test_i2c.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. // Copyright 2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "unity.h"
  15. #include "unity_cxx.hpp"
  16. #include <limits>
  17. #include <stdio.h>
  18. #include <iostream>
  19. #include "test_utils.h" // unity_send_signal
  20. #ifdef __cpp_exceptions
  21. #include "i2c_cxx.hpp"
  22. using namespace std;
  23. using namespace idf;
  24. #define TAG "I2C Test"
  25. #define ADDR 0x47
  26. #define MAGIC_TEST_NUMBER 47
  27. #define I2C_SLAVE_NUM I2C_NUM_0 /*!<I2C port number for slave dev */
  28. #if CONFIG_IDF_TARGET_ESP32C3
  29. #define I2C_SLAVE_SCL_IO 5 /*!<gpio number for i2c slave clock */
  30. #define I2C_SLAVE_SDA_IO 6 /*!<gpio number for i2c slave data */
  31. #else
  32. #define I2C_SLAVE_SCL_IO 19 /*!<gpio number for i2c slave clock */
  33. #define I2C_SLAVE_SDA_IO 18 /*!<gpio number for i2c slave data */
  34. #endif
  35. #if CONFIG_IDF_TARGET_ESP32C3
  36. #define I2C_MASTER_NUM I2C_NUM_0 /*!< I2C port number for master dev */
  37. #define I2C_MASTER_SCL_IO 5 /*!<gpio number for i2c master clock */
  38. #define I2C_MASTER_SDA_IO 6 /*!<gpio number for i2c master data */
  39. #else
  40. #define I2C_MASTER_NUM I2C_NUM_1 /*!< I2C port number for master dev */
  41. #define I2C_MASTER_SCL_IO 19 /*!< gpio number for I2C master clock */
  42. #define I2C_MASTER_SDA_IO 18 /*!< gpio number for I2C master data */
  43. #endif
  44. struct MasterFixture {
  45. MasterFixture(const vector<uint8_t> &data_arg = {47u}) :
  46. master(new I2CMaster(I2C_MASTER_NUM, I2C_MASTER_SCL_IO, I2C_MASTER_SDA_IO, 400000)),
  47. data(data_arg) { }
  48. std::shared_ptr<I2CMaster> master;
  49. vector<uint8_t> data;
  50. };
  51. TEST_CASE("I2CMaster GPIO out of range", "[cxx i2c][leaks=300]")
  52. {
  53. TEST_THROW(I2CMaster(0, 255, 255, 400000), I2CException);
  54. }
  55. TEST_CASE("I2CMaster SDA and SCL equal", "[cxx i2c][leaks=300]")
  56. {
  57. TEST_THROW(I2CMaster(0, 0, 0, 400000), I2CException);
  58. }
  59. TEST_CASE("I2Transfer timeout", "[cxx i2c][leaks=300]")
  60. {
  61. std::vector<uint8_t> data = {MAGIC_TEST_NUMBER};
  62. // I2CWrite directly inherits from I2CTransfer; it's representative for I2CRead and I2CComposed, too.
  63. I2CWrite writer(data, chrono::milliseconds(50));
  64. TEST_THROW(writer.do_transfer(I2C_MASTER_NUM, ADDR), I2CTransferException);
  65. }
  66. // TODO The I2C driver tests are disabled, so disable them here, too. Probably due to no runners.
  67. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  68. static void i2c_slave_read_raw_byte(void)
  69. {
  70. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  71. uint8_t buffer = 0;
  72. unity_send_signal("slave init");
  73. unity_wait_for_signal("master write");
  74. TEST_ASSERT_EQUAL(1, slave.read_raw(&buffer, 1, chrono::milliseconds(1000)));
  75. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, buffer);
  76. }
  77. static void i2c_slave_write_raw_byte(void)
  78. {
  79. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  80. uint8_t WRITE_BUFFER = MAGIC_TEST_NUMBER;
  81. unity_wait_for_signal("master init");
  82. TEST_ASSERT_EQUAL(1, slave.write_raw(&WRITE_BUFFER, 1, chrono::milliseconds(1000)));
  83. unity_send_signal("slave write");
  84. // This last synchronization is necessary to prevent slave from going out of scope hence de-initializing already
  85. // before master has read
  86. unity_wait_for_signal("master read done");
  87. }
  88. static void i2c_slave_read_multiple_raw_bytes(void)
  89. {
  90. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  91. uint8_t buffer [8] = {};
  92. unity_send_signal("slave init");
  93. unity_wait_for_signal("master write");
  94. TEST_ASSERT_EQUAL(8, slave.read_raw(buffer, 8, chrono::milliseconds(1000)));
  95. for (int i = 0; i < 8; i++) {
  96. TEST_ASSERT_EQUAL(i, buffer[i]);
  97. }
  98. }
  99. static void i2c_slave_write_multiple_raw_bytes(void)
  100. {
  101. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  102. uint8_t WRITE_BUFFER [8] = {0, 1, 2, 3, 4, 5, 6, 7};
  103. unity_wait_for_signal("master init");
  104. TEST_ASSERT_EQUAL(8, slave.write_raw(WRITE_BUFFER, 8, chrono::milliseconds(1000)));
  105. unity_send_signal("slave write");
  106. unity_wait_for_signal("master read done");
  107. }
  108. static void i2c_slave_composed_trans(void)
  109. {
  110. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  111. size_t BUF_SIZE = 2;
  112. const uint8_t SLAVE_WRITE_BUFFER [BUF_SIZE] = {0xde, 0xad};
  113. uint8_t slave_read_buffer = 0;
  114. unity_send_signal("slave init");
  115. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
  116. unity_wait_for_signal("master transfer");
  117. TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
  118. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
  119. }
  120. static void i2c_I2CRead(void)
  121. {
  122. // here only to install/uninstall driver
  123. MasterFixture fix;
  124. unity_send_signal("master init");
  125. unity_wait_for_signal("slave write");
  126. I2CRead reader(1);
  127. vector<uint8_t> data = reader.do_transfer(I2C_MASTER_NUM, ADDR);
  128. unity_send_signal("master read done");
  129. TEST_ASSERT_EQUAL(1, data.size());
  130. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
  131. }
  132. TEST_CASE_MULTIPLE_DEVICES("I2CRead do_transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  133. i2c_I2CRead, i2c_slave_write_raw_byte);
  134. static void i2c_I2CWrite(void)
  135. {
  136. MasterFixture fix;
  137. I2CWrite writer(fix.data);
  138. unity_wait_for_signal("slave init");
  139. writer.do_transfer(I2C_MASTER_NUM, ADDR);
  140. unity_send_signal("master write");
  141. }
  142. TEST_CASE_MULTIPLE_DEVICES("I2CWrite do_transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  143. i2c_I2CWrite, i2c_slave_read_raw_byte);
  144. static void i2c_master_read_raw_byte(void)
  145. {
  146. MasterFixture fix;
  147. unity_send_signal("master init");
  148. unity_wait_for_signal("slave write");
  149. std::shared_ptr<I2CRead> reader(new I2CRead(1));
  150. future<vector<uint8_t> > fut = fix.master->transfer(reader, ADDR);
  151. vector<uint8_t> data;
  152. data = fut.get();
  153. unity_send_signal("master read done");
  154. TEST_ASSERT_EQUAL(1, data.size());
  155. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
  156. }
  157. TEST_CASE_MULTIPLE_DEVICES("I2CMaster read one byte", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  158. i2c_master_read_raw_byte, i2c_slave_write_raw_byte);
  159. static void i2c_master_write_raw_byte(void)
  160. {
  161. MasterFixture fix;
  162. unity_wait_for_signal("slave init");
  163. std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
  164. future<void> fut = fix.master->transfer(writer, ADDR);
  165. fut.get();
  166. unity_send_signal("master write");
  167. }
  168. TEST_CASE_MULTIPLE_DEVICES("I2CMaster write one byte", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  169. i2c_master_write_raw_byte, i2c_slave_read_raw_byte);
  170. static void i2c_master_read_multiple_raw_bytes(void)
  171. {
  172. MasterFixture fix;
  173. unity_send_signal("master init");
  174. unity_wait_for_signal("slave write");
  175. std::shared_ptr<I2CRead> reader(new I2CRead(8));
  176. future<vector<uint8_t> > fut = fix.master->transfer(reader, ADDR);
  177. vector<uint8_t> data = fut.get();
  178. unity_send_signal("master read done");
  179. TEST_ASSERT_EQUAL(8, data.size());
  180. for (int i = 0; i < 8; i++) {
  181. TEST_ASSERT_EQUAL(i, data[i]);
  182. }
  183. }
  184. TEST_CASE_MULTIPLE_DEVICES("I2CMaster read multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  185. i2c_master_read_multiple_raw_bytes, i2c_slave_write_multiple_raw_bytes);
  186. static void i2c_master_write_multiple_raw_bytes(void)
  187. {
  188. MasterFixture fix({0, 1, 2, 3, 4, 5, 6, 7});
  189. unity_wait_for_signal("slave init");
  190. std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
  191. future<void> fut = fix.master->transfer(writer, ADDR);
  192. fut.get();
  193. unity_send_signal("master write");
  194. }
  195. TEST_CASE_MULTIPLE_DEVICES("I2CMaster write multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  196. i2c_master_write_multiple_raw_bytes, i2c_slave_read_multiple_raw_bytes);
  197. static void i2c_master_sync_read(void)
  198. {
  199. MasterFixture fix;
  200. unity_send_signal("master init");
  201. unity_wait_for_signal("slave write");
  202. vector<uint8_t> data = fix.master->sync_read(ADDR, 1);
  203. unity_send_signal("master read done");
  204. TEST_ASSERT_EQUAL(1, data.size());
  205. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
  206. }
  207. TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync read", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  208. i2c_master_sync_read, i2c_slave_write_raw_byte);
  209. static void i2c_master_sync_write(void)
  210. {
  211. MasterFixture fix;
  212. unity_wait_for_signal("slave init");
  213. fix.master->sync_write(ADDR, fix.data);
  214. unity_send_signal("master write");
  215. }
  216. TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync write", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  217. i2c_master_sync_write, i2c_slave_read_raw_byte);
  218. static void i2c_master_sync_transfer(void)
  219. {
  220. MasterFixture fix;
  221. size_t READ_SIZE = 2;
  222. const uint8_t DESIRED_READ [READ_SIZE] = {0xde, 0xad};
  223. unity_wait_for_signal("slave init");
  224. vector<uint8_t> read_data = fix.master->sync_transfer(ADDR, fix.data, READ_SIZE);
  225. unity_send_signal("master transfer");
  226. TEST_ASSERT_EQUAL(READ_SIZE, read_data.size());
  227. for (int i = 0; i < READ_SIZE; i++) {
  228. TEST_ASSERT_EQUAL(DESIRED_READ[i], read_data[i]);
  229. }
  230. }
  231. TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  232. i2c_master_sync_transfer, i2c_slave_composed_trans);
  233. static void i2c_master_composed_trans(void)
  234. {
  235. MasterFixture fix;
