| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- // Copyright 2017-2020 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /**
- * Some unit test cases need to have access to reliable timestamps even when CPU and APB clock frequencies change over time.
- * This reference clock is built upon two peripherals: one RMT channel and one PCNT channel (hopefully we can have these two peripherals in all ESP chips).
- *
- * +---------------------+ 500KHz Square Wave +--------------------------+
- * | RMT (channel 0, TX) +----------------------------------->+ PCNT (unit 0, channel 0) |
- * +---------------------+ +--------------------------+
- *
- * RMT TX channel is configured to use a fixed clock (e.g. REF_TICK, XTAL) as clock source, so that our ref clock won't be affected during APB/CPU clock switch.
- * Configure RMT channel to generate a 500KHz square wave (using carrier feature) to one GPIO.
- * PCNT takes the input signal from the GPIO and counts the edges (which occur at 1MHz frequency).
- * PCNT counter is only 16 bit wide, an interrupt is configured to trigger when the counter reaches 30000,
- * incrementing a 32-bit millisecond counter maintained by software.
- */
- #include "sdkconfig.h"
- #include "test_utils.h"
- #include "freertos/FreeRTOS.h"
- #include "esp_intr_alloc.h"
- #include "driver/periph_ctrl.h"
- #include "soc/gpio_sig_map.h"
- #include "soc/gpio_periph.h"
- #include "soc/soc_caps.h"
- #include "hal/rmt_types.h"
- #include "hal/rmt_hal.h"
- #include "hal/rmt_ll.h"
- #include "hal/pcnt_hal.h"
- #include "hal/pcnt_ll.h"
- #include "esp_rom_gpio.h"
- #include "esp_rom_sys.h"
- #define REF_CLOCK_RMT_CHANNEL 0 // RMT channel 0
- #define REF_CLOCK_PCNT_UNIT 0 // PCNT unit 0
- #define REF_CLOCK_PCNT_CHANNEL 0// PCNT channel 0
- #define REF_CLOCK_GPIO 21 // GPIO used to combine RMT out signal with PCNT input signal
- #define REF_CLOCK_PRESCALER_MS 30 // PCNT high threshold interrupt fired every 30ms
- static void IRAM_ATTR pcnt_isr(void *arg);
- static intr_handle_t s_intr_handle;
- static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
- static volatile uint32_t s_milliseconds;
- static rmt_hal_context_t s_rmt_hal;
- static pcnt_hal_context_t s_pcnt_hal;
- void ref_clock_init(void)
- {
- assert(s_intr_handle == NULL && "ref clock already initialized");
- // Route RMT output to GPIO matrix
- esp_rom_gpio_connect_out_signal(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX, false, false);
- // Initialize RMT
- periph_module_enable(PERIPH_RMT_MODULE);
- rmt_hal_init(&s_rmt_hal);
- rmt_item32_t data = {
- .duration0 = 1,
- .level0 = 1,
- .duration1 = 0,
- .level1 = 0
- };
- rmt_ll_enable_drive_clock(s_rmt_hal.regs, true);
- #if SOC_RMT_SUPPORT_XTAL
- rmt_ll_set_group_clock_src(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, RMT_BASECLK_XTAL, 39, 0, 0); // XTAL(40MHz), rmt_sclk => 1MHz (40/(1+39))
- #elif SOC_RMT_SUPPORT_REF_TICK
- rmt_ll_set_group_clock_src(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, RMT_BASECLK_REF, 0, 0, 0); // select REF_TICK (1MHz)
- #endif
- rmt_hal_tx_set_channel_clock(&s_rmt_hal, REF_CLOCK_RMT_CHANNEL, 1000000, 1000000); // counter clock: 1MHz
- rmt_ll_tx_enable_idle(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true); // enable idle output
- rmt_ll_tx_set_idle_level(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1); // idle level: 1
- rmt_ll_tx_enable_carrier_modulation(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true);
- #if !CONFIG_IDF_TARGET_ESP32
- rmt_ll_tx_set_carrier_always_on(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true);
