test_vfs_select.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. // Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdio.h>
  15. #include <unistd.h>
  16. #include <sys/fcntl.h>
  17. #include <sys/param.h>
  18. #include "unity.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "soc/uart_struct.h"
  21. #include "driver/uart.h"
  22. #include "esp_vfs.h"
  23. #include "esp_vfs_dev.h"
  24. #include "esp_vfs_fat.h"
  25. #include "lwip/sockets.h"
  26. #include "lwip/netdb.h"
  27. #include "test_utils.h"
  28. typedef struct {
  29. int fd;
  30. int delay_ms;
  31. xSemaphoreHandle sem;
  32. } test_task_param_t;
  33. typedef struct {
  34. fd_set *rdfds;
  35. fd_set *wrfds;
  36. fd_set *errfds;
  37. int maxfds;
  38. struct timeval *tv;
  39. int select_ret;
  40. xSemaphoreHandle sem;
  41. } test_select_task_param_t;
  42. static const char message[] = "Hello world!";
  43. static int open_dummy_socket(void)
  44. {
  45. const struct addrinfo hints = {
  46. .ai_family = AF_INET,
  47. .ai_socktype = SOCK_DGRAM,
  48. };
  49. struct addrinfo *res = NULL;
  50. const int err = getaddrinfo("localhost", "80", &hints, &res);
  51. TEST_ASSERT_EQUAL(0, err);
  52. TEST_ASSERT_NOT_NULL(res);
  53. const int dummy_socket_fd = socket(res->ai_family, res->ai_socktype, 0);
  54. TEST_ASSERT(dummy_socket_fd >= 0);
  55. return dummy_socket_fd;
  56. }
  57. static int socket_init(void)
  58. {
  59. const struct addrinfo hints = {
  60. .ai_family = AF_INET,
  61. .ai_socktype = SOCK_DGRAM,
  62. };
  63. struct addrinfo *res;
  64. int err;
  65. struct sockaddr_in saddr = { 0 };
  66. int socket_fd = -1;
  67. err = getaddrinfo("localhost", "80", &hints, &res);
  68. TEST_ASSERT_EQUAL(err, 0);
  69. TEST_ASSERT_NOT_NULL(res);
  70. socket_fd = socket(res->ai_family, res->ai_socktype, 0);
  71. TEST_ASSERT(socket_fd >= 0);
  72. saddr.sin_family = PF_INET;
  73. saddr.sin_port = htons(80);
  74. saddr.sin_addr.s_addr = htonl(INADDR_ANY);
  75. err = bind(socket_fd, (struct sockaddr *) &saddr, sizeof(struct sockaddr_in));
  76. TEST_ASSERT(err >= 0);
  77. err = connect(socket_fd, res->ai_addr, res->ai_addrlen);
  78. TEST_ASSERT_EQUAL_MESSAGE(err, 0, "Socket connection failed");
  79. freeaddrinfo(res);
  80. return socket_fd;
  81. }
  82. static void uart1_init(void)
  83. {
  84. uart_config_t uart_config = {
  85. .baud_rate = 115200,
  86. .data_bits = UART_DATA_8_BITS,
  87. .parity = UART_PARITY_DISABLE,
  88. .stop_bits = UART_STOP_BITS_1,
  89. .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
  90. .source_clk = UART_SCLK_APB,
  91. };
  92. uart_driver_install(UART_NUM_1, 256, 256, 0, NULL, 0);
  93. uart_param_config(UART_NUM_1, &uart_config);
  94. }
  95. static void send_task(void *param)
  96. {
  97. const test_task_param_t *test_task_param = param;
  98. vTaskDelay(test_task_param->delay_ms / portTICK_PERIOD_MS);
  99. write(test_task_param->fd, message, sizeof(message));
  100. if (test_task_param->sem) {
  101. xSemaphoreGive(test_task_param->sem);
  102. }
  103. vTaskDelete(NULL);
  104. }
  105. static inline void start_task(const test_task_param_t *test_task_param)
  106. {
  107. xTaskCreate(send_task, "send_task", 8*1024, (void *) test_task_param, 5, NULL);
  108. }
  109. static void init(int *uart_fd, int *socket_fd)
  110. {
  111. test_case_uses_tcpip();
  112. uart1_init();
  113. uart_set_loop_back(UART_NUM_1, true);
  114. *uart_fd = open("/dev/uart/1", O_RDWR);
  115. TEST_ASSERT_NOT_EQUAL_MESSAGE(*uart_fd, -1, "Cannot open UART");
  116. esp_vfs_dev_uart_use_driver(1);
  117. *socket_fd = socket_init();
  118. }
  119. static void deinit(int uart_fd, int socket_fd)
  120. {
  121. esp_vfs_dev_uart_use_nonblocking(1);
  122. close(uart_fd);
  123. uart_driver_delete(UART_NUM_1);
  124. close(socket_fd);
  125. }
  126. TEST_CASE("UART can do select()", "[vfs]")
  127. {
  128. int uart_fd;
  129. int socket_fd;
  130. struct timeval tv = {
  131. .tv_sec = 0,
  132. .tv_usec = 100000,
  133. };
  134. char recv_message[sizeof(message)];
  135. init(&uart_fd, &socket_fd);
  136. fd_set rfds;
  137. FD_ZERO(&rfds);
  138. FD_SET(uart_fd, &rfds);
  139. //without socket in rfds it will not use the same signalization
  140. const test_task_param_t test_task_param = {
  141. .fd = uart_fd,
  142. .delay_ms = 50,
  143. .sem = xSemaphoreCreateBinary(),
  144. };
  145. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  146. start_task(&test_task_param);
  147. int s = select(uart_fd + 1, &rfds, NULL, NULL, &tv);
  148. TEST_ASSERT_EQUAL(s, 1);
  149. TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
  150. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  151. int read_bytes = read(uart_fd, recv_message, sizeof(message));
  152. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  153. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  154. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  155. FD_ZERO(&rfds);
  156. FD_SET(uart_fd, &rfds);
  157. FD_SET(socket_fd, &rfds);
  158. start_task(&test_task_param);
  159. s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  160. TEST_ASSERT_EQUAL(s, 1);
  161. TEST_ASSERT(FD_ISSET(uart_fd, &rfds));
  162. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  163. read_bytes = read(uart_fd, recv_message, sizeof(message));
  164. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  165. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  166. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  167. vSemaphoreDelete(test_task_param.sem);
  168. deinit(uart_fd, socket_fd);
  169. }
  170. TEST_CASE("UART can do poll()", "[vfs]")
  171. {
  172. int uart_fd;
  173. int socket_fd;
  174. char recv_message[sizeof(message)];
  175. init(&uart_fd, &socket_fd);
  176. struct pollfd poll_fds[] = {
  177. {
  178. .fd = uart_fd,
  179. .events = POLLIN,
  180. },
  181. {
  182. .fd = -1, // should be ignored according to the documentation of poll()
  183. },
  184. };
  185. const test_task_param_t test_task_param = {
  186. .fd = uart_fd,
  187. .delay_ms = 50,
  188. .sem = xSemaphoreCreateBinary(),
  189. };
  190. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  191. start_task(&test_task_param);
  192. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  193. TEST_ASSERT_EQUAL(s, 1);
  194. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  195. TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
  196. TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
  197. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  198. int read_bytes = read(uart_fd, recv_message, sizeof(message));
  199. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  200. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  201. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  202. poll_fds[1].fd = socket_fd;
  203. poll_fds[1].events = POLLIN;
  204. start_task(&test_task_param);
  205. s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  206. TEST_ASSERT_EQUAL(s, 1);
  207. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  208. TEST_ASSERT_EQUAL(POLLIN, poll_fds[0].revents);
  209. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  210. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  211. read_bytes = read(uart_fd, recv_message, sizeof(message));
  212. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  213. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  214. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  215. vSemaphoreDelete(test_task_param.sem);
  216. deinit(uart_fd, socket_fd);
  217. }
  218. TEST_CASE("socket can do select()", "[vfs]")
  219. {
  220. int uart_fd;
  221. int socket_fd;
  222. struct timeval tv = {
  223. .tv_sec = 0,
  224. .tv_usec = 100000,
  225. };
  226. char recv_message[sizeof(message)];
  227. init(&uart_fd, &socket_fd);
  228. const int dummy_socket_fd = open_dummy_socket();
  229. fd_set rfds;
  230. FD_ZERO(&rfds);
  231. FD_SET(uart_fd, &rfds);
  232. FD_SET(socket_fd, &rfds);
  233. FD_SET(dummy_socket_fd, &rfds);
  234. const test_task_param_t test_task_param = {
  235. .fd = socket_fd,
  236. .delay_ms = 50,
  237. .sem = xSemaphoreCreateBinary(),
  238. };
  239. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  240. start_task(&test_task_param);
  241. const int s = select(MAX(MAX(uart_fd, socket_fd), dummy_socket_fd) + 1, &rfds, NULL, NULL, &tv);
  242. TEST_ASSERT_EQUAL(1, s);
  243. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  244. TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rfds));
  245. TEST_ASSERT(FD_ISSET(socket_fd, &rfds));
  246. int read_bytes = read(socket_fd, recv_message, sizeof(message));
  247. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  248. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  249. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  250. vSemaphoreDelete(test_task_param.sem);
  251. deinit(uart_fd, socket_fd);
  252. close(dummy_socket_fd);
  253. }
  254. TEST_CASE("socket can do poll()", "[vfs]")
  255. {
  256. int uart_fd;
  257. int socket_fd;
  258. char recv_message[sizeof(message)];
  259. init(&uart_fd, &socket_fd);
  260. const int dummy_socket_fd = open_dummy_socket();
  261. struct pollfd poll_fds[] = {
  262. {
  263. .fd = uart_fd,
  264. .events = POLLIN,
  265. },
  266. {
  267. .fd = socket_fd,
  268. .events = POLLIN,
  269. },
  270. {
  271. .fd = dummy_socket_fd,
  272. .events = POLLIN,
  273. },
  274. };
  275. const test_task_param_t test_task_param = {
  276. .fd = socket_fd,
  277. .delay_ms = 50,
  278. .sem = xSemaphoreCreateBinary(),
  279. };
  280. TEST_ASSERT_NOT_NULL(test_task_param.sem);
  281. start_task(&test_task_param);
  282. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  283. TEST_ASSERT_EQUAL(s, 1);
  284. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  285. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  286. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  287. TEST_ASSERT_EQUAL(POLLIN, poll_fds[1].revents);
  288. TEST_ASSERT_EQUAL(dummy_socket_fd, poll_fds[2].fd);
  289. TEST_ASSERT_EQUAL(0, poll_fds[2].revents);
  290. int read_bytes = read(socket_fd, recv_message, sizeof(message));
  291. TEST_ASSERT_EQUAL(read_bytes, sizeof(message));
  292. TEST_ASSERT_EQUAL_MEMORY(message, recv_message, sizeof(message));
  293. TEST_ASSERT_EQUAL(xSemaphoreTake(test_task_param.sem, 1000 / portTICK_PERIOD_MS), pdTRUE);
  294. vSemaphoreDelete(test_task_param.sem);
  295. deinit(uart_fd, socket_fd);
  296. close(dummy_socket_fd);
  297. }
  298. TEST_CASE("select() timeout", "[vfs]")
  299. {
  300. int uart_fd;
  301. int socket_fd;
  302. struct timeval tv = {
  303. .tv_sec = 0,
  304. .tv_usec = 100000,
  305. };
  306. init(&uart_fd, &socket_fd);
  307. fd_set rfds;
  308. FD_ZERO(&rfds);
  309. FD_SET(uart_fd, &rfds);
  310. FD_SET(socket_fd, &rfds);
  311. int s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  312. TEST_ASSERT_EQUAL(s, 0);
  313. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  314. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  315. FD_ZERO(&rfds);
  316. s = select(MAX(uart_fd, socket_fd) + 1, &rfds, NULL, NULL, &tv);
  317. TEST_ASSERT_EQUAL(s, 0);
  318. TEST_ASSERT_UNLESS(FD_ISSET(uart_fd, &rfds));
  319. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rfds));
  320. deinit(uart_fd, socket_fd);
  321. }
  322. TEST_CASE("poll() timeout", "[vfs]")
  323. {
  324. int uart_fd;
  325. int socket_fd;
  326. init(&uart_fd, &socket_fd);
  327. struct pollfd poll_fds[] = {
  328. {
  329. .fd = uart_fd,
  330. .events = POLLIN,
  331. },
  332. {
  333. .fd = socket_fd,
  334. .events = POLLIN,
  335. },
  336. };
  337. int s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  338. TEST_ASSERT_EQUAL(s, 0);
  339. TEST_ASSERT_EQUAL(uart_fd, poll_fds[0].fd);
  340. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  341. TEST_ASSERT_EQUAL(socket_fd, poll_fds[1].fd);
  342. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  343. poll_fds[0].fd = -1;
  344. poll_fds[1].fd = -1;
  345. s = poll(poll_fds, sizeof(poll_fds)/sizeof(poll_fds[0]), 100);
  346. TEST_ASSERT_EQUAL(s, 0);
  347. TEST_ASSERT_EQUAL(-1, poll_fds[0].fd);
  348. TEST_ASSERT_EQUAL(0, poll_fds[0].revents);
  349. TEST_ASSERT_EQUAL(-1, poll_fds[1].fd);
  350. TEST_ASSERT_EQUAL(0, poll_fds[1].revents);
  351. deinit(uart_fd, socket_fd);
  352. }
  353. static void select_task(void *task_param)
  354. {
  355. const test_select_task_param_t *param = task_param;
  356. int s = select(param->maxfds, param->rdfds, param->wrfds, param->errfds, param->tv);
  357. TEST_ASSERT_EQUAL(param->select_ret, s);
  358. if (param->sem) {
  359. xSemaphoreGive(param->sem);
  360. }
  361. vTaskDelete(NULL);
  362. }
  363. static void inline start_select_task(test_select_task_param_t *param)
  364. {
  365. xTaskCreate(select_task, "select_task", 4*1024, (void *) param, 5, NULL);
  366. }
  367. TEST_CASE("concurrent selects work", "[vfs]")
  368. {
  369. int uart_fd, socket_fd;
  370. init(&uart_fd, &socket_fd);
  371. const int dummy_socket_fd = open_dummy_socket();
  372. {
  373. // Two tasks will wait for the same UART FD for reading and they will time-out
  374. struct timeval tv = {
  375. .tv_sec = 0,
  376. .tv_usec = 100000,
  377. };
  378. fd_set rdfds1;
  379. FD_ZERO(&rdfds1);
  380. FD_SET(uart_fd, &rdfds1);
  381. test_select_task_param_t param = {
  382. .rdfds = &rdfds1,
  383. .wrfds = NULL,
  384. .errfds = NULL,
  385. .maxfds = uart_fd + 1,
  386. .tv = &tv,
  387. .select_ret = 0, // expected timeout
  388. .sem = xSemaphoreCreateBinary(),
  389. };
  390. TEST_ASSERT_NOT_NULL(param.sem);
  391. fd_set rdfds2;
  392. FD_ZERO(&rdfds2);
  393. FD_SET(uart_fd, &rdfds2);
  394. FD_SET(socket_fd, &rdfds2);
  395. FD_SET(dummy_socket_fd, &rdfds2);
  396. start_select_task(&param);
  397. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  398. int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
  399. TEST_ASSERT_EQUAL(0, s); // timeout here as well
  400. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
  401. vSemaphoreDelete(param.sem);
  402. }
  403. {
  404. // One tasks waits for UART reading and one for writing. The former will be successful and latter will
  405. // time-out.
