/* * FIPS-180-2 compliant SHA-256 implementation * * Based on TropicSSL: Copyright (C) 2017 Shanghai Real-Thread Technology Co., Ltd * * Based on XySSL: Copyright (C) 2006-2008 Christophe Devine * * Copyright (C) 2009 Paul Bakker * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the names of PolarSSL or XySSL nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf */ #include "tinycrypt_config.h" #if defined(TINY_CRYPT_SHA256) #include "tinycrypt.h" #include #include /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_ULONG_BE #define GET_ULONG_BE(n,b,i) \ { \ (n) = ( (unsigned long) (b)[(i) ] << 24 ) \ | ( (unsigned long) (b)[(i) + 1] << 16 ) \ | ( (unsigned long) (b)[(i) + 2] << 8 ) \ | ( (unsigned long) (b)[(i) + 3] ); \ } #endif #ifndef PUT_ULONG_BE #define PUT_ULONG_BE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif /* * SHA-256 context setup */ void tiny_sha2_starts(tiny_sha2_context * ctx, int is224) { ctx->total[0] = 0; ctx->total[1] = 0; if (is224 == 0) { /* SHA-256 */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } else { /* SHA-224 */ ctx->state[0] = 0xC1059ED8; ctx->state[1] = 0x367CD507; ctx->state[2] = 0x3070DD17; ctx->state[3] = 0xF70E5939; ctx->state[4] = 0xFFC00B31; ctx->state[5] = 0x68581511; ctx->state[6] = 0x64F98FA7; ctx->state[7] = 0xBEFA4FA4; } ctx->is224 = is224; } static void sha2_process(tiny_sha2_context * ctx, unsigned char data[64]) { unsigned long temp1, temp2, W[64]; unsigned long A, B, C, D, E, F, G, H; GET_ULONG_BE(W[0], data, 0); GET_ULONG_BE(W[1], data, 4); GET_ULONG_BE(W[2], data, 8); GET_ULONG_BE(W[3], data, 12); GET_ULONG_BE(W[4], data, 16); GET_ULONG_BE(W[5], data, 20); GET_ULONG_BE(W[6], data, 24); GET_ULONG_BE(W[7], data, 28); GET_ULONG_BE(W[8], data, 32); GET_ULONG_BE(W[9], data, 36); GET_ULONG_BE(W[10], data, 40); GET_ULONG_BE(W[11], data, 44); GET_ULONG_BE(W[12], data, 48); GET_ULONG_BE(W[13], data, 52); GET_ULONG_BE(W[14], data, 56); GET_ULONG_BE(W[15], data, 60); #define SHR(x,n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x,n) (SHR(x,n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define R(t) \ ( \ W[t] = S1(W[t - 2]) + W[t - 7] + \ S0(W[t - 15]) + W[t - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98); P(H, A, B, C, D, E, F, G, W[1], 0x71374491); P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF); P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5); P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B); P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1); P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4); P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5); P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98); P(H, A, B, C, D, E, F, G, W[9], 0x12835B01); P(G, H, A, B, C, D, E, F, W[10], 0x243185BE); P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174); P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA); P(A, B, C, D, E, F, G, H, R(24), 0x983E5152); P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D); P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8); P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147); P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351); P(B, C, D, E, F, G, H, A, R(31), 0x14292967); P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85); P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); P(F, G, H, A, B, C, D, E, R(35), 0x53380D13); P(E, F, G, H, A, B, C, D, R(36), 0x650A7354); P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); P(B, C, D, E, F, G, H, A, R(39), 0x92722C85); P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B); P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); P(E, F, G, H, A, B, C, D, R(44), 0xD192E819); P(D, E, F, G, H, A, B, C, R(45), 0xD6990624); P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585); P(B, C, D, E, F, G, H, A, R(47), 