/* Copyright (c) 2023, Canaan Bright Sight Co., Ltd * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2006-2025 RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include "board.h" #include "drv_rtc.h" #undef DBG_TAG #undef DBG_LVL #define DBG_TAG "drv_rtc" #define DBG_LVL DBG_INFO #include struct k230_rtc_dev { struct rt_device device; const char *name; rt_ubase_t base; size_t size; int vector; void (*vector_callback)(void); }; static void pmu_isolation_rtc(void) { /* map pwr base address */ volatile void *reg_pmu_pwr = rt_ioremap((void *)PWR_BASE_ADDR, PWR_IO_SIZE); uint32_t *addr = (uint32_t *)(reg_pmu_pwr + 0x158); /* pmu power control register */ uint32_t data; /* disable pmu isolation */ data = *addr; data &= ~0x20; *addr = data; rt_iounmap(reg_pmu_pwr); /* map pmu base address */ volatile void *reg_pmu = rt_ioremap((void*)PMU_BASE_ADDR, PMU_IO_SIZE); addr = (uint32_t*)(reg_pmu + 0x48); /* pmu int0 to cpu register */ /* enable int6 int7 */ data = *addr; data |= 0x06; *addr = data; addr = (uint32_t*)(reg_pmu + 0x4c); /* pmu int detect en register */ /* enable int6 rtc alarm detection and int7 rtc tick detection */ data = *addr; data |= 0x06; *addr = data; rt_iounmap(reg_pmu); } static int rtc_year_is_leap(int year) { return (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0); } static void rtc_timer_set_clock_count_value(struct k230_rtc_dev *dev, uint16_t count) { volatile volatile rtc_t *rtc = (rtc_t *)dev->base; rtc->count.curr_count = count; rtc->count.sum_count = 0x7FFF; rtc->int_ctrl.timer_w_en = 1; rt_thread_mdelay(1); rtc->int_ctrl.timer_w_en = 0; rtc->int_ctrl.timer_r_en = 1; } static void rtc_interrupt_ctrl_set(struct k230_rtc_dev *dev, rtc_interrupt_mode_t mode) { volatile rtc_t *rtc = (rtc_t *)dev->base; if (mode < RTC_INT_TICK_YEAR) { rtc->int_ctrl.year_cmp = 0; rtc->int_ctrl.month_cmp = 0; rtc->int_ctrl.day_cmp = 0; rtc->int_ctrl.week_cmp = 0; rtc->int_ctrl.hour_cmp = 0; rtc->int_ctrl.minute_cmp = 0; rtc->int_ctrl.second_cmp = 0; if (mode & RTC_INT_ALARM_YEAR) { rtc->int_ctrl.year_cmp = 1; } if (mode & RTC_INT_ALARM_MONTH) { rtc->int_ctrl.month_cmp = 1; } if (mode & RTC_INT_ALARM_DAY) { rtc->int_ctrl.day_cmp = 1; } if (mode & RTC_INT_ALARM_WEEK) { rtc->int_ctrl.week_cmp = 1; } if (mode & RTC_INT_ALARM_HOUR) { rtc->int_ctrl.hour_cmp = 1; } if (mode & RTC_INT_ALARM_MINUTE) { rtc->int_ctrl.minute_cmp = 1; } if (mode & RTC_INT_ALARM_SECOND) { rtc->int_ctrl.second_cmp = 1; } rtc->int_ctrl.alarm_en = 1; } else { switch(mode) { case RTC_INT_TICK_YEAR: rtc->int_ctrl.tick_sel = 0x8; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_MONTH: rtc->int_ctrl.tick_sel = 0x7; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_DAY: rtc->int_ctrl.tick_sel = 0x6; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_WEEK: rtc->int_ctrl.tick_sel = 0x5; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_HOUR: rtc->int_ctrl.tick_sel = 0x4; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_MINUTE: rtc->int_ctrl.tick_sel = 0x3; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_SECOND: rtc->int_ctrl.tick_sel = 0x2; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_S8: rtc->int_ctrl.tick_sel = 0x1; rtc->int_ctrl.tick_en = 1; break; case RTC_INT_TICK_S64: rtc->int_ctrl.tick_sel = 0x0; rtc->int_ctrl.tick_en = 1; break; default : break; } } } static void rtc_stop_interrupt(struct k230_rtc_dev *dev) { rt_hw_interrupt_mask(dev->vector); } static void rtc_alarm_stop(struct k230_rtc_dev *dev) { volatile rtc_t *rtc = (rtc_t *)dev->base; rtc->int_ctrl.alarm_en = 0; rtc_stop_interrupt(dev); } static void rtc_tick_stop(struct k230_rtc_dev *dev) { volatile rtc_t *rtc = (rtc_t *)dev->base; rtc->int_ctrl.tick_en = 0; rtc_stop_interrupt(dev); } static void rtc_alarm_clear_interrupt(struct k230_rtc_dev *dev) { volatile rtc_t *rtc = (rtc_t *)dev->base; rtc->int_ctrl.alarm_clr = 1; } static void rtc_irq(int vector, void *param) { struct k230_rtc_dev *dev = (struct k230_rtc_dev *)param; rtc_alarm_clear_interrupt(dev); if (dev->vector_callback != RT_NULL) { dev->vector_callback(); } } static void rtc_date_time_set(struct k230_rtc_dev *dev, int year, int month, int day, \ int hour, int minute, int second, int week) { rtc_date_t date; rtc_time_t time; rtc_count_t count; volatile rtc_t *rtc = (rtc_t *)dev->base; int val = year % 100; int year_l, year_h; if(val == 0) { year_l = 100; year_h = year / 100 - 1; } else { year_l = val; year_h = (year - val) / 100; } rtc->int_ctrl.timer_w_en = 1; date.year_h = year_h; date.year_l = year_l; date.month = month; date.day = day; date.leap_year = rtc_year_is_leap(year); time.week = week; time.hour = hour; time.minute = minute; time.second = second; rtc->date = date; rtc->time = time; } static void rtc_timer_get(struct k230_rtc_dev *dev, time_t *t) { volatile rtc_t *rtc = (rtc_t *)dev->base; struct tm tm; if (rtc->int_ctrl.timer_r_en == 0) { rtc->int_ctrl.timer_r_en = 1; } tm.tm_sec = rtc->time.second; tm.tm_min = rtc->time.minute; tm.tm_hour = rtc->time.hour; tm.tm_mday = rtc->date.day; tm.tm_mon = rtc->date.month - 1; tm.tm_year = (rtc->date.year_h * 100 + rtc->date.year_l) - 1900; tm.tm_wday = rtc->time.week; *t = timegm(&tm); } static void rtc_timer_set(struct k230_rtc_dev *dev, time_t *t) { struct tm p_tm; gmtime_r(t, &p_tm); rtc_date_time_set(dev, (p_tm.tm_year + 1900), p_tm.tm_mon + 1, p_tm.tm_mday, \ p_tm.tm_hour, p_tm.tm_min, p_tm.tm_sec, p_tm.tm_wday); rtc_timer_set_clock_count_value(dev, 0); } static void rtc_alarm_get(struct k230_rtc_dev *dev, void *args) { struct tm *tm = (struct tm*)args; volatile rtc_t *rtc = (rtc_t *)dev->base; rtc_alarm_date_t alarm_date = rtc->alarm_date; rtc_alarm_time_t alarm_time = rtc->alarm_time; tm->tm_year = (alarm_date.alarm_year_h * 100 + alarm_date.alarm_year_l) -1900; tm->tm_mon = alarm_date.alarm_month - 1; tm->tm_mday = alarm_date.alarm_day; tm->tm_hour = alarm_time.alarm_hour; tm->tm_min = alarm_time.alarm_minute; tm->tm_sec = alarm_time.alarm_second; } static void rtc_alarm_set(struct k230_rtc_dev *dev, void *args) { rtc_alarm_setup_t *setup = (rtc_alarm_setup_t *)args; struct tm tm = setup->tm; time_t t; struct tm p_tm; volatile rtc_t *rtc = (rtc_t *)dev->base; rtc_alarm_time_t alarm_time; rtc_alarm_date_t alarm_date; rtc_date_t date = rtc->date; int year, year_l, year_h, val; t = mktime(&tm); gmtime_r(&t, &p_tm); year = p_tm.tm_year + 1900; val = year % 100; if(val == 0) { year_l = 100; year_h = year / 100 - 1; } else { year_l = val; year_h = (year - val) / 100; } alarm_date.alarm_year_h = year_h; alarm_date.alarm_year_l = year_l; alarm_date.alarm_month = p_tm.tm_mon + 1; alarm_date.alarm_day = p_tm.tm_mday; alarm_time.alarm_hour = p_tm.tm_hour; alarm_time.alarm_minute = p_tm.tm_min; alarm_time.alarm_second = p_tm.tm_sec; rtc->alarm_date = alarm_date; rtc->alarm_time = alarm_time; rtc_alarm_clear_interrupt(dev); rt_hw_interrupt_install(dev->vector, rtc_irq, dev, "rtc"); rt_hw_interrupt_umask(dev->vector); rtc_interrupt_ctrl_set(dev, setup->flag); } static rt_err_t rtc_device_init(rt_device_t dev) { struct k230_rtc_dev *rtc_dev = rt_container_of(dev, struct k230_rtc_dev, device); rtc_alarm_stop(rtc_dev); rtc_tick_stop(rtc_dev); return RT_EOK; } static rt_err_t rtc_device_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t rtc_device_close(rt_device_t dev) { return RT_EOK; } static rt_ssize_t rtc_device_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { time_t t; struct k230_rtc_dev *rtc_dev = rt_container_of(dev, struct k230_rtc_dev, device); rtc_timer_get(rtc_dev, &t); rt_memcpy(buffer, (void*)&t, sizeof(t)); return size; } static rt_ssize_t rtc_device_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct tm *tm = (struct tm*)buffer; time_t t = mktime(tm); struct k230_rtc_dev *rtc_dev = rt_container_of(dev, struct k230_rtc_dev, device); rtc_timer_set(rtc_dev, &t); return size; } static rt_err_t rtc_device_control(rt_device_t dev, int cmd, void *args) { time_t time; RT_ASSERT(dev != RT_NULL); struct k230_rtc_dev *rtc_dev = rt_container_of(dev, struct k230_rtc_dev, device); RT_ASSERT(rtc_dev != RT_NULL); switch (cmd) { case RT_DEVICE_CTRL_RTC_GET_TIME: rtc_timer_get(rtc_dev, (time_t*)args); break; case RT_DEVICE_CTRL_RTC_SET_TIME: rtc_timer_set(rtc_dev, (time_t *)args); break; case RT_DEVICE_CTRL_RTC_GET_ALARM: rtc_alarm_get(rtc_dev, args); break; case RT_DEVICE_CTRL_RTC_SET_ALARM: rtc_alarm_set(rtc_dev, args); break; case RT_DEVICE_CTRL_RTC_STOP_ALARM: rtc_alarm_stop(rtc_dev); break; case RT_DEVICE_CTRL_RTC_STOP_TICK: rtc_tick_stop(rtc_dev); break; case RT_DEVICE_CTRL_RTC_SET_CALLBACK: rtc_dev->vector_callback = args; break; default: return -RT_EINVAL; } return RT_EOK; } const static struct rt_device_ops rtc_ops = { .init = rtc_device_init, .open = rtc_device_open, .close = rtc_device_close, .read = rtc_device_read, .write = rtc_device_write, .control = rtc_device_control, }; static struct k230_rtc_dev rtc_dev = { .name = "rtc", .base = RTC_BASE_ADDR, .size = RTC_IO_SIZE, .vector = K230_IRQ_PMU, .vector_callback = RT_NULL, }; static int rt_hw_rtc_init(void) { rt_err_t ret; pmu_isolation_rtc(); rtc_dev.device.type = RT_Device_Class_RTC; rtc_dev.device.rx_indicate = RT_NULL; rtc_dev.device.tx_complete = RT_NULL; #ifdef RT_USING_DEVICE_OPS rtc_dev.device.ops = &rtc_ops; #else rtc_dev.device.init = rtc_device_init; rtc_dev.device.open = rtc_device_open; rtc_dev.device.close = rtc_device_close; rtc_dev.device.read = rtc_device_read; rtc_dev.device.write = rtc_device_write; rtc_dev.device.control = rtc_device_control; #endif /* RT_USING_DEVICE_OPS */ rtc_dev.device.user_data = RT_NULL; rtc_dev.base = (rt_ubase_t)rt_ioremap((void *)rtc_dev.base, rtc_dev.size); RT_ASSERT(rtc_dev.base != RT_NULL); ret = rt_device_register(&rtc_dev.device, "rtc", RT_DEVICE_FLAG_RDWR); RT_ASSERT(ret == RT_EOK); LOG_I("rtc driver register OK\n"); rtc_alarm_stop(&rtc_dev); rtc_tick_stop(&rtc_dev); return ret; } INIT_DEVICE_EXPORT(rt_hw_rtc_init);