- #endif
- rmt_hal_set_carrier_clock(&s_rmt_hal, REF_CLOCK_RMT_CHANNEL, 1000000, 500000, 0.5); // set carrier to 500KHz
- rmt_ll_tx_set_carrier_level(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1);
- rmt_ll_enable_mem_access(s_rmt_hal.regs, true);
- rmt_ll_tx_reset_pointer(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL);
- rmt_ll_tx_set_mem_blocks(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1);
- rmt_ll_write_memory(s_rmt_hal.mem, REF_CLOCK_RMT_CHANNEL, &data, 1, 0);
- rmt_ll_tx_enable_loop(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, false);
- rmt_ll_tx_start(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL);
- // Route signal to PCNT
- esp_rom_gpio_connect_in_signal(REF_CLOCK_GPIO, PCNT_SIG_CH0_IN0_IDX, false);
- if (REF_CLOCK_GPIO != 20) {
- PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]);
- } else {
- PIN_INPUT_ENABLE(PERIPHS_IO_MUX_GPIO20_U);
- }
- // Initialize PCNT
- periph_module_enable(PERIPH_PCNT_MODULE);
- pcnt_hal_init(&s_pcnt_hal, REF_CLOCK_PCNT_UNIT);
- pcnt_ll_set_edge_action(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, REF_CLOCK_PCNT_CHANNEL,
- PCNT_CHANNEL_EDGE_ACTION_INCREASE, PCNT_CHANNEL_EDGE_ACTION_INCREASE);
- pcnt_ll_set_level_action(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, REF_CLOCK_PCNT_CHANNEL,
- PCNT_CHANNEL_LEVEL_ACTION_KEEP, PCNT_CHANNEL_LEVEL_ACTION_KEEP);
- pcnt_ll_disable_all_events(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
- pcnt_ll_set_high_limit_value(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, REF_CLOCK_PRESCALER_MS * 1000);
- pcnt_ll_enable_high_limit_event(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, true);
- // Enable PCNT and wait for it to start counting
- pcnt_ll_start_count(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
- pcnt_ll_clear_count(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
- esp_rom_delay_us(10000);
- // Enable interrupt
- s_milliseconds = 0;
- ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle));
- pcnt_ll_clear_intr_status(s_pcnt_hal.dev, BIT(REF_CLOCK_PCNT_UNIT));
- pcnt_ll_enable_intr(s_pcnt_hal.dev, 1 << REF_CLOCK_PCNT_UNIT, true);
- }
- static void IRAM_ATTR pcnt_isr(void *arg)
- {
- portENTER_CRITICAL_ISR(&s_lock);
- pcnt_ll_clear_intr_status(s_pcnt_hal.dev, BIT(REF_CLOCK_PCNT_UNIT));
- s_milliseconds += REF_CLOCK_PRESCALER_MS;
- portEXIT_CRITICAL_ISR(&s_lock);
- }
- void ref_clock_deinit()
- {
- assert(s_intr_handle && "ref clock deinit called without init");
- // Disable interrupt
- pcnt_ll_enable_intr(s_pcnt_hal.dev, 1 << REF_CLOCK_PCNT_UNIT, false);
- esp_intr_free(s_intr_handle);
- s_intr_handle = NULL;
- // Disable RMT
- rmt_ll_tx_enable_carrier_modulation(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, false);
- periph_module_disable(PERIPH_RMT_MODULE);
- // Disable PCNT
- pcnt_ll_stop_count(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
- periph_module_disable(PERIPH_PCNT_MODULE);
- }
- uint64_t ref_clock_get()
- {
- portENTER_CRITICAL(&s_lock);
- int microseconds = 0;
- microseconds = pcnt_ll_get_count(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
- uint32_t milliseconds = s_milliseconds;
- uint32_t intr_status = pcnt_ll_get_intr_status(s_pcnt_hal.dev);
- if (intr_status & BIT(REF_CLOCK_PCNT_UNIT)) {
- // refresh counter value, in case the overflow has happened after reading cnt_val
- microseconds = pcnt_ll_get_count(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT);
- milliseconds += REF_CLOCK_PRESCALER_MS;
- }
- portEXIT_CRITICAL(&s_lock);
- return 1000 * (uint64_t)milliseconds + (uint64_t)microseconds;
- }
|