| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ESP_SPI_FLASH_H
- #define ESP_SPI_FLASH_H
- #include <stdint.h>
- #include <stdbool.h>
- #include <stddef.h>
- #include "esp_err.h"
- #include "sdkconfig.h"
- #include "esp_spi_flash_counters.h"
- #ifdef __cplusplus
- extern "C" {
- #endif
- #define ESP_ERR_FLASH_OP_FAIL (ESP_ERR_FLASH_BASE + 1)
- #define ESP_ERR_FLASH_OP_TIMEOUT (ESP_ERR_FLASH_BASE + 2)
- #define SPI_FLASH_SEC_SIZE 4096 /**< SPI Flash sector size */
- #define SPI_FLASH_MMU_PAGE_SIZE 0x10000 /**< Flash cache MMU mapping page size */
- typedef enum {
- FLASH_WRAP_MODE_8B = 0,
- FLASH_WRAP_MODE_16B = 2,
- FLASH_WRAP_MODE_32B = 4,
- FLASH_WRAP_MODE_64B = 6,
- FLASH_WRAP_MODE_DISABLE = 1
- } spi_flash_wrap_mode_t;
- /**
- * @brief set wrap mode of flash
- *
- * @param mode: wrap mode support disable, 16 32, 64 byte
- *
- * @return esp_err_t : ESP_OK for successful.
- *
- */
- esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode);
- /**
- * @brief Initialize SPI flash access driver
- *
- * This function must be called exactly once, before any other
- * spi_flash_* functions are called.
- * Currently this function is called from startup code. There is
- * no need to call it from application code.
- *
- */
- void spi_flash_init(void);
- /**
- * @brief Get flash chip size, as set in binary image header
- *
- * @note This value does not necessarily match real flash size.
- *
- * @return size of flash chip, in bytes
- */
- size_t spi_flash_get_chip_size(void);
- /**
- * @brief Erase the Flash sector.
- *
- * @param sector: Sector number, the count starts at sector 0, 4KB per sector.
- *
- * @return esp_err_t
- */
- esp_err_t spi_flash_erase_sector(size_t sector);
- /**
- * @brief Erase a range of flash sectors
- *
- * @param start_address Address where erase operation has to start.
- * Must be 4kB-aligned
- * @param size Size of erased range, in bytes. Must be divisible by 4kB.
- *
- * @return esp_err_t
- */
- esp_err_t spi_flash_erase_range(size_t start_address, size_t size);
- /**
- * @brief Write data to Flash.
- *
- * @note For fastest write performance, write a 4 byte aligned size at a
- * 4 byte aligned offset in flash from a source buffer in DRAM. Varying any of
- * these parameters will still work, but will be slower due to buffering.
- *
- * @note Writing more than 8KB at a time will be split into multiple
- * write operations to avoid disrupting other tasks in the system.
- *
- * @param dest_addr Destination address in Flash.
- * @param src Pointer to the source buffer.
- * @param size Length of data, in bytes.
- *
- * @return esp_err_t
- */
- esp_err_t spi_flash_write(size_t dest_addr, const void *src, size_t size);
- /**
- * @brief Write data encrypted to Flash.
- *
- * @note Flash encryption must be enabled for this function to work.
- *
- * @note Flash encryption must be enabled when calling this function.
- * If flash encryption is disabled, the function returns
- * ESP_ERR_INVALID_STATE. Use esp_flash_encryption_enabled()
- * function to determine if flash encryption is enabled.
- *
- * @note Both dest_addr and size must be multiples of 16 bytes. For
- * absolute best performance, both dest_addr and size arguments should
- * be multiples of 32 bytes.
- *
- * @param dest_addr Destination address in Flash. Must be a multiple of 16 bytes.
- * @param src Pointer to the source buffer.
- * @param size Length of data, in bytes. Must be a multiple of 16 bytes.
- *
- * @return esp_err_t
- */
- esp_err_t spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size);
- /**
- * @brief Read data from Flash.
- *
- * @note For fastest read performance, all parameters should be
- * 4 byte aligned. If source address and read size are not 4 byte
- * aligned, read may be split into multiple flash operations. If
- * destination buffer is not 4 byte aligned, a temporary buffer will
- * be allocated on the stack.
- *
- * @note Reading more than 16KB of data at a time will be split
- * into multiple reads to avoid disruption to other tasks in the
- * system. Consider using spi_flash_mmap() to read large amounts
- * of data.
- *
- * @param src_addr source address of the data in Flash.
- * @param dest pointer to the destination buffer
- * @param size length of data
- *
- *
- * @return esp_err_t
- */
- esp_err_t spi_flash_read(size_t src_addr, void *dest, size_t size);
- /**
- * @brief Read data from Encrypted Flash.
- *
- * If flash encryption is enabled, this function will transparently decrypt data as it is read.
- * If flash encryption is not enabled, this function behaves the same as spi_flash_read().
- *
- * See esp_flash_encryption_enabled() for a function to check if flash encryption is enabled.
- *
- * @param src source address of the data in Flash.