  406. struct timeval tv = {
  407. .tv_sec = 0,
  408. .tv_usec = 100000,
  409. };
  410. fd_set wrfds1;
  411. FD_ZERO(&wrfds1);
  412. FD_SET(uart_fd, &wrfds1);
  413. test_select_task_param_t param = {
  414. .rdfds = NULL,
  415. .wrfds = &wrfds1,
  416. .errfds = NULL,
  417. .maxfds = uart_fd + 1,
  418. .tv = &tv,
  419. .select_ret = 0, // expected timeout
  420. .sem = xSemaphoreCreateBinary(),
  421. };
  422. TEST_ASSERT_NOT_NULL(param.sem);
  423. start_select_task(&param);
  424. fd_set rdfds2;
  425. FD_ZERO(&rdfds2);
  426. FD_SET(uart_fd, &rdfds2);
  427. FD_SET(socket_fd, &rdfds2);
  428. FD_SET(dummy_socket_fd, &rdfds2);
  429. const test_task_param_t send_param = {
  430. .fd = uart_fd,
  431. .delay_ms = 50,
  432. .sem = xSemaphoreCreateBinary(),
  433. };
  434. TEST_ASSERT_NOT_NULL(send_param.sem);
  435. start_task(&send_param); // This task will write to UART which will be detected by select()
  436. int s = select(MAX(MAX(uart_fd, dummy_socket_fd), socket_fd) + 1, &rdfds2, NULL, NULL, &tv);
  437. TEST_ASSERT_EQUAL(1, s);
  438. TEST_ASSERT(FD_ISSET(uart_fd, &rdfds2));
  439. TEST_ASSERT_UNLESS(FD_ISSET(socket_fd, &rdfds2));
  440. TEST_ASSERT_UNLESS(FD_ISSET(dummy_socket_fd, &rdfds2));
  441. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1000 / portTICK_PERIOD_MS));
  442. vSemaphoreDelete(param.sem);
  443. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(send_param.sem, 1000 / portTICK_PERIOD_MS));
  444. vSemaphoreDelete(send_param.sem);
  445. }
  446. deinit(uart_fd, socket_fd);
  447. close(dummy_socket_fd);
  448. }
  449. TEST_CASE("select() works with concurrent mount", "[vfs][fatfs]")
  450. {
  451. wl_handle_t test_wl_handle;
  452. int uart_fd, socket_fd;
  453. init(&uart_fd, &socket_fd);
  454. const int dummy_socket_fd = open_dummy_socket();
  455. esp_vfs_fat_sdmmc_mount_config_t mount_config = {
  456. .format_if_mount_failed = true,
  457. .max_files = 2
  458. };
  459. // select() will be waiting for a socket & UART and FATFS mount will occur in parallel
  460. struct timeval tv = {
  461. .tv_sec = 1,
  462. .tv_usec = 0,
  463. };
  464. fd_set rdfds;
  465. FD_ZERO(&rdfds);
  466. FD_SET(uart_fd, &rdfds);
  467. FD_SET(dummy_socket_fd, &rdfds);
  468. test_select_task_param_t param = {
  469. .rdfds = &rdfds,
  470. .wrfds = NULL,
  471. .errfds = NULL,
  472. .maxfds = MAX(uart_fd, dummy_socket_fd) + 1,
  473. .tv = &tv,
  474. .select_ret = 0, // expected timeout
  475. .sem = xSemaphoreCreateBinary(),
  476. };
  477. TEST_ASSERT_NOT_NULL(param.sem);
  478. start_select_task(&param);
  479. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  480. TEST_ESP_OK(esp_vfs_fat_spiflash_mount("/spiflash", NULL, &mount_config, &test_wl_handle));
  481. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
  482. // select() will be waiting for a socket & UART and FATFS unmount will occur in parallel
  483. FD_ZERO(&rdfds);
  484. FD_SET(uart_fd, &rdfds);
  485. FD_SET(dummy_socket_fd, &rdfds);
  486. start_select_task(&param);
  487. vTaskDelay(10 / portTICK_PERIOD_MS); //make sure the task has started and waits in select()
  488. TEST_ESP_OK(esp_vfs_fat_spiflash_unmount("/spiflash", test_wl_handle));
  489. TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(param.sem, 1500 / portTICK_PERIOD_MS));
  490. vSemaphoreDelete(param.sem);
  491. deinit(uart_fd, socket_fd);
  492. close(dummy_socket_fd);
  493. }