  236. size_t BUF_SIZE = 2;
  237. const uint8_t SLAVE_WRITE_BUFFER [BUF_SIZE] = {0xde, 0xad};
  238. std::shared_ptr<I2CComposed> composed_transfer(new I2CComposed);
  239. composed_transfer->add_write({47u});
  240. composed_transfer->add_read(BUF_SIZE);
  241. unity_wait_for_signal("slave init");
  242. future<vector<vector<uint8_t> > > result = fix.master->transfer(composed_transfer, ADDR);
  243. unity_send_signal("master transfer");
  244. vector<vector<uint8_t> > read_data = result.get();
  245. TEST_ASSERT_EQUAL(1, read_data.size());
  246. TEST_ASSERT_EQUAL(2, read_data[0].size());
  247. for (int i = 0; i < BUF_SIZE; i++) {
  248. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER[i], read_data[0][i]);
  249. }
  250. }
  251. TEST_CASE_MULTIPLE_DEVICES("I2CMaster Composed transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  252. i2c_master_composed_trans, i2c_slave_composed_trans);
  253. static void i2c_slave_write_multiple_raw_bytes_twice(void)
  254. {
  255. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  256. const size_t BUF_SIZE = 8;
  257. uint8_t WRITE_BUFFER [BUF_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7};
  258. unity_wait_for_signal("master init");
  259. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
  260. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
  261. unity_send_signal("slave write");
  262. unity_wait_for_signal("master read done");
  263. }
  264. static void i2c_master_reuse_read_multiple_raw_bytes(void)
  265. {
  266. MasterFixture fix;
  267. unity_send_signal("master init");
  268. unity_wait_for_signal("slave write");
  269. const size_t BUF_SIZE = 8;
  270. #if !CONFIG_IDF_TARGET_ESP32C3
  271. std::shared_ptr<I2CRead> reader(new I2CRead(BUF_SIZE));
  272. future<vector<uint8_t> > fut;
  273. fut = fix.master->transfer(reader, ADDR);
  274. vector<uint8_t> data1 = fut.get();
  275. fut = fix.master->transfer(reader, ADDR);
  276. vector<uint8_t> data2 = fut.get();
  277. unity_send_signal("master read done");
  278. TEST_ASSERT_EQUAL(BUF_SIZE, data1.size());
  279. TEST_ASSERT_EQUAL(BUF_SIZE, data2.size());
  280. for (int i = 0; i < BUF_SIZE; i++) {
  281. TEST_ASSERT_EQUAL(i, data1[i]);
  282. TEST_ASSERT_EQUAL(i, data2[i]);
  283. }
  284. #else // Cannot read twice because the `prefetch` behaviour on C3.
  285. std::shared_ptr<I2CRead> reader(new I2CRead(BUF_SIZE * 2));
  286. future<vector<uint8_t> > fut;
  287. fut = fix.master->transfer(reader, ADDR);
  288. vector<uint8_t> data = fut.get();
  289. unity_send_signal("master read done");
  290. TEST_ASSERT_EQUAL(BUF_SIZE * 2, data.size());
  291. for (int i = 0; i < BUF_SIZE; i++) {
  292. TEST_ASSERT_EQUAL((i % BUF_SIZE), data[i]);
  293. }
  294. #endif // !CONFIG_IDF_TARGET_ESP32C3
  295. }
  296. TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse read multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  297. i2c_master_reuse_read_multiple_raw_bytes, i2c_slave_write_multiple_raw_bytes_twice);
  298. static void i2c_slave_read_multiple_raw_bytes_twice(void)
  299. {
  300. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  301. const size_t BUF_SIZE = 8;
  302. uint8_t buffer1 [BUF_SIZE] = {};
  303. uint8_t buffer2 [BUF_SIZE] = {};
  304. unity_send_signal("slave init");
  305. unity_wait_for_signal("master write");
  306. TEST_ASSERT_EQUAL(BUF_SIZE, slave.read_raw(buffer1, BUF_SIZE, chrono::milliseconds(1000)));
  307. TEST_ASSERT_EQUAL(BUF_SIZE, slave.read_raw(buffer2, BUF_SIZE, chrono::milliseconds(1000)));
  308. for (int i = 0; i < BUF_SIZE; i++) {
  309. TEST_ASSERT_EQUAL(i, buffer1[i]);
  310. TEST_ASSERT_EQUAL(i, buffer2[i]);
  311. }
  312. }
  313. static void i2c_master_reuse_write_multiple_raw_bytes(void)
  314. {
