/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-02-21 GuEe-GUI first version */ #include #define DBG_TAG "cpu.aa64" #define DBG_LVL DBG_INFO #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern rt_ubase_t _start, _end; extern void _secondary_cpu_entry(void); extern void rt_hw_builtin_fdt(); extern size_t MMUTable[]; extern void *system_vectors; static void *fdt_ptr = RT_NULL; static rt_size_t fdt_size = 0; #ifdef RT_USING_SMP extern struct cpu_ops_t cpu_psci_ops; extern struct cpu_ops_t cpu_spin_table_ops; #else extern int rt_hw_cpu_id(void); #endif rt_uint64_t rt_cpu_mpidr_table[] = { [RT_CPUS_NR] = 0, }; static struct cpu_ops_t *cpu_ops[] = { #ifdef RT_USING_SMP &cpu_psci_ops, &cpu_spin_table_ops, #endif }; static struct rt_ofw_node *cpu_np[RT_CPUS_NR] = { }; void rt_hw_fdt_install_early(void *fdt) { #ifndef RT_USING_BUILTIN_FDT if (fdt != RT_NULL && !fdt_check_header(fdt)) { fdt_ptr = fdt; fdt_size = fdt_totalsize(fdt); } #else (void)fdt; #endif } #ifdef RT_USING_HWTIMER static rt_ubase_t loops_per_tick[RT_CPUS_NR]; static rt_ubase_t cpu_get_cycles(void) { rt_ubase_t cycles; rt_hw_sysreg_read(cntpct_el0, cycles); return cycles; } static void cpu_loops_per_tick_init(void) { rt_ubase_t offset; volatile rt_ubase_t freq, step, cycles_end1, cycles_end2; volatile rt_uint32_t cycles_count1 = 0, cycles_count2 = 0; rt_hw_sysreg_read(cntfrq_el0, freq); step = freq / RT_TICK_PER_SECOND; cycles_end1 = cpu_get_cycles() + step; while (cpu_get_cycles() < cycles_end1) { __asm__ volatile ("nop"); __asm__ volatile ("add %0, %0, #1":"=r"(cycles_count1)); } cycles_end2 = cpu_get_cycles() + step; while (cpu_get_cycles() < cycles_end2) { __asm__ volatile ("add %0, %0, #1":"=r"(cycles_count2)); } if ((rt_int32_t)(cycles_count2 - cycles_count1) > 0) { offset = cycles_count2 - cycles_count1; } else { /* Impossible, but prepared for any eventualities */ offset = cycles_count2 / 4; } loops_per_tick[rt_hw_cpu_id()] = offset; } static void cpu_us_delay(rt_uint32_t us) { volatile rt_base_t start = cpu_get_cycles(), cycles; cycles = ((us * 0x10c7UL) * loops_per_tick[rt_hw_cpu_id()] * RT_TICK_PER_SECOND) >> 32; while ((cpu_get_cycles() - start) < cycles) { rt_hw_cpu_relax(); } } #endif /* RT_USING_HWTIMER */ rt_weak void rt_hw_idle_wfi(void) { __asm__ volatile ("wfi"); } static void system_vectors_init(void) { rt_hw_set_current_vbar((rt_ubase_t)&system_vectors); } rt_inline void cpu_info_init(void) { int i = 0; rt_uint64_t mpidr; struct rt_ofw_node *np; /* get boot cpu info */ rt_hw_sysreg_read(mpidr_el1, mpidr); rt_ofw_foreach_cpu_node(np) { rt_uint64_t hwid = rt_ofw_get_cpu_hwid(np, 0); if ((mpidr & MPIDR_AFFINITY_MASK) != hwid) { /* Only save affinity and res make smp boot can check */ hwid |= 1ULL << 31; } else { hwid = mpidr; } cpu_np[i] = np; rt_cpu_mpidr_table[i] = hwid; for (int idx = 0; idx < RT_ARRAY_SIZE(cpu_ops); ++idx) { struct cpu_ops_t *ops = cpu_ops[idx]; if (ops->cpu_init) { ops->cpu_init(i, np); } } if (++i >= RT_CPUS_NR) { break; } } rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, rt_cpu_mpidr_table, sizeof(rt_cpu_mpidr_table)); #ifdef RT_USING_HWTIMER cpu_loops_per_tick_init(); if (!rt_device_hwtimer_us_delay) { rt_device_hwtimer_us_delay = &cpu_us_delay; } #endif /* RT_USING_HWTIMER */ } rt_inline rt_size_t string_to_size(const char *string, const char *who) { char unit; rt_size_t size; const char *cp = string; size = atoi(cp); while (*cp >= '0' && *cp <= '9') { ++cp; } unit = *cp & '_'; if (unit == 'M') { size *= SIZE_MB; } else if (unit == 'K') { size *= SIZE_KB; } else if (unit == 'G') { size *= SIZE_GB; } else { LOG_W("Unknown unit of '%c' in `%s`", unit, who); } return size; } void rt_hw_common_setup(void) { rt_uint64_t initrd_ranges[3]; rt_size_t kernel_start, kernel_end; rt_size_t heap_start, heap_end; rt_size_t init_page_start, init_page_end; rt_size_t fdt_start, fdt_end; rt_region_t init_page_region = { 0 }; rt_region_t platform_mem_region = { 0 }; static struct mem_desc platform_mem_desc; const rt_ubase_t pv_off = PV_OFFSET; system_vectors_init(); #ifdef RT_USING_SMART rt_hw_mmu_map_init(&rt_kernel_space, (void*)0xffffffff00000000, 0x20000000, MMUTable, pv_off); #else rt_hw_mmu_map_init(&rt_kernel_space, (void*)0xffffd0000000, 0x20000000, MMUTable, 0); #endif kernel_start = RT_ALIGN_DOWN((rt_size_t)rt_kmem_v2p((void *)&_start) - 64, ARCH_PAGE_SIZE); kernel_end = RT_ALIGN((rt_size_t)rt_kmem_v2p((void *)&_end), ARCH_PAGE_SIZE); heap_start = kernel_end; heap_end = RT_ALIGN(heap_start + ARCH_HEAP_SIZE, ARCH_PAGE_SIZE); init_page_start = heap_end; init_page_end = RT_ALIGN(init_page_start + ARCH_INIT_PAGE_SIZE, ARCH_PAGE_SIZE); fdt_start = init_page_end; fdt_end = RT_ALIGN(fdt_start + fdt_size, ARCH_PAGE_SIZE); platform_mem_region.start = kernel_start; #ifndef RT_USING_BUILTIN_FDT platform_mem_region.end = fdt_end; #else platform_mem_region.end = init_page_end; (void)fdt_start; (void)fdt_end; #endif rt_memblock_reserve_memory("kernel", kernel_start, kernel_end, MEMBLOCK_NONE); rt_memblock_reserve_memory("memheap", heap_start, heap_end, MEMBLOCK_NONE); rt_memblock_reserve_memory("init-page", init_page_start, init_page_end, MEMBLOCK_NONE); #ifndef RT_USING_BUILTIN_FDT rt_memblock_reserve_memory("fdt", fdt_start, fdt_end, MEMBLOCK_NONE); /* To virtual address */ fdt_ptr = (void *)(fdt_ptr - pv_off); #ifdef KERNEL_VADDR_START if ((rt_ubase_t)fdt_ptr + fdt_size - KERNEL_VADDR_START > ARCH_EARLY_MAP_SIZE) { fdt_ptr = rt_ioremap_early(fdt_ptr + pv_off, fdt_size); RT_ASSERT(fdt_ptr != RT_NULL); } #endif /* KERNEL_VADDR_START */ rt_memmove((void *)(fdt_start - pv_off), fdt_ptr, fdt_size); fdt_ptr = (void *)fdt_start - pv_off; #else fdt_ptr = &rt_hw_builtin_fdt; fdt_size = fdt_totalsize(fdt_ptr); #endif /* RT_USING_BUILTIN_FDT */ rt_system_heap_init((void *)(heap_start - pv_off), (void *)(heap_end - pv_off)); init_page_region.start = init_page_start - pv_off; init_page_region.end = init_page_end - pv_off; rt_page_init(init_page_region); /* create MMU mapping of kernel memory */ platform_mem_region.start = RT_ALIGN_DOWN(platform_mem_region.start, ARCH_PAGE_SIZE); platform_mem_region.end = RT_ALIGN(platform_mem_region.end, ARCH_PAGE_SIZE); platform_mem_desc.paddr_start = platform_mem_region.start; platform_mem_desc.vaddr_start = platform_mem_region.start - pv_off; platform_mem_desc.vaddr_end = platform_mem_region.end - pv_off - 1; platform_mem_desc.attr = NORMAL_MEM; rt_hw_mmu_setup(&rt_kernel_space, &platform_mem_desc, 1); if (rt_fdt_prefetch(fdt_ptr)) { /* Platform cannot be initialized */ RT_ASSERT(0); } rt_fdt_scan_chosen_stdout(); rt_fdt_scan_initrd(initrd_ranges); rt_fdt_scan_memory(); #ifdef RT_USING_DMA do { const char *bootargs; rt_ubase_t dma_pool_base; rt_size_t cma_size = 0, coherent_pool_size = 0; if (!rt_fdt_bootargs_select("cma=", 0, &bootargs)) { cma_size = string_to_size(bootargs, "cma"); } if (!rt_fdt_bootargs_select("coherent_pool=", 0, &bootargs)) { coherent_pool_size = string_to_size(bootargs, "coherent-pool"); } if (cma_size <= coherent_pool_size) { if (cma_size || coherent_pool_size) { LOG_W("DMA pool %s=%u > %s=%u", "CMA", cma_size, "coherent-pool", coherent_pool_size); } cma_size = 8 * SIZE_MB; coherent_pool_size = 2 * SIZE_MB; } dma_pool_base = platform_mem_region.end; rt_memblock_reserve_memory("dma-pool", dma_pool_base, dma_pool_base + cma_size + coherent_pool_size, MEMBLOCK_NONE); if (rt_dma_pool_extract(cma_size, coherent_pool_size)) { LOG_E("Alloc DMA pool %s=%u, %s=%u fail", "CMA", cma_size, "coherent-pool", coherent_pool_size); } } while (0); #endif /* RT_USING_DMA */ rt_memblock_setup_memory_environment(); rt_fdt_earlycon_kick(FDT_EARLYCON_KICK_UPDATE); rt_fdt_unflatten(); cpu_info_init(); #ifdef RT_USING_PIC rt_pic_init(); rt_pic_irq_init(); #else /* initialize hardware interrupt */ rt_hw_interrupt_init(); /* initialize uart */ rt_hw_uart_init(); #endif #ifndef RT_HWTIMER_ARM_ARCH /* initialize timer for os tick */ rt_hw_gtimer_init(); #endif /* !RT_HWTIMER_ARM_ARCH */ #ifdef RT_USING_COMPONENTS_INIT rt_components_board_init(); #endif #if defined(RT_USING_CONSOLE) && defined(RT_USING_DEVICE) rt_ofw_console_setup(); #endif rt_thread_idle_sethook(rt_hw_idle_wfi); #ifdef RT_USING_SMP rt_smp_call_init(); /* Install the IPI handle */ rt_hw_ipi_handler_install(RT_SCHEDULE_IPI, rt_scheduler_ipi_handler); rt_hw_ipi_handler_install(RT_STOP_IPI, rt_scheduler_ipi_handler); rt_hw_ipi_handler_install(RT_SMP_CALL_IPI, rt_smp_call_ipi_handler); rt_hw_interrupt_umask(RT_SCHEDULE_IPI); rt_hw_interrupt_umask(RT_STOP_IPI); rt_hw_interrupt_umask(RT_SMP_CALL_IPI); #endif } #ifdef RT_USING_SMP rt_weak void rt_hw_secondary_cpu_up(void) { int cpu_id = rt_hw_cpu_id(); rt_uint64_t entry = (rt_uint64_t)rt_kmem_v2p(_secondary_cpu_entry); if (!entry) { LOG_E("Failed to translate '_secondary_cpu_entry' to physical address"); RT_ASSERT(0); } /* Maybe we are no in the first cpu */ for (int i = 0; i < RT_ARRAY_SIZE(cpu_np); ++i) { int err; const char *enable_method; if (!cpu_np[i] || i == cpu_id) { continue; } err = rt_ofw_prop_read_string(cpu_np[i], "enable-method", &enable_method); for (int idx = 0; !err && idx < RT_ARRAY_SIZE(cpu_ops); ++idx) { struct cpu_ops_t *ops = cpu_ops[idx]; if (ops->method && !rt_strcmp(ops->method, enable_method) && ops->cpu_boot) { err = ops->cpu_boot(i, entry); break; } } if (err) { LOG_W("Call cpu %d on %s", i, "failed"); } } } rt_weak void rt_hw_secondary_cpu_bsp_start(void) { int cpu_id = rt_hw_cpu_id(); system_vectors_init(); rt_hw_spin_lock(&_cpus_lock); /* Save all mpidr */ rt_hw_sysreg_read(mpidr_el1, rt_cpu_mpidr_table[cpu_id]); rt_hw_mmu_ktbl_set((unsigned long)MMUTable); #ifdef RT_USING_PIC rt_pic_irq_init(); #else /* initialize vector table */ rt_hw_vector_init(); arm_gic_cpu_init(0, 0); #ifdef BSP_USING_GICV3 arm_gic_redist_init(0, 0); #endif /* BSP_USING_GICV3 */ #endif #ifndef RT_HWTIMER_ARM_ARCH /* initialize timer for os tick */ rt_hw_gtimer_local_enable(); #endif /* !RT_HWTIMER_ARM_ARCH */ rt_dm_secondary_cpu_init(); rt_hw_interrupt_umask(RT_SCHEDULE_IPI); rt_hw_interrupt_umask(RT_STOP_IPI); rt_hw_interrupt_umask(RT_SMP_CALL_IPI); LOG_I("Call cpu %d on %s", cpu_id, "success"); #ifdef RT_USING_HWTIMER if (rt_device_hwtimer_us_delay == &cpu_us_delay) { cpu_loops_per_tick_init(); } #endif rt_system_scheduler_start(); } rt_weak void rt_hw_secondary_cpu_idle_exec(void) { rt_hw_wfe(); } #endif void rt_hw_console_output(const char *str) { rt_fdt_earlycon_output(str); }