/* Copyright (c) 2023, Canaan Bright Sight Co., Ltd * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2006-2025 RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include "board.h" #include "drv_i2c.h" #include "sysctl_clk.h" #include "drv_pdma.h" #undef DBG_TAG #undef DBG_LVL #define DBG_TAG "drv_i2c" #define DBG_LVL DBG_INFO #include /* * Note: * - When DMA is enabled, the PDMA driver requires both the address and * data to be 4-byte aligned.(Address alignment is handled internally * by this driver, so application developers do not need to worry about * address alignment.) Therefore, when using DMA for read/write operations, * if the data size is not 4-byte aligned, even with DMA enabled, the driver * will actually use CPU polling for read/write. Application code should be * aware of this and handle it accordingly. For example, if the data length * to be read or written is not 4-byte aligned, you can split the data into * an aligned part and an unaligned part, use DMA for the aligned part, and * use CPU polling for the unaligned part. */ #ifdef BSP_USING_I2C_DMA #define K230_I2C_PDMA_CH_INVALID 0xFF #define K230_I2C_PDMA_CACHE_LINE_SIZE 64 struct _i2c_pdma_cfg { rt_event_t event; rt_uint8_t ch; usr_pdma_cfg_t cfg; device_sel_e tx_dev; device_sel_e rx_dev; }; typedef enum { K230_I2C_PDMA_EVENT_NONE = 0x00, K230_I2C_PDMA_EVENT_COMPLETE = 0x01, K230_I2C_PDMA_EVENT_TIMEOUT = 0x02, } k230_i2c_pdma_event_t; #endif struct _i2c_speed_cfg { rt_uint16_t hcnt; rt_uint16_t lcnt; rt_uint16_t spklen; }; struct k230_i2c_dev { struct rt_i2c_bus_device dev; const char *name; rt_ubase_t base; rt_ubase_t base_pa; size_t size; int vector; rt_uint32_t clock; struct rt_i2c_msg *msg; struct _i2c_speed_cfg speed_cfg; #ifdef BSP_USING_I2C_DMA struct _i2c_pdma_cfg pdma_cfg; #endif }; #ifdef BSP_USING_I2C_DMA static rt_err_t k230_i2c_pdma_read(struct k230_i2c_dev *dev); static rt_err_t k230_i2c_pdma_write(struct k230_i2c_dev *dev); #endif static rt_size_t k230_i2c_get_timer(rt_size_t base) { return rt_tick_get() - base ; } static void k230_i2c_enable(struct k230_i2c_dev *dev, rt_bool_t enable) { volatile i2c_t *i2c = (i2c_t *)dev->base; rt_uint32_t en_value = enable ? 1 : 0; int timeout = 100; do { i2c->enable.enable = en_value; if (i2c->enable_status.en == en_value) { return; } /* * Wait 10 times the signaling period of the highest I2C * transfer supported by the driver (for 400KHz this is * 25us) as described in the DesignWare I2C databook. */ rt_hw_us_delay(25); } while(timeout--); LOG_E("timeout in %s i2c\n", enable ? "enable" : "disable"); } static void k230_i2c_set_bus_timeout(struct k230_i2c_dev *dev, rt_uint32_t timeout) { float tick = 0; tick = RT_TICK_PER_SECOND / 1000.0f; /* ms to tick */ dev->dev.timeout = (rt_uint32_t)(timeout * tick); } static int k230_i2c_set_bus_speed(struct k230_i2c_dev *dev, rt_uint32_t speed) { volatile i2c_t *i2c = (i2c_t *)dev->base; rt_uint32_t i2c_spd, period, spklen, ft; /* * Calculate clock counts for I2C speed * hcnt + lcnt + spklen + 7 + 1 + fall_time * clk = clk / speed * fall_time = 10ns * spklen = 0~50ns */ spklen = dev->clock * 10 / 1e9; ft = dev->clock * 10 / 1e9; period = dev->clock / speed; period = period - spklen - 7 - 1 - ft; dev->speed_cfg.lcnt = period / 2; dev->speed_cfg.hcnt = period - dev->speed_cfg.lcnt; dev->speed_cfg.spklen = spklen; if (speed <= I2C_STANDARD_SPEED_UP) { i2c_spd = I2C_SPEED_MODE_STANDARD; } else if (speed <= I2C_FAST_SPEED_UP) { i2c_spd = I2C_SPEED_MODE_FAST; } else if (speed <= I2C_MAX_SPEED_UP) { i2c_spd = I2C_SPEED_MODE_MAX; } else { return -RT_EINVAL; } /* to set speed cltr must be disabled */ k230_i2c_enable(dev, RT_FALSE); switch (i2c_spd) { case I2C_SPEED_MODE_STANDARD: i2c->ss_ufm_scl_hcnt.cnt = dev->speed_cfg.hcnt; i2c->ss_ufm_scl_lcnt.cnt = dev->speed_cfg.lcnt; i2c->fs_ufm_spklen.spklen = dev->speed_cfg.spklen; break; case I2C_SPEED_MODE_FAST: i2c->fs_scl_hcnt_ufm_tbuf_cnt.cnt = dev->speed_cfg.hcnt; i2c->fs_scl_lcnt.cnt = dev->speed_cfg.lcnt; i2c->fs_ufm_spklen.spklen = dev->speed_cfg.spklen; break; case I2C_SPEED_MODE_MAX: i2c->hs_scl_hcnt.cnt = dev->speed_cfg.hcnt; i2c->hs_scl_lcnt.cnt = dev->speed_cfg.lcnt; i2c->hs_spklen.spklen = dev->speed_cfg.spklen; break; default: break; } i2c->con.speed = i2c_spd; /* Enable back i2c now speed set */ k230_i2c_enable(dev, RT_TRUE); return RT_EOK; } static void k230_i2c_set_addr(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; rt_uint16_t i2c_addr = dev->msg->addr; /* Disable i2c */ k230_i2c_enable(dev, RT_FALSE); if (dev->msg->flags & RT_I2C_ADDR_10BIT || dev->dev.flags & RT_I2C_ADDR_10BIT) { i2c->tar.master_10bit_addr = 1; i2c_addr &= 0x3FF; } else { i2c->tar.master_10bit_addr = 0; i2c_addr &= 0x7F; } i2c->tar.tar = i2c_addr; /* Enable i2c */ k230_i2c_enable(dev, RT_TRUE); } static void k230_i2c_flush_rxfifo(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; while (i2c->status.rfne) { readl(&i2c->data_cmd); } } static int k230_i2c_wait_for_bus_busy(struct k230_i2c_dev *dev) { rt_size_t start_time = k230_i2c_get_timer(0); volatile i2c_t *i2c = (i2c_t *)dev->base; while ((i2c->status.mst_activity) || !(i2c->status.tfe)) { /* Evaluate timeout */ if (k230_i2c_get_timer(start_time) > (rt_size_t)dev->dev.timeout * I2C_TX_FIFO_SIZE) { return -RT_ETIMEOUT; } } return RT_EOK; } static int k230_i2c_xfer_init(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; if (k230_i2c_wait_for_bus_busy(dev) != RT_EOK) { return -RT_EBUSY; } k230_i2c_set_addr(dev); return RT_EOK; } static int k230_i2c_xfer_finish(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; rt_uint32_t start_stop_det = k230_i2c_get_timer(0); while (1) { if (i2c->raw_intr_stat.stop_det) { readl(&i2c->clr_stop_det); break; } else if (k230_i2c_get_timer(start_stop_det) > dev->dev.timeout) { break; } } if (k230_i2c_wait_for_bus_busy(dev) != RT_EOK) { return -RT_EBUSY; } k230_i2c_flush_rxfifo(dev); return RT_EOK; } static int k230_i2c_read(struct k230_i2c_dev *dev) { #ifdef BSP_USING_I2C_DMA if (dev->msg->len % 4 == 0) { return k230_i2c_pdma_read(dev); } #endif volatile i2c_t *i2c = (i2c_t *)dev->base; rt_size_t start_time_rx = 0; rt_uint32_t recv_len = dev->msg->len; rt_uint32_t tran_len = dev->msg->len; rt_uint8_t *buffer = dev->msg->buf; rt_uint32_t cmd = 0; /* If no start condition is sent before reading, then send a repeated start. */ if (dev->msg->flags & RT_I2C_NO_START) { cmd |= I2C_DATA_CMD_RESTART; } else { if (k230_i2c_xfer_init(dev) != RT_EOK) { return -RT_EBUSY; } } start_time_rx = k230_i2c_get_timer(0); while (recv_len || tran_len) { if (tran_len) { while (i2c->status.tfnf == 0); /* Write stop when the last byte */ cmd = tran_len == 1 ? cmd | I2C_DATA_CMD_STOP : cmd; /* Write to data cmd register to trigger i2c */ writel(cmd | I2C_DATA_CMD_READ, &i2c->data_cmd); cmd = 0; tran_len--; } if (i2c->status.rfne) { *buffer++ = i2c->data_cmd.dat; recv_len--; start_time_rx = k230_i2c_get_timer(0); } else if (k230_i2c_get_timer(start_time_rx) > dev->dev.timeout) { return -RT_ETIMEOUT; } } return k230_i2c_xfer_finish(dev); } static int k230_i2c_write(struct k230_i2c_dev *dev) { #ifdef BSP_USING_I2C_DMA if (dev->msg->len % 4 == 0) { return k230_i2c_pdma_write(dev); } #endif volatile i2c_t *i2c = (i2c_t *)dev->base; rt_size_t start_time_tx = 0; rt_uint32_t tran_len = dev->msg->len; rt_uint8_t *buffer = dev->msg->buf; rt_uint32_t cmd = 0; if (k230_i2c_xfer_init(dev) != RT_EOK) { return -RT_EBUSY; } start_time_tx = k230_i2c_get_timer(0); while (tran_len) { if (i2c->status.tfnf) { /* If there is no stop flag, the stop condition will not be sent at the last byte. */ if (tran_len == 1 && !(dev->msg->flags & RT_I2C_NO_STOP)) { cmd |= I2C_DATA_CMD_STOP; } else { cmd &= ~I2C_DATA_CMD_STOP; } cmd |= *buffer++; writel(cmd, &i2c->data_cmd); cmd = 0; tran_len--; start_time_tx = k230_i2c_get_timer(0); } else if (k230_i2c_get_timer(start_time_tx) > dev->dev.timeout) { return -RT_ETIMEOUT; } } if (dev->msg->flags & RT_I2C_NO_STOP) { return RT_EOK; } if (k230_i2c_wait_for_bus_busy(dev) != RT_EOK) { return -RT_EBUSY; } return RT_EOK; } static rt_ssize_t k230_i2c_xfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num) { struct k230_i2c_dev *i2c_dev = rt_container_of(bus, struct k230_i2c_dev, dev); volatile i2c_t *i2c = (i2c_t *)i2c_dev->base; int ret; rt_ssize_t send_mesgs = num; for (; num > 0; num--, msgs++) { i2c_dev->msg = msgs; if (msgs->flags & RT_I2C_RD) { ret = k230_i2c_read(i2c_dev); } else { ret = k230_i2c_write(i2c_dev); } if (ret != RT_EOK) { return -RT_EIO; } } return send_mesgs; } static rt_err_t k230_i2c_control(struct rt_i2c_bus_device *bus, int cmd, void *args) { struct k230_i2c_dev *i2c_dev = rt_container_of(bus, struct k230_i2c_dev, dev); rt_uint32_t arg = *(rt_uint32_t *)args; rt_err_t ret; RT_ASSERT(bus != RT_NULL); switch (cmd) { /* set 10-bit addr mode */ case RT_I2C_DEV_CTRL_10BIT: if (arg & RT_I2C_ADDR_10BIT) { i2c_dev->dev.flags |= RT_I2C_ADDR_10BIT; } else { i2c_dev->dev.flags &= ~RT_I2C_ADDR_10BIT; } break; case RT_I2C_DEV_CTRL_TIMEOUT: k230_i2c_set_bus_timeout(i2c_dev, arg); break; case RT_I2C_DEV_CTRL_CLK: ret = k230_i2c_set_bus_speed(i2c_dev, arg); if (ret != RT_EOK) { return -RT_EIO; } break; default: break; } return RT_EOK; } static void k230_i2c_master_init(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; /* Disable i2c */ k230_i2c_enable(dev, RT_FALSE); i2c->con.slave_disable = 1; i2c->con.restart_en = 1; i2c->con.master_mode = 1; i2c->tx_tl.tl = I2C_TX_TL; i2c->rx_tl.tl = I2C_RX_TL; i2c->intr_mask.m_stop_det = 1; /* Enable i2c */ k230_i2c_enable(dev, RT_TRUE); } static const struct rt_i2c_bus_device_ops k230_i2c_ops = { .master_xfer = k230_i2c_xfer, .i2c_bus_control = k230_i2c_control, }; static struct k230_i2c_dev k230_i2c_devs[] = { #ifdef BSP_USING_I2C0 { .name = "i2c0", .base_pa = I2C0_BASE_ADDR, .size = I2C0_IO_SIZE, .vector = K230_IRQ_I2C0, #ifdef BSP_USING_I2C_DMA .pdma_cfg.tx_dev = I2C0_TX, .pdma_cfg.rx_dev = I2C0_RX, #endif }, #endif #ifdef BSP_USING_I2C1 { .name = "i2c1", .base_pa = I2C1_BASE_ADDR, .size = I2C1_IO_SIZE, .vector = K230_IRQ_I2C1, #ifdef BSP_USING_I2C_DMA .pdma_cfg.tx_dev = I2C1_TX, .pdma_cfg.rx_dev = I2C1_RX, #endif }, #endif #ifdef BSP_USING_I2C2 { .name = "i2c2", .base_pa = I2C2_BASE_ADDR, .size = I2C2_IO_SIZE, .vector = K230_IRQ_I2C2, #ifdef BSP_USING_I2C_DMA .pdma_cfg.tx_dev = I2C2_TX, .pdma_cfg.rx_dev = I2C2_RX, #endif }, #endif #ifdef BSP_USING_I2C3 { .name = "i2c3", .base_pa = I2C3_BASE_ADDR, .size = I2C3_IO_SIZE, .vector = K230_IRQ_I2C3, #ifdef BSP_USING_I2C_DMA .pdma_cfg.tx_dev = I2C3_TX, .pdma_cfg.rx_dev = I2C3_RX, #endif }, #endif #ifdef BSP_USING_I2C4 { .name = "i2c4", .base_pa = I2C4_BASE_ADDR, .size = I2C4_IO_SIZE, .vector = K230_IRQ_I2C4, #ifdef BSP_USING_I2C_DMA .pdma_cfg.tx_dev = I2C4_TX, .pdma_cfg.rx_dev = I2C4_RX, #endif }, #endif }; #ifdef BSP_USING_I2C_DMA static void k230_i2c_pdma_call_back(rt_uint8_t ch, rt_bool_t is_done) { k230_i2c_pdma_event_t event_type = is_done ? K230_I2C_PDMA_EVENT_COMPLETE : K230_I2C_PDMA_EVENT_TIMEOUT; for (rt_uint8_t i = 0; i < sizeof(k230_i2c_devs)/sizeof(k230_i2c_devs[0]); i++) { struct k230_i2c_dev *dev = &k230_i2c_devs[i]; if (dev->pdma_cfg.event != RT_NULL && dev->pdma_cfg.ch == ch && dev->pdma_cfg.ch != K230_I2C_PDMA_CH_INVALID) { rt_event_send(dev->pdma_cfg.event, event_type); return; } } } static void k230_i2c_pdma_cleanup(struct k230_i2c_dev *dev) { rt_uint8_t ch = dev->pdma_cfg.ch; if (ch == K230_I2C_PDMA_CH_INVALID) { return; } dev->pdma_cfg.ch = K230_I2C_PDMA_CH_INVALID; k230_pdma_release_channel(ch); } static rt_err_t k230_i2c_pdma_read(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; rt_uint8_t *buffer = dev->msg->buf; rt_uint8_t *buf; void *buf_pa; rt_err_t err; rt_uint8_t ch; rt_uint32_t recv_event, read_len; rt_size_t start_time_tx = 0; rt_uint32_t cmd = 0; err = k230_pdma_request_channel(&ch); if (err != RT_EOK) { LOG_E("i2c pdma request channel failed"); return err; } dev->pdma_cfg.ch = ch; err = k230_pdma_set_callback(ch, k230_i2c_pdma_call_back); if (err != RT_EOK) { LOG_E("i2c pdma set callback failed"); k230_i2c_pdma_cleanup(dev); return err; } read_len = dev->msg->len; buf = (rt_uint8_t *)rt_malloc_align(read_len, K230_I2C_PDMA_CACHE_LINE_SIZE); if (buf == RT_NULL) { LOG_E("i2c pdma malloc buffer failed"); k230_i2c_pdma_cleanup(dev); return -RT_ENOMEM; } buf_pa = rt_kmem_v2p(buf); if (buf_pa == RT_NULL) { LOG_E("i2c pdma get phy addr failed"); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return -RT_ERROR; } rt_event_control(dev->pdma_cfg.event, RT_IPC_CMD_RESET, NULL); dev->pdma_cfg.cfg.device = dev->pdma_cfg.rx_dev; dev->pdma_cfg.cfg.src_addr = (rt_uint8_t *)(dev->base_pa + 0x10); dev->pdma_cfg.cfg.dst_addr = (rt_uint8_t *)buf_pa; dev->pdma_cfg.cfg.line_size = read_len; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_src_type = FIXED; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dev_hsize = PSBYTE1; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dat_endian = PDEFAULT; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dev_blen = PBURST_LEN_4; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_priority = 7; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dev_tout = 0xFFF; err = k230_pdma_config(ch, &dev->pdma_cfg.cfg); if (err != RT_EOK) { LOG_E("i2c pdma config failed"); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return err; } /* If no start condition is sent before reading, then send a repeated start. */ if (dev->msg->flags & RT_I2C_NO_START) { cmd |= I2C_DATA_CMD_RESTART; } else { if (k230_i2c_xfer_init(dev) != RT_EOK) { LOG_E("i2c pdma xfer init failed"); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return -RT_EBUSY; } } start_time_tx = k230_i2c_get_timer(0); err = k230_pdma_start(ch); if (err != RT_EOK) { LOG_E("i2c pdma start failed"); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return err; } for (rt_uint32_t i = 0; i < read_len; i++) { while (i2c->status.tfnf == 0); /* Write stop when the last byte */ cmd = i == (read_len - 1) ? I2C_DATA_CMD_STOP : 0; /* Write to data cmd register to trigger i2c */ writel(cmd | I2C_DATA_CMD_READ, &i2c->data_cmd); cmd = 0; } err = rt_event_recv(dev->pdma_cfg.event, K230_I2C_PDMA_EVENT_COMPLETE | K230_I2C_PDMA_EVENT_TIMEOUT, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recv_event); if (err != RT_EOK || (recv_event & K230_I2C_PDMA_EVENT_TIMEOUT)) { LOG_E("i2c pdma read timeout"); k230_pdma_stop(ch); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return -RT_ETIMEOUT; } rt_memcpy(buffer, buf, read_len); k230_pdma_stop(ch); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); if (k230_i2c_get_timer(start_time_tx) > dev->dev.timeout) { return -RT_ETIMEOUT; } return k230_i2c_xfer_finish(dev); } static inline rt_uint32_t k230_i2c_make_data_cmd(rt_uint8_t data, rt_uint32_t flags) { return (rt_uint32_t)data | flags; } static rt_err_t k230_i2c_pdma_write(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; rt_uint8_t *buffer = dev->msg->buf; rt_uint32_t *buf; void *buf_pa; rt_err_t err; rt_uint8_t ch; rt_uint32_t recv_event, tran_len, flags; rt_size_t start_time_tx = 0; err = k230_pdma_request_channel(&ch); if (err != RT_EOK) { LOG_E("i2c pdma request channel failed"); return err; } dev->pdma_cfg.ch = ch; err = k230_pdma_set_callback(ch, k230_i2c_pdma_call_back); if (err != RT_EOK) { LOG_E("i2c pdma set callback failed"); k230_i2c_pdma_cleanup(dev); return err; } tran_len = dev->msg->len; buf = (rt_uint32_t *)rt_malloc_align(tran_len * sizeof(rt_uint32_t), K230_I2C_PDMA_CACHE_LINE_SIZE); if (buf == RT_NULL) { LOG_E("i2c pdma malloc buffer failed"); k230_i2c_pdma_cleanup(dev); return -RT_ENOMEM; } for (rt_uint32_t i = 0; i < tran_len; i++) { flags = 0; if (i == (tran_len - 1) && !(dev->msg->flags & RT_I2C_NO_STOP)) { flags |= I2C_DATA_CMD_STOP; } buf[i] = k230_i2c_make_data_cmd(buffer[i], flags); } buf_pa = rt_kmem_v2p(buf); if (buf_pa == RT_NULL) { LOG_E("i2c pdma get phy addr failed"); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return -RT_ERROR; } rt_event_control(dev->pdma_cfg.event, RT_IPC_CMD_RESET, NULL); dev->pdma_cfg.cfg.device = dev->pdma_cfg.tx_dev; dev->pdma_cfg.cfg.src_addr = (rt_uint8_t *)buf_pa; dev->pdma_cfg.cfg.dst_addr = (rt_uint8_t *)(dev->base_pa + 0x10); dev->pdma_cfg.cfg.line_size = tran_len * sizeof(rt_uint32_t); dev->pdma_cfg.cfg.pdma_ch_cfg.ch_src_type = CONTINUE; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dev_hsize = PSBYTE4; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dat_endian = PDEFAULT; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dev_blen = PBURST_LEN_4; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_priority = 7; dev->pdma_cfg.cfg.pdma_ch_cfg.ch_dev_tout = 0xFFF; err = k230_pdma_config(ch, &dev->pdma_cfg.cfg); if (err != RT_EOK) { LOG_E("i2c pdma config failed"); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return err; } if (k230_i2c_xfer_init(dev) != RT_EOK) { k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return -RT_EBUSY; } start_time_tx = k230_i2c_get_timer(0); err = k230_pdma_start(ch); if (err != RT_EOK) { LOG_E("i2c pdma start failed"); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return err; } err = rt_event_recv(dev->pdma_cfg.event, K230_I2C_PDMA_EVENT_COMPLETE | K230_I2C_PDMA_EVENT_TIMEOUT, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recv_event); if (err != RT_EOK || (recv_event & K230_I2C_PDMA_EVENT_TIMEOUT)) { LOG_E("i2c pdma write timeout"); k230_pdma_stop(ch); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); return -RT_ETIMEOUT; } k230_pdma_stop(ch); k230_i2c_pdma_cleanup(dev); rt_free_align(buf); if (k230_i2c_get_timer(start_time_tx) > dev->dev.timeout) { return -RT_ETIMEOUT; } return RT_EOK; } static void k230_i2c_pdma_init(struct k230_i2c_dev *dev) { volatile i2c_t *i2c = (i2c_t *)dev->base; i2c->dma_cr.tdmae = 1; i2c->dma_cr.rdmae = 1; i2c->dma_tdlr.dmatdl = 15; i2c->dma_rdlr.dmardl = 3; } #endif int rt_hw_i2c_init(void) { int i; for (i = 0; i < sizeof(k230_i2c_devs) / sizeof(k230_i2c_devs[0]); i++) { k230_i2c_devs[i].base = (rt_ubase_t)rt_ioremap((void *)k230_i2c_devs[i].base_pa, k230_i2c_devs[i].size); k230_i2c_devs[i].dev.ops = &k230_i2c_ops; k230_i2c_devs[i].clock = sysctl_clk_get_leaf_freq(SYSCTL_CLK_I2C0_CORE + i); k230_i2c_master_init(&k230_i2c_devs[i]); k230_i2c_set_bus_timeout(&k230_i2c_devs[i], I2C_DEFAULT_TIMEOUT); k230_i2c_set_bus_speed(&k230_i2c_devs[i], I2C_DEFAULT_SPEED); rt_i2c_bus_device_register(&k230_i2c_devs[i].dev, k230_i2c_devs[i].name); LOG_I("i2c%d master mode, i2c%d clock=%dHz\n", i, i, k230_i2c_devs[i].clock); #ifdef BSP_USING_I2C_DMA k230_i2c_pdma_init(&k230_i2c_devs[i]); k230_i2c_devs[i].pdma_cfg.ch = K230_I2C_PDMA_CH_INVALID; k230_i2c_devs[i].pdma_cfg.event = rt_event_create(k230_i2c_devs[i].name, RT_IPC_FLAG_FIFO); if (k230_i2c_devs[i].pdma_cfg.event == RT_NULL) { LOG_E("i2c pdma event(%s) create failed", k230_i2c_devs[i].name); for (int j = 0; j < i; j++) { rt_event_delete(k230_i2c_devs[j].pdma_cfg.event); } return -RT_ENOMEM; } #endif } return RT_EOK; } INIT_DEVICE_EXPORT(rt_hw_i2c_init);