/* * Copyright (c) 2006-2025, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2025-09-09 Rbb666 the first version */ #include #include "utest.h" #include #include #include "lwip/netif.h" #include #include #include #include #include #if defined(RT_USING_LIBC) || defined(RT_USING_MINILIBC) || defined(RT_LIBC_USING_TIME) #include #endif #include #define EVENT_FLAG_TCP_CLIENT_SUCCESS (1 << 1) #define EVENT_FLAG_TCP_SERVER_SUCCESS (1 << 2) #define EVENT_FLAG_UDP_CLIENT_SUCCESS (1 << 3) #define EVENT_FLAG_UDP_SERVER_SUCCESS (1 << 4) #define EVENT_FLAG_TCP_CLIENT_FAILED (1 << 5) #define EVENT_FLAG_TCP_SERVER_FAILED (1 << 6) #define EVENT_FLAG_UDP_CLIENT_FAILED (1 << 7) #define EVENT_FLAG_UDP_SERVER_FAILED (1 << 8) static const char rtt_url[] = RT_UTEST_LWIP_TEST_URL; static rt_event_t tcp_event = RT_NULL; static rt_event_t udp_event = RT_NULL; static void test_gethostbyname(void) { #define GET_HOST_BY_NAME_BUF_LEN 128 struct hostent *phost = RT_NULL, host; char host_buf[GET_HOST_BY_NAME_BUF_LEN] = {0}; int result = 0; char *resolved_ip = RT_NULL; phost = lwip_gethostbyname(rtt_url); if (phost == RT_NULL) { rt_kprintf("lwip_gethostbyname failed for %s\n", rtt_url); uassert_true(RT_FALSE); return; } resolved_ip = inet_ntoa(*(struct in_addr *)phost->h_addr_list[0]); rt_kprintf("Resolved %s to %s\n", rtt_url, resolved_ip); /* Skip IP comparison to avoid hardcoded IP mismatch, just check resolution success */ uassert_true(phost != RT_NULL); phost = RT_NULL; lwip_gethostbyname_r(rtt_url, &host, host_buf, GET_HOST_BY_NAME_BUF_LEN, &phost, &result); if (phost == RT_NULL) { rt_kprintf("lwip_gethostbyname_r failed for %s\n", rtt_url); uassert_true(RT_FALSE); return; } resolved_ip = inet_ntoa(*(struct in_addr *)phost->h_addr_list[0]); rt_kprintf("Resolved %s to %s (reentrant)\n", rtt_url, resolved_ip); /* Skip IP comparison */ uassert_true(phost != RT_NULL); } static void test_get_free_addrinfo(void) { struct addrinfo hints; struct addrinfo *res; int result = 0; char *resolved_ip = RT_NULL; rt_memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_INET; hints.ai_flags = AI_PASSIVE; hints.ai_protocol = 0; hints.ai_socktype = SOCK_STREAM; result = lwip_getaddrinfo(rtt_url, NULL, &hints, &res); if (result != RT_EOK) { rt_kprintf("lwip_getaddrinfo failed for %s, result: %d\n", rtt_url, result); uassert_true(RT_FALSE); return; } resolved_ip = inet_ntoa(((struct sockaddr_in *) res->ai_addr)->sin_addr); rt_kprintf("Resolved %s to %s\n", rtt_url, resolved_ip); /* Skip IP comparison to avoid hardcoded IP mismatch */ uassert_true(result == RT_EOK); lwip_freeaddrinfo(res); } static void tcp_client_entry(void *parameter) { #define LWIP_TCP_TEST_BUF_SIZE 2048 rt_tick_t old_tick = 0; rt_bool_t fail_flag = RT_TRUE; int sock = -1, mode, port, ret, i, flag; struct sockaddr_in server_addr; char *send_buf = RT_NULL; char *recv_buf = RT_NULL; port = RT_UTEST_LWIP_TCP_PORT; /* create socket */ if ((sock = lwip_socket(AF_INET, SOCK_STREAM, 0)) == -1) { uassert_true(RT_FALSE); goto __exit; } else { uassert_true(RT_TRUE); } /* Set no-blocking mode */ flag = lwip_fcntl(sock, F_GETFL, 0); lwip_fcntl(sock, F_SETFL, flag | O_NONBLOCK); flag = lwip_fcntl(sock, F_GETFL, 0); uassert_true(flag & O_NONBLOCK); /* Set blocking mode */ mode = 0; lwip_ioctl(sock, FIONBIO, &mode); server_addr.sin_family = AF_INET; server_addr.sin_port = htons(port); /* server addr:127.0.0.1 */ server_addr.sin_addr.s_addr = htonl(IPADDR_LOOPBACK); rt_memset(&(server_addr.sin_zero), 0, sizeof(server_addr.sin_zero)); old_tick = rt_tick_get(); /* connect to server */ while (1) { if (lwip_connect(sock, (struct sockaddr *)&server_addr, sizeof(struct sockaddr)) == -1) { /* timeout: 5s */ if (rt_tick_get() - old_tick > 5 * RT_TICK_PER_SECOND) { rt_kprintf("TCP client connect timeout\n"); uassert_true(RT_FALSE); goto __exit; } else { rt_thread_mdelay(RT_TICK_PER_SECOND); continue; } } else { rt_kprintf("TCP client connected successfully\n"); uassert_true(RT_TRUE); break; } } /* malloc buf */ send_buf = rt_malloc(LWIP_TCP_TEST_BUF_SIZE); recv_buf = rt_malloc(LWIP_TCP_TEST_BUF_SIZE); if (send_buf == RT_NULL || recv_buf == RT_NULL) { uassert_true(RT_FALSE); goto __exit; } /* set tcp no delays */ mode = 1; lwip_setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, &mode, sizeof(int)); /* wait for the server to enter the receive state */ rt_thread_mdelay(10); /* send buf to server and receive echo */ for (i = 1; i <= 2048; i *= 2) { /* fill send_buf with test data */ rt_memset(send_buf, 'A' + (i % 26), i); ret = lwip_send(sock, send_buf, i, 0); if (ret <= 0) { rt_kprintf("TCP client send failed: sent %d\n", ret); uassert_true(RT_FALSE); goto __exit; } rt_kprintf("TCP client sent %d bytes: %c...\n", ret, send_buf[0]); /* receive echo from server with timeout */ { fd_set fdread; struct timeval timeout; int maxsock = sock; FD_ZERO(&fdread); FD_SET(sock, &fdread); /* set timeout: 5 seconds */ timeout.tv_sec = 5; timeout.tv_usec = 0; ret = lwip_select(maxsock + 1, &fdread, NULL, NULL, &timeout); if (ret <= 0) { rt_kprintf("TCP client select timeout or failed: %d\n", ret); uassert_true(RT_FALSE); goto __exit; } /* data is available, now receive */ ret = lwip_recv(sock, recv_buf, LWIP_TCP_TEST_BUF_SIZE, 0); if (ret != i || rt_memcmp(send_buf, recv_buf, i) != 0) { rt_kprintf("TCP client recv failed: expected %d, got %d\n", i, ret); uassert_true(RT_FALSE); goto __exit; } } rt_kprintf("TCP client received echo %d bytes\n", ret); rt_thread_mdelay(5); } uassert_true(RT_TRUE); rt_event_send(tcp_event, EVENT_FLAG_TCP_CLIENT_SUCCESS); fail_flag = RT_FALSE; __exit: if (fail_flag == RT_TRUE) rt_event_send(tcp_event, EVENT_FLAG_TCP_CLIENT_FAILED); if (sock >= 0) lwip_close(sock); if (send_buf != RT_NULL) rt_free(send_buf); if (recv_buf != RT_NULL) rt_free(recv_buf); } static void tcp_server_entry(void *parameter) { #define LWIP_TCP_TEST_BUF_SIZE 2048 rt_bool_t fail_flag = RT_TRUE; char *recv_data = RT_NULL; int sock = -1, bytes_received, ret, i, port, connected = 0, mode; socklen_t sin_size, listend_addr_len, peer_len; struct sockaddr_in server_addr, client_addr, listend_addr, peer_addr; recv_data = rt_malloc(LWIP_TCP_TEST_BUF_SIZE); if (recv_data == RT_NULL) { uassert_true(RT_FALSE); goto __exit; } port = RT_UTEST_LWIP_TCP_PORT; /* create socket */ if ((sock = lwip_socket(AF_INET, SOCK_STREAM, 0)) == -1) { uassert_true(RT_FALSE); goto __exit; } else { uassert_true(RT_TRUE); } /* set Repeat bind port and address */ mode = 1; lwip_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &mode, sizeof(int)); lwip_setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &mode, sizeof(int)); server_addr.sin_family = AF_INET; server_addr.sin_port = htons(port); /* server addr:127.0.0.1 for loopback test */ server_addr.sin_addr.s_addr = htonl(IPADDR_LOOPBACK); rt_memset(&(server_addr.sin_zero), 0, sizeof(server_addr.sin_zero)); /* bind socket */ if (lwip_bind(sock, (struct sockaddr *)&server_addr, sizeof(struct sockaddr)) == -1) { rt_kprintf("TCP server bind failed\n"); uassert_true(RT_FALSE); goto __exit; } else { rt_kprintf("TCP server bound to 127.0.0.1:%d\n", port); uassert_true(RT_TRUE); } /* listen socket */ if (lwip_listen(sock, 5) == -1) { rt_kprintf("TCP server listen failed\n"); uassert_true(RT_FALSE); goto __exit; } else { rt_kprintf("TCP server listening on 127.0.0.1:%d\n", port); uassert_true(RT_TRUE); } /* wait for connect */ sin_size = sizeof(struct sockaddr_in); connected = lwip_accept(sock, (struct sockaddr *)&client_addr, &sin_size); if (connected < 0) { rt_kprintf("TCP server accept failed\n"); uassert_true(RT_FALSE); goto __exit; } else { rt_kprintf("TCP server accepted connection\n"); uassert_true(RT_TRUE); } ret = lwip_getpeername(connected, (struct sockaddr *)&peer_addr, &peer_len); if (ret != 0) { rt_kprintf("TCP server getpeername failed: %d\n", ret); uassert_true(RT_FALSE); goto __exit; } else { rt_kprintf("TCP server peer address: %s:%d\n", inet_ntoa(peer_addr.sin_addr), ntohs(peer_addr.sin_port)); uassert_true(RT_TRUE); } /* recv data and echo back */ for (i = 1; i <= 2048; i *= 2) { /* receive data from client with timeout */ { fd_set fdread; struct timeval timeout; int maxsock = connected; FD_ZERO(&fdread); FD_SET(connected, &fdread); /* set timeout: 5 seconds */ timeout.tv_sec = 5; timeout.tv_usec = 0; ret = lwip_select(maxsock + 1, &fdread, NULL, NULL, &timeout); if (ret <= 0) { rt_kprintf("TCP server select timeout or failed: %d\n", ret); uassert_true(RT_FALSE); goto __exit; } /* data is available, now receive */ bytes_received = lwip_recv(connected, recv_data, LWIP_TCP_TEST_BUF_SIZE, 0); if (bytes_received <= 0 || bytes_received != i) { rt_kprintf("TCP server recv failed: expected %d, got %d\n", i, bytes_received); uassert_true(RT_FALSE); goto __exit; } } rt_kprintf("TCP server received %d bytes: %c...\n", bytes_received, recv_data[0]); /* echo back the received data */ ret = lwip_send(connected, recv_data, bytes_received, 0); if (ret != bytes_received) { rt_kprintf("TCP server send failed: expected %d, sent %d\n", bytes_received, ret); uassert_true(RT_FALSE); goto __exit; } rt_kprintf("TCP server echoed %d bytes\n", ret); } uassert_true(RT_TRUE); /* get sock ipaddr and port */ listend_addr_len = sizeof(listend_addr); ret = lwip_getsockname(sock, (struct sockaddr *)&listend_addr, &listend_addr_len); uassert_true(ret == 0); ret = lwip_shutdown(connected, SHUT_RDWR); uassert_true(ret == 0); lwip_close(connected); rt_event_send(tcp_event, EVENT_FLAG_TCP_SERVER_SUCCESS); fail_flag = RT_FALSE; __exit: if (fail_flag == RT_TRUE) rt_event_send(tcp_event, EVENT_FLAG_TCP_SERVER_FAILED); if (sock >= 0) lwip_close(sock); if (recv_data != RT_NULL) rt_free(recv_data); } static void test_tcp(void) { #define LWIP_TCP_CLIENT_TEST_NAME "tcp_client_test" #define LWIP_TCP_SERVER_TEST_NAME "tcp_server_test" #define LWIP_TCP_CLIENT_STACK_SIZE 2048 #define LWIP_TCP_SERVER_STACK_SIZE 2048 #define LWIP_TCP_CLIENT_PRIORITY 25 #define LWIP_TCP_SERVER_PRIORITY 24 #define LWIP_TCP_CLIENT_TICK 20 #define LWIP_TCP_SERVER_TICK 20 rt_thread_t tid_server = 0, tid_client = 0; tcp_event = rt_event_create("tcp_event", RT_IPC_FLAG_FIFO); if (tcp_event == RT_NULL) { uassert_true(RT_FALSE); return; } /* start tcp server test thread */ tid_server = rt_thread_create(LWIP_TCP_SERVER_TEST_NAME, tcp_server_entry, RT_NULL, LWIP_TCP_SERVER_STACK_SIZE, LWIP_TCP_SERVER_PRIORITY, LWIP_TCP_SERVER_TICK); if (tid_server != 0) { uassert_true(RT_TRUE); rt_thread_startup(tid_server); } else { uassert_true(RT_FALSE); return; } /* start tcp client test thread */ tid_client = rt_thread_create(LWIP_TCP_CLIENT_TEST_NAME, tcp_client_entry, RT_NULL, LWIP_TCP_CLIENT_STACK_SIZE, LWIP_TCP_CLIENT_PRIORITY, LWIP_TCP_CLIENT_TICK); if (tid_client != 0) { uassert_true(RT_TRUE); rt_thread_startup(tid_client); } else { uassert_true(RT_FALSE); return; } while (1) { if ((tcp_event->set & EVENT_FLAG_TCP_CLIENT_SUCCESS) && (tcp_event->set & EVENT_FLAG_TCP_SERVER_SUCCESS)) { uassert_true(RT_TRUE); break; } else if ((tcp_event->set & EVENT_FLAG_TCP_CLIENT_FAILED) || (tcp_event->set & EVENT_FLAG_TCP_SERVER_FAILED)) { uassert_true(RT_FALSE); break; } rt_thread_mdelay(2 * RT_TICK_PER_SECOND); } rt_event_delete(tcp_event); } static void udp_client_entry(void *parameter) { #define LWIP_UDP_TEST_BUF_SIZE 16 rt_bool_t fail_flag = RT_TRUE; int ret, sock = -1, port; struct sockaddr_in server_addr; char send_buf[] = "hello"; char recv_buf[LWIP_UDP_TEST_BUF_SIZE]; socklen_t addr_len = sizeof(struct sockaddr_in); port = RT_UTEST_LWIP_UDP_PORT; /* create socket */ if ((sock = lwip_socket(AF_INET, SOCK_DGRAM, 0)) == -1) { uassert_true(RT_FALSE); goto __exit; } else { uassert_true(RT_TRUE); } /* bind to any port */ struct sockaddr_in client_bind_addr; client_bind_addr.sin_family = AF_INET; client_bind_addr.sin_port = 0; /* let system assign port */ client_bind_addr.sin_addr.s_addr = htonl(IPADDR_ANY); rt_memset(&(client_bind_addr.sin_zero), 0, sizeof(client_bind_addr.sin_zero)); if (lwip_bind(sock, (struct sockaddr *)&client_bind_addr, sizeof(struct sockaddr)) == -1) { rt_kprintf("UDP client bind failed\n"); uassert_true(RT_FALSE); goto __exit; } rt_kprintf("UDP client bound\n"); server_addr.sin_family = AF_INET; server_addr.sin_port = htons(port); /* server addr:127.0.0.1 */ server_addr.sin_addr.s_addr = htonl(IPADDR_LOOPBACK); rt_memset(&(server_addr.sin_zero), 0, sizeof(server_addr.sin_zero)); /* wait for the server to enter the receive state */ rt_thread_mdelay(10); /* send data to server */ ret = lwip_sendto(sock, send_buf, rt_strlen(send_buf), 0, (struct sockaddr *)&server_addr, sizeof(struct sockaddr)); if (ret <= 0) { rt_kprintf("UDP client sendto failed: sent %d\n", ret); uassert_true(RT_FALSE); goto __exit; } rt_kprintf("UDP client sent %d bytes: %s\n", ret, send_buf); /* receive echo from server with timeout */ { fd_set fdread; struct timeval timeout; int maxsock = sock; FD_ZERO(&fdread); FD_SET(sock, &fdread); /* set timeout: 5 seconds */ timeout.tv_sec = 5; timeout.tv_usec = 0; ret = lwip_select(maxsock + 1, &fdread, NULL, NULL, &timeout); if (ret <= 0) { rt_kprintf("UDP client select timeout or failed: %d\n", ret); uassert_true(RT_FALSE); goto __exit; } /* data is available, now receive */ ret = lwip_recvfrom(sock, recv_buf, LWIP_UDP_TEST_BUF_SIZE, 0, (struct sockaddr *)&server_addr, &addr_len); if (ret <= 0 || rt_strncmp(send_buf, recv_buf, rt_strlen(send_buf)) != 0) { rt_kprintf("UDP client recvfrom failed: received %d, expected %s\n", ret, send_buf); uassert_true(RT_FALSE); goto __exit; } else { rt_kprintf("UDP client received echo %d bytes: %s\n", ret, recv_buf); uassert_true(RT_TRUE); rt_event_send(udp_event, EVENT_FLAG_UDP_CLIENT_SUCCESS); fail_flag = RT_FALSE; } } __exit: if (fail_flag == RT_TRUE) rt_event_send(udp_event, EVENT_FLAG_UDP_CLIENT_FAILED); if (sock >= 0) lwip_close(sock); } static void udp_server_entry(void *parameter) { #define LWIP_UDP_RECV_BUF 16 fd_set fdread; struct timeval timeout; rt_bool_t fail_flag = RT_TRUE; char recv_data[LWIP_UDP_RECV_BUF]; int sock = -1, bytes_received, ret, port, maxsock; socklen_t client_len, timeout_len; struct sockaddr_in server_addr, client_addr; port = RT_UTEST_LWIP_UDP_PORT; /* create socket */ if ((sock = lwip_socket(AF_INET, SOCK_DGRAM, 0)) == -1) { uassert_true(RT_FALSE); goto __exit; } else { uassert_true(RT_TRUE); } /* set timeout */ timeout_len = sizeof(timeout); timeout.tv_sec = 5; timeout.tv_usec = 0; ret = lwip_setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, (void *) &timeout, timeout_len); uassert_true(ret == 0); server_addr.sin_family = AF_INET; server_addr.sin_port = htons(port); /* server addr:0.0.0.0 for UDP to work with external IP */ server_addr.sin_addr.s_addr = htonl(IPADDR_ANY); rt_memset(&(server_addr.sin_zero), 0, sizeof(server_addr.sin_zero)); /* bind socket */ if (lwip_bind(sock, (struct sockaddr *)&server_addr, sizeof(struct sockaddr)) == -1) { rt_kprintf("UDP server bind failed\n"); uassert_true(RT_FALSE); goto __exit; } else { rt_kprintf("UDP server bound to 0.0.0.0:%d\n", port); uassert_true(RT_TRUE); } maxsock = sock; FD_ZERO(&fdread); FD_SET(sock, &fdread); /* wait for recv data */ ret = lwip_select(maxsock + 1, &fdread, NULL, NULL, &timeout); if (ret <= 0) { rt_kprintf("UDP server select timeout or failed\n"); uassert_true(RT_FALSE); goto __exit; } else { rt_kprintf("UDP server select ready\n"); uassert_true(RT_TRUE); } /* recv data with additional timeout check */ { /* Reset timeout for select */ timeout.tv_sec = 5; timeout.tv_usec = 0; /* Additional select check for data availability */ ret = lwip_select(maxsock + 1, &fdread, NULL, NULL, &timeout); if (ret <= 0) { rt_kprintf("UDP server additional select timeout or failed: %d\n", ret); uassert_true(RT_FALSE); goto __exit; } /* data is available, now receive */ client_len = sizeof(client_addr); bytes_received = lwip_recvfrom(sock, recv_data, LWIP_UDP_RECV_BUF, 0, (struct sockaddr *)&client_addr, &client_len); if (bytes_received <= 0) { rt_kprintf("UDP server recvfrom failed: received %d\n", bytes_received); uassert_true(RT_FALSE); goto __exit; } } rt_kprintf("UDP server received %d bytes: %s\n", bytes_received, recv_data); rt_kprintf("UDP server client addr: %s:%d\n", inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port)); /* echo back the received data */ ret = lwip_sendto(sock, recv_data, bytes_received, 0, (struct sockaddr *)&client_addr, client_len); if (ret != bytes_received) { rt_kprintf("UDP server sendto failed: expected %d, sent %d, errno: %d\n", bytes_received, ret, rt_get_errno()); uassert_true(RT_FALSE); goto __exit; } rt_kprintf("UDP server echoed %d bytes\n", ret); uassert_true(RT_TRUE); rt_event_send(udp_event, EVENT_FLAG_UDP_SERVER_SUCCESS); fail_flag = RT_FALSE; __exit: if (fail_flag == RT_TRUE) rt_event_send(udp_event, EVENT_FLAG_UDP_SERVER_FAILED); if (sock >= 0) lwip_close(sock); } static void test_udp(void) { #define LWIP_UDP_CLIENT_TEST_NAME "udp_client_test" #define LWIP_UDP_SERVER_TEST_NAME "udp_server_test" #define LWIP_UDP_CLIENT_STACK_SIZE 2048 #define LWIP_UDP_SERVER_STACK_SIZE 2048 #define LWIP_UDP_CLIENT_PRIORITY 25 #define LWIP_UDP_SERVER_PRIORITY 24 #define LWIP_UDP_CLIENT_TICK 20 #define LWIP_UDP_SERVER_TICK 20 rt_thread_t tid_server = 0, tid_client = 0; udp_event = rt_event_create("udp_event", RT_IPC_FLAG_FIFO); if (udp_event == RT_NULL) { uassert_true(RT_FALSE); return; } /* start udp server test thread */ tid_server = rt_thread_create(LWIP_UDP_SERVER_TEST_NAME, udp_server_entry, RT_NULL, LWIP_UDP_SERVER_STACK_SIZE, LWIP_UDP_SERVER_PRIORITY, LWIP_UDP_SERVER_TICK); if (tid_server != 0) { uassert_true(RT_TRUE); rt_thread_startup(tid_server); } else { uassert_true(RT_FALSE); return; } /* start udp client test thread */ tid_client = rt_thread_create(LWIP_UDP_CLIENT_TEST_NAME, udp_client_entry, RT_NULL, LWIP_UDP_CLIENT_STACK_SIZE, LWIP_UDP_CLIENT_PRIORITY, LWIP_UDP_CLIENT_TICK); if (tid_client != 0) { uassert_true(RT_TRUE); rt_thread_startup(tid_client); } else { uassert_true(RT_FALSE); return; } while (1) { if ((udp_event->set & EVENT_FLAG_UDP_CLIENT_SUCCESS) && (udp_event->set & EVENT_FLAG_UDP_SERVER_SUCCESS)) { uassert_true(RT_TRUE); break; } else if ((udp_event->set & EVENT_FLAG_UDP_CLIENT_FAILED) || (udp_event->set & EVENT_FLAG_UDP_SERVER_FAILED)) { uassert_true(RT_FALSE); break; } rt_thread_mdelay(2 * RT_TICK_PER_SECOND); } rt_event_delete(udp_event); } static void test_icmp_ping(void) { struct raw_pcb *ping_pcb = RT_NULL; struct pbuf *p; ip4_addr_t local_ip, remote_ip; struct icmp_echo_hdr *iecho; err_t err; /* Create raw PCB for ICMP */ ping_pcb = raw_new(IPPROTO_ICMP); if (ping_pcb == RT_NULL) { rt_kprintf("ICMP raw PCB creation failed\n"); uassert_true(RT_FALSE); return; } /* Set up local IP (source) - use loopback for test */ IP4_ADDR(&local_ip, 127, 0, 0, 1); ip_addr_set_ip4_u32(&ping_pcb->local_ip, ip4_addr_get_u32(&local_ip)); /* Set up remote IP (destination) - ping loopback */ IP4_ADDR(&remote_ip, 127, 0, 0, 1); ip_addr_set_ip4_u32(&ping_pcb->remote_ip, ip4_addr_get_u32(&remote_ip)); /* Allocate pbuf for ICMP echo request */ p = pbuf_alloc(PBUF_IP, sizeof(struct icmp_echo_hdr) + 32, PBUF_RAM); /* 32 bytes payload */ if (p == RT_NULL) { rt_kprintf("PBUF allocation failed\n"); uassert_true(RT_FALSE); goto __exit; } /* Fill ICMP echo request header */ iecho = (struct icmp_echo_hdr *)p->payload; iecho->type = ICMP_ECHO; /* ICMP Echo Request */ iecho->code = 0; iecho->id = lwip_htons(0x1234); /* Identifier */ iecho->seqno = lwip_htons(0x0001); /* Sequence number */ /* Fill payload with test data */ char *payload = (char *)p->payload + sizeof(struct icmp_echo_hdr); rt_memset(payload, 'A', 32); /* Fill with 'A' characters */ /* Calculate checksum */ iecho->chksum = 0; iecho->chksum = inet_chksum(p->payload, p->len); rt_kprintf("Sending ICMP Echo Request to %s\n", ip4addr_ntoa(&remote_ip)); /* Send ICMP echo request */ err = raw_sendto(ping_pcb, p, (ip_addr_t *)&remote_ip); if (err != ERR_OK) { rt_kprintf("ICMP raw_sendto failed: %d\n", err); uassert_true(RT_FALSE); pbuf_free(p); goto __exit; } rt_kprintf("ICMP Echo Request sent successfully\n"); /* Free the sent packet */ pbuf_free(p); /* Wait a bit for the echo reply */ rt_thread_mdelay(100); /* Note: In a real implementation, you would need to: * 1. Set up a receive callback for the raw PCB * 2. Handle incoming ICMP echo replies * 3. Match the ID and sequence number * * For this test, we just verify that the send operation succeeded */ rt_kprintf("ICMP ping test completed (send successful)\n"); __exit: if (ping_pcb != RT_NULL) { raw_remove(ping_pcb); } } static void test_socket_options(void) { int sock = -1; int opt_val; socklen_t opt_len = sizeof(int); sock = lwip_socket(AF_INET, SOCK_STREAM, 0); if (sock < 0) { uassert_true(RT_FALSE); return; } /* Test setsockopt */ opt_val = 1; if (lwip_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &opt_val, sizeof(int)) != 0) { rt_kprintf("setsockopt SO_REUSEADDR failed\n"); uassert_true(RT_FALSE); goto __exit; } /* Test getsockopt */ if (lwip_getsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &opt_val, &opt_len) != 0) { rt_kprintf("getsockopt SO_REUSEADDR failed\n"); uassert_true(RT_FALSE); goto __exit; } /* Note: lwIP may return a different value due to internal implementation, skip exact value check */ rt_kprintf("Socket options test passed\n"); __exit: if (sock >= 0) lwip_close(sock); } static void test_address_conversion(void) { struct in_addr addr; char *ip_str = "192.168.1.1"; char *result; /* Test valid IP address */ addr.s_addr = inet_addr(ip_str); uassert_true(addr.s_addr != INADDR_NONE); result = inet_ntoa(addr); uassert_true(rt_strcmp(result, ip_str) == 0); rt_kprintf("Valid IP conversion: %s -> %s\n", ip_str, result); /* Test invalid IP addresses */ /* Test 999.999.999.999 - should be invalid */ addr.s_addr = inet_addr("999.999.999.999"); uassert_true(addr.s_addr == INADDR_NONE); rt_kprintf("Invalid IP test: 999.999.999.999 -> INADDR_NONE (expected)\n"); /* Test another invalid IP */ addr.s_addr = inet_addr("256.256.256.256"); uassert_true(addr.s_addr == INADDR_NONE); rt_kprintf("Invalid IP test: 256.256.256.256 -> INADDR_NONE (expected)\n"); rt_kprintf("Address conversion test passed\n"); } static void test_netif_management(void) { extern struct netif *netif_default; struct netif *netif = netif_default; if (netif == RT_NULL) { rt_kprintf("No default network interface\n"); uassert_true(RT_FALSE); return; } /* Test netif_set_up and netif_set_down */ netif_set_down(netif); uassert_true(!(netif->flags & NETIF_FLAG_UP)); rt_kprintf("Network interface set down\n"); netif_set_up(netif); uassert_true(netif->flags & NETIF_FLAG_UP); rt_kprintf("Network interface set up\n"); /* Test netif_set_default */ netif_set_default(netif); uassert_true(netif_default == netif); rt_kprintf("Network interface set as default\n"); rt_kprintf("Network interface management test passed\n"); } static rt_err_t utest_tc_init(void) { extern struct netif *netif_default; if ((netif_default) == RT_NULL) { rt_kprintf("Don't find network interface device!\n"); return -RT_ERROR; } rt_kprintf("Network interface found, waiting for IP address...\n"); /* Wait for network connect successful */ while (1) { if (!ip_addr_isany(&netif_default->ip_addr)) { rt_kprintf("IP address assigned: %s\n", inet_ntoa(netif_default->ip_addr)); break; } rt_thread_mdelay(500); } return RT_EOK; } static rt_err_t utest_tc_cleanup(void) { return RT_EOK; } static void testcase(void) { /* Test DNS hostname resolution */ UTEST_UNIT_RUN(test_gethostbyname); /* Test address info retrieval and release */ UTEST_UNIT_RUN(test_get_free_addrinfo); /* Test TCP client-server communication */ UTEST_UNIT_RUN(test_tcp); /* Test UDP client-server communication */ UTEST_UNIT_RUN(test_udp); /* Test ICMP ping functionality */ UTEST_UNIT_RUN(test_icmp_ping); /* Test socket options */ UTEST_UNIT_RUN(test_socket_options); /* Test IP address conversion */ UTEST_UNIT_RUN(test_address_conversion); /* Test network interface management */ UTEST_UNIT_RUN(test_netif_management); } UTEST_TC_EXPORT(testcase, "components.net.tc_lwip", utest_tc_init, utest_tc_cleanup, 20 * RT_TICK_PER_SECOND);