/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-04-10 THEWON first version for serialX */ #include "board.h" #include "drv_usartX.h" #include "drv_config.h" #ifdef RT_USING_SERIAL //#define DRV_DEBUG #define LOG_TAG "drv.usart" #include #if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \ !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \ !defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_LPUART1) #error "Please define at least one BSP_USING_UARTx" /* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */ #endif #ifdef RT_SERIAL_USING_DMA static void stm32_dma_rx_config(struct rt_serial_device *serial); static void stm32_dma_tx_config(struct rt_serial_device *serial); #endif enum { #ifdef BSP_USING_UART1 UART1_INDEX, #endif #ifdef BSP_USING_UART2 UART2_INDEX, #endif #ifdef BSP_USING_UART3 UART3_INDEX, #endif #ifdef BSP_USING_UART4 UART4_INDEX, #endif #ifdef BSP_USING_UART5 UART5_INDEX, #endif #ifdef BSP_USING_UART6 UART6_INDEX, #endif #ifdef BSP_USING_UART7 UART7_INDEX, #endif #ifdef BSP_USING_UART8 UART8_INDEX, #endif #ifdef BSP_USING_LPUART1 LPUART1_INDEX, #endif }; static struct stm32_uart_config uart_config[] = { #ifdef BSP_USING_UART1 UART1_CONFIG, #endif #ifdef BSP_USING_UART2 UART2_CONFIG, #endif #ifdef BSP_USING_UART3 UART3_CONFIG, #endif #ifdef BSP_USING_UART4 UART4_CONFIG, #endif #ifdef BSP_USING_UART5 UART5_CONFIG, