266. *
  267. * @note This function doesn't impose any alignment constraints, but if memory argument is SPI_FLASH_MMAP_INST and
  268. * phys_offs is not 4-byte aligned, then reading from the returned pointer will result in a crash.
  269. *
  270. * @param phys_offs Physical offset in flash memory to look up.
  271. * @param memory Address space type to look up a flash cache address mapping for (instruction or data)
  272. *
  273. * @return
  274. * - NULL if the physical address is invalid or not mapped to flash cache of the specified memory type.
  275. * - Cached memory address (in IROM or DROM space) corresponding to phys_offs.
  276. */
  277. const void *spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory);
  278. /** @brief Check at runtime if flash cache is enabled on both CPUs
  279. *
  280. * @return true if both CPUs have flash cache enabled, false otherwise.
  281. */
  282. bool spi_flash_cache_enabled(void);
  283. /**
  284. * @brief Re-enable cache for the core defined as cpuid parameter.
  285. *
  286. * @param cpuid the core number to enable instruction cache for
  287. */
  288. void spi_flash_enable_cache(uint32_t cpuid);
  289. /**
  290. * @brief SPI flash critical section enter function.
  291. *
  292. */
  293. typedef void (*spi_flash_guard_start_func_t)(void);
  294. /**
  295. * @brief SPI flash critical section exit function.
  296. */
  297. typedef void (*spi_flash_guard_end_func_t)(void);
  298. /**
  299. * @brief SPI flash operation lock function.
  300. */
  301. typedef void (*spi_flash_op_lock_func_t)(void);
  302. /**
  303. * @brief SPI flash operation unlock function.
  304. */
  305. typedef void (*spi_flash_op_unlock_func_t)(void);
  306. /**
  307. * @brief Function to protect SPI flash critical regions corruption.
  308. */
  309. typedef bool (*spi_flash_is_safe_write_address_t)(size_t addr, size_t size);
  310. /**
  311. * @brief Function to yield to the OS during erase operation.
  312. */
  313. typedef void (*spi_flash_os_yield_t)(void);
  314. /**
  315. * Structure holding SPI flash access critical sections management functions.
  316. *
  317. * Flash API uses two types of flash access management functions:
  318. * 1) Functions which prepare/restore flash cache and interrupts before calling
  319. * appropriate ROM functions (SPIWrite, SPIRead and SPIEraseBlock):
  320. * - 'start' function should disables flash cache and non-IRAM interrupts and
  321. * is invoked before the call to one of ROM function above.
  322. * - 'end' function should restore state of flash cache and non-IRAM interrupts and
  323. * is invoked after the call to one of ROM function above.
  324. * These two functions are not recursive.
  325. * 2) Functions which synchronizes access to internal data used by flash API.
  326. * This functions are mostly intended to synchronize access to flash API internal data
  327. * in multithreaded environment and use OS primitives:
  328. * - 'op_lock' locks access to flash API internal data.
  329. * - 'op_unlock' unlocks access to flash API internal data.
  330. * These two functions are recursive and can be used around the outside of multiple calls to
  331. * 'start' & 'end', in order to create atomic multi-part flash operations.
  332. * 3) When CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED is disabled, flash writing/erasing
  333. * API checks for addresses provided by user to avoid corruption of critical flash regions
  334. * (bootloader, partition table, running application etc.).
  335. *
  336. * Different versions of the guarding functions should be used depending on the context of
  337. * execution (with or without functional OS). In normal conditions when flash API is called
  338. * from task the functions use OS primitives. When there is no OS at all or when
  339. * it is not guaranteed that OS is functional (accessing flash from exception handler) these
  340. * functions cannot use OS primitives or even does not need them (multithreaded access is not possible).
  341. *
  342. * @note Structure and corresponding guard functions should not reside in flash.
  343. * For example structure can be placed in DRAM and functions in IRAM sections.
  344. */
  345. typedef struct {
  346. spi_flash_guard_start_func_t start; /**< critical section start function. */
  347. spi_flash_guard_end_func_t end; /**< critical section end function. */
  348. spi_flash_op_lock_func_t op_lock; /**< flash access API lock function.*/
  349. spi_flash_op_unlock_func_t op_unlock; /**< flash access API unlock function.*/
  350. #if !CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
  351. spi_flash_is_safe_write_address_t is_safe_write_address; /**< checks flash write addresses.*/
  352. #endif
  353. spi_flash_os_yield_t yield; /**< yield to the OS during flash erase */
  354. } spi_flash_guard_funcs_t;
  355. /**
  356. * @brief Sets guard functions to access flash.
  357. *
  358. * @note Pointed structure and corresponding guard functions should not reside in flash.
  359. * For example structure can be placed in DRAM and functions in IRAM sections.
  360. *
  361. * @param funcs pointer to structure holding flash access guard functions.
  362. */
  363. void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs);
  364. /**
  365. * @brief Get the guard functions used for flash access
  366. *
  367. * @return The guard functions that were set via spi_flash_guard_set(). These functions
  368. * can be called if implementing custom low-level SPI flash operations.
  369. */
  370. const spi_flash_guard_funcs_t *spi_flash_guard_get(void);
  371. /**
  372. * @brief Default OS-aware flash access guard functions
  373. */
  374. extern const spi_flash_guard_funcs_t g_flash_guard_default_ops;
  375. /**
  376. * @brief Non-OS flash access guard functions
  377. *
  378. * @note This version of flash guard functions is to be used when no OS is present or from panic handler.
  379. * It does not use any OS primitives and IPC and implies that only calling CPU is active.
  380. */
  381. extern const spi_flash_guard_funcs_t g_flash_guard_no_os_ops;
  382. #ifdef __cplusplus
  383. }
  384. #endif
  385. #endif /* ESP_SPI_FLASH_H */