  315. MasterFixture fix({0, 1, 2, 3, 4, 5, 6, 7});
  316. unity_wait_for_signal("slave init");
  317. std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
  318. future<void> fut;
  319. fut = fix.master->transfer(writer, ADDR);
  320. fut.get();
  321. fut = fix.master->transfer(writer, ADDR);
  322. fut.get();
  323. unity_send_signal("master write");
  324. }
  325. TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse write multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  326. i2c_master_reuse_write_multiple_raw_bytes, i2c_slave_read_multiple_raw_bytes_twice);
  327. static void i2c_slave_composed_trans_twice(void)
  328. {
  329. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  330. size_t BUF_SIZE = 2;
  331. const uint8_t SLAVE_WRITE_BUFFER1 [BUF_SIZE] = {0xde, 0xad};
  332. const uint8_t SLAVE_WRITE_BUFFER2 [BUF_SIZE] = {0xbe, 0xef};
  333. uint8_t slave_read_buffer = 0;
  334. unity_send_signal("slave init");
  335. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER1, BUF_SIZE, chrono::milliseconds(1000)));
  336. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER2, BUF_SIZE, chrono::milliseconds(1000)));
  337. unity_wait_for_signal("master transfer");
  338. TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
  339. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
  340. #if !CONFIG_IDF_TARGET_ESP32C3
  341. TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
  342. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
  343. #endif // !CONFIG_IDF_TARGET_ESP32C3
  344. }
  345. static void i2c_master_reuse_composed_trans(void)
  346. {
  347. MasterFixture fix;
  348. size_t BUF_SIZE = 2;
  349. const uint8_t SLAVE_WRITE_BUFFER1 [BUF_SIZE] = {0xde, 0xad};
  350. const uint8_t SLAVE_WRITE_BUFFER2 [BUF_SIZE] = {0xbe, 0xef};
  351. std::shared_ptr<I2CComposed> composed_transfer(new I2CComposed);
  352. composed_transfer->add_write({47u});
  353. #if !CONFIG_IDF_TARGET_ESP32C3
  354. composed_transfer->add_read(BUF_SIZE);
  355. unity_wait_for_signal("slave init");
  356. vector<vector<uint8_t> > read_data1 = fix.master->transfer(composed_transfer, ADDR).get();
  357. vector<vector<uint8_t> > read_data2 = fix.master->transfer(composed_transfer, ADDR).get();
  358. unity_send_signal("master transfer");
  359. TEST_ASSERT_EQUAL(1, read_data1.size());
  360. TEST_ASSERT_EQUAL(2, read_data1[0].size());
  361. TEST_ASSERT_EQUAL(1, read_data2.size());
  362. TEST_ASSERT_EQUAL(2, read_data2[0].size());
  363. for (int i = 0; i < BUF_SIZE; i++) {
  364. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER1[i], read_data1[0][i]);
  365. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER2[i], read_data2[0][i]);
  366. }
  367. #else // Cannot read twice because the `prefetch` behaviour on C3.
  368. composed_transfer->add_read(BUF_SIZE * 2);
  369. unity_wait_for_signal("slave init");
  370. vector<vector<uint8_t> > read_data = fix.master->transfer(composed_transfer, ADDR).get();
  371. unity_send_signal("master transfer");
  372. TEST_ASSERT_EQUAL(1, read_data.size());
  373. TEST_ASSERT_EQUAL(4, read_data[0].size());
  374. for (int i = 0; i < BUF_SIZE; i++) {
  375. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER1[i], read_data[0][i]);
  376. }
  377. for (int i = BUF_SIZE; i < BUF_SIZE * 2; i++) {
  378. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER2[i - BUF_SIZE], read_data[0][i]);
  379. }
  380. #endif //!CONFIG_IDF_TARGET_ESP32C3
  381. }
  382. TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse composed transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  383. i2c_master_reuse_composed_trans, i2c_slave_composed_trans_twice);
  384. #endif //TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  385. #endif // __cpp_exceptions