0x106AA070); P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116); P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08); P(G, H, A, B, C, D, E, F, R(50), 0x2748774C); P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE); P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F); P(G, H, A, B, C, D, E, F, R(58), 0x84C87814); P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208); P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } /* * SHA-256 process buffer */ void tiny_sha2_update(tiny_sha2_context * ctx, unsigned char *input, int ilen) { int fill; unsigned long left; if (ilen <= 0) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += ilen; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < (unsigned long)ilen) ctx->total[1]++; if (left && ilen >= fill) { memcpy((void *)(ctx->buffer + left), (void *)input, fill); sha2_process(ctx, ctx->buffer); input += fill; ilen -= fill; left = 0; } while (ilen >= 64) { sha2_process(ctx, input); input += 64; ilen -= 64; } if (ilen > 0) { memcpy((void *)(ctx->buffer + left), (void *)input, ilen); } } static const unsigned char sha2_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * SHA-256 final digest */ void tiny_sha2_finish(tiny_sha2_context * ctx, unsigned char output[32]) { unsigned long last, padn; unsigned long high, low; unsigned char msglen[8]; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_ULONG_BE(high, msglen, 0); PUT_ULONG_BE(low, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); tiny_sha2_update(ctx, (unsigned char *)sha2_padding, padn); tiny_sha2_update(ctx, msglen, 8); PUT_ULONG_BE(ctx->state[0], output, 0); PUT_ULONG_BE(ctx->state[1], output, 4); PUT_ULONG_BE(ctx->state[2], output, 8); PUT_ULONG_BE(ctx->state[3], output, 12); PUT_ULONG_BE(ctx->state[4], output, 16); PUT_ULONG_BE(ctx->state[5], output, 20); PUT_ULONG_BE(ctx->state[6], output, 24); if (ctx->is224 == 0) PUT_ULONG_BE(ctx->state[7], output, 28); } /* * output = SHA-256( input buffer ) */ void tiny_sha2(unsigned char *input, int ilen, unsigned char output[32], int is224) { tiny_sha2_context ctx; tiny_sha2_starts(&ctx, is224); tiny_sha2_update(&ctx, input, ilen); tiny_sha2_finish(&ctx, output); memset(&ctx, 0, sizeof(tiny_sha2_context)); } /* * SHA-256 HMAC context setup */ void tiny_sha2_hmac_starts(tiny_sha2_context * ctx, unsigned char *key, int keylen, int is224) { int i; unsigned char sum[32]; if (keylen > 64) { tiny_sha2(key, keylen, sum, is224); keylen = (is224) ? 28 : 32; key = sum; } memset(ctx->ipad, 0x36, 64); memset(ctx->opad, 0x5C, 64); for (i = 0; i < keylen; i++) { ctx->ipad[i] = (unsigned char)(ctx->ipad[i] ^ key[i]); ctx->opad[i] = (unsigned char)(ctx->opad[i] ^ key[i]); } tiny_sha2_starts(ctx, is224); tiny_sha2_update(ctx, ctx->ipad, 64); memset(sum, 0, sizeof(sum)); } /* * SHA-256 HMAC process buffer */ void tiny_sha2_hmac_update(tiny_sha2_context * ctx, unsigned char *input, int ilen) { tiny_sha2_update(ctx, input, ilen); } /* * SHA-256 HMAC final digest */ void tiny_sha2_hmac_finish(tiny_sha2_context * ctx, unsigned char output[32]) { int is224, hlen; unsigned char tmpbuf[32]; is224 = ctx->is224; hlen = (is224 == 0) ? 32 : 28; tiny_sha2_finish(ctx, tmpbuf); tiny_sha2_starts(ctx, is224); tiny_sha2_update(ctx, ctx->opad, 64); tiny_sha2_update(ctx, tmpbuf, hlen); tiny_sha2_finish(ctx, output); memset(tmpbuf, 0, sizeof(tmpbuf)); } /* * output = HMAC-SHA-256( hmac key, input buffer ) */ void tiny_sha2_hmac(unsigned char *key, int keylen, unsigned char *input, int ilen, unsigned char output[32], int is224) { tiny_sha2_context ctx; tiny_sha2_hmac_starts(&ctx, key, keylen, is224); tiny_sha2_hmac_update(&ctx, input, ilen); tiny_sha2_hmac_finish(&ctx, output); memset(&ctx, 0, sizeof(tiny_sha2_context)); } #endif