- * @param dest pointer to the destination buffer
- * @param size length of data
- *
- * @return esp_err_t
- */
- esp_err_t spi_flash_read_encrypted(size_t src, void *dest, size_t size);
- /**
- * @brief Enumeration which specifies memory space requested in an mmap call
- */
- typedef enum {
- SPI_FLASH_MMAP_DATA, /**< map to data memory (Vaddr0), allows byte-aligned access, 4 MB total */
- SPI_FLASH_MMAP_INST, /**< map to instruction memory (Vaddr1-3), allows only 4-byte-aligned access, 11 MB total */
- } spi_flash_mmap_memory_t;
- /**
- * @brief Opaque handle for memory region obtained from spi_flash_mmap.
- */
- typedef uint32_t spi_flash_mmap_handle_t;
- /**
- * @brief Map region of flash memory into data or instruction address space
- *
- * This function allocates sufficient number of 64kB MMU pages and configures
- * them to map the requested region of flash memory into the address space.
- * It may reuse MMU pages which already provide the required mapping.
- *
- * As with any allocator, if mmap/munmap are heavily used then the address space
- * may become fragmented. To troubleshoot issues with page allocation, use
- * spi_flash_mmap_dump() function.
- *
- * @param src_addr Physical address in flash where requested region starts.
- * This address *must* be aligned to 64kB boundary
- * (SPI_FLASH_MMU_PAGE_SIZE)
- * @param size Size of region to be mapped. This size will be rounded
- * up to a 64kB boundary
- * @param memory Address space where the region should be mapped (data or instruction)
- * @param[out] out_ptr Output, pointer to the mapped memory region
- * @param[out] out_handle Output, handle which should be used for spi_flash_munmap call
- *
- * @return ESP_OK on success, ESP_ERR_NO_MEM if pages can not be allocated
- */
- esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
- const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
- /**
- * @brief Map sequences of pages of flash memory into data or instruction address space
- *
- * This function allocates sufficient number of 64kB MMU pages and configures
- * them to map the indicated pages of flash memory contiguously into address space.
- * In this respect, it works in a similar way as spi_flash_mmap() but it allows mapping
- * a (maybe non-contiguous) set of pages into a contiguous region of memory.
- *
- * @param pages An array of numbers indicating the 64kB pages in flash to be mapped
- * contiguously into memory. These indicate the indexes of the 64kB pages,
- * not the byte-size addresses as used in other functions.
- * Array must be located in internal memory.
- * @param page_count Number of entries in the pages array
- * @param memory Address space where the region should be mapped (instruction or data)
- * @param[out] out_ptr Output, pointer to the mapped memory region
- * @param[out] out_handle Output, handle which should be used for spi_flash_munmap call
- *
- * @return
- * - ESP_OK on success
- * - ESP_ERR_NO_MEM if pages can not be allocated
- * - ESP_ERR_INVALID_ARG if pagecount is zero or pages array is not in
- * internal memory
- */
- esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
- const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
- /**
- * @brief Release region previously obtained using spi_flash_mmap
- *
- * @note Calling this function will not necessarily unmap memory region.
- * Region will only be unmapped when there are no other handles which
- * reference this region. In case of partially overlapping regions
- * it is possible that memory will be unmapped partially.
- *
- * @param handle Handle obtained from spi_flash_mmap
- */
- void spi_flash_munmap(spi_flash_mmap_handle_t handle);
- /**
- * @brief Display information about mapped regions
- *
- * This function lists handles obtained using spi_flash_mmap, along with range
- * of pages allocated to each handle. It also lists all non-zero entries of
- * MMU table and corresponding reference counts.
- */
- void spi_flash_mmap_dump(void);
- /**
- * @brief get free pages number which can be mmap
- *
- * This function will return number of free pages available in mmu table. This could be useful
- * before calling actual spi_flash_mmap (maps flash range to DCache or ICache memory) to check
- * if there is sufficient space available for mapping.
- *
- * @param memory memory type of MMU table free page
- *
- * @return number of free pages which can be mmaped
- */
- uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory);
- #define SPI_FLASH_CACHE2PHYS_FAIL UINT32_MAX /*<! Result from spi_flash_cache2phys() if flash cache address is invalid */
- /**
- * @brief Given a memory address where flash is mapped, return the corresponding physical flash offset.
- *
- * Cache address does not have have been assigned via spi_flash_mmap(), any address in memory mapped flash space can be looked up.
- *
- * @param cached Pointer to flashed cached memory.
- *
- * @return
- * - SPI_FLASH_CACHE2PHYS_FAIL If cache address is outside flash cache region, or the address is not mapped.
- * - Otherwise, returns physical offset in flash
- */
- size_t spi_flash_cache2phys(const void *cached);
- /** @brief Given a physical offset in flash, return the address where it is mapped in the memory space.
- *
- * Physical address does not have to have been assigned via spi_flash_mmap(), any address in flash can be looked up.
- *
- * @note Only the first matching cache address is returned. If MMU flash cache table is configured so multiple entries
- * point to the same physical address, there may be more than one cache address corresponding to that physical
- * address. It is also possible for a single physical address to be mapped to both the IROM and DROM regions.
- *
- * @note This function doesn't impose any alignment constraints, but if memory argument is SPI_FLASH_MMAP_INST and
- * phys_offs is not 4-byte aligned, then reading from the returned pointer will result in a crash.
- *
- * @param phys_offs Physical offset in flash memory to look up.
- * @param memory Address space type to look up a flash cache address mapping for (instruction or data)
- *
- * @return
- * - NULL if the physical address is invalid or not mapped to flash cache of the specified memory type.
- * - Cached memory address (in IROM or DROM space) corresponding to phys_offs.
- */
- const void *spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory);
- /** @brief Check at runtime if flash cache is enabled on both CPUs
- *
- * @return true if both CPUs have flash cache enabled, false otherwise.
- */
- bool spi_flash_cache_enabled(void);
- /**
- * @brief Re-enable cache for the core defined as cpuid parameter.
- *
- * @param cpuid the core number to enable instruction cache for
- */
- void spi_flash_enable_cache(uint32_t cpuid);
- /**
- * @brief SPI flash critical section enter function.
- *
- */
- typedef void (*spi_flash_guard_start_func_t)(void);
- /**
- * @brief SPI flash critical section exit function.
- */
- typedef void (*spi_flash_guard_end_func_t)(void);
- /**
- * @brief SPI flash operation lock function.
- */
- typedef void (*spi_flash_op_lock_func_t)(void);
- /**
- * @brief SPI flash operation unlock function.
- */
- typedef void (*spi_flash_op_unlock_func_t)(void);
- /**
- * @brief Function to protect SPI flash critical regions corruption.
- */
- typedef bool (*spi_flash_is_safe_write_address_t)(size_t addr, size_t size);
- /**
- * @brief Function to yield to the OS during erase operation.
- */
- typedef void (*spi_flash_os_yield_t)(void);
- /**
- * Structure holding SPI flash access critical sections management functions.
- *
- * Flash API uses two types of flash access management functions:
- * 1) Functions which prepare/restore flash cache and interrupts before calling
- * appropriate ROM functions (SPIWrite, SPIRead and SPIEraseBlock):
- * - 'start' function should disables flash cache and non-IRAM interrupts and
- * is invoked before the call to one of ROM function above.
- * - 'end' function should restore state of flash cache and non-IRAM interrupts and
- * is invoked after the call to one of ROM function above.
- * These two functions are not recursive.
- * 2) Functions which synchronizes access to internal data used by flash API.
- * This functions are mostly intended to synchronize access to flash API internal data
- * in multithreaded environment and use OS primitives:
- * - 'op_lock' locks access to flash API internal data.
- * - 'op_unlock' unlocks access to flash API internal data.
- * These two functions are recursive and can be used around the outside of multiple calls to
- * 'start' & 'end', in order to create atomic multi-part flash operations.
- * 3) When CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED is disabled, flash writing/erasing
- * API checks for addresses provided by user to avoid corruption of critical flash regions
- * (bootloader, partition table, running application etc.).
- *
- * Different versions of the guarding functions should be used depending on the context of
- * execution (with or without functional OS). In normal conditions when flash API is called
- * from task the functions use OS primitives. When there is no OS at all or when
- * it is not guaranteed that OS is functional (accessing flash from exception handler) these
- * functions cannot use OS primitives or even does not need them (multithreaded access is not possible).
- *
- * @note Structure and corresponding guard functions should not reside in flash.
- * For example structure can be placed in DRAM and functions in IRAM sections.
- */
- typedef struct {
- spi_flash_guard_start_func_t start; /**< critical section start function. */
- spi_flash_guard_end_func_t end; /**< critical section end function. */
- spi_flash_op_lock_func_t op_lock; /**< flash access API lock function.*/
- spi_flash_op_unlock_func_t op_unlock; /**< flash access API unlock function.*/
- #if !CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
- spi_flash_is_safe_write_address_t is_safe_write_address; /**< checks flash write addresses.*/
- #endif
- spi_flash_os_yield_t yield; /**< yield to the OS during flash erase */
- } spi_flash_guard_funcs_t;
- /**
- * @brief Sets guard functions to access flash.
- *
- * @note Pointed structure and corresponding guard functions should not reside in flash.
- * For example structure can be placed in DRAM and functions in IRAM sections.
- *
- * @param funcs pointer to structure holding flash access guard functions.
- */
- void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs);
- /**
- * @brief Get the guard functions used for flash access
- *
- * @return The guard functions that were set via spi_flash_guard_set(). These functions
- * can be called if implementing custom low-level SPI flash operations.
- */
- const spi_flash_guard_funcs_t *spi_flash_guard_get(void);
- /**
- * @brief Default OS-aware flash access guard functions
- */
- extern const spi_flash_guard_funcs_t g_flash_guard_default_ops;
- /**
- * @brief Non-OS flash access guard functions
- *
- * @note This version of flash guard functions is to be used when no OS is present or from panic handler.
- * It does not use any OS primitives and IPC and implies that only calling CPU is active.
- */
- extern const spi_flash_guard_funcs_t g_flash_guard_no_os_ops;
- #ifdef __cplusplus
- }
- #endif
- #endif /* ESP_SPI_FLASH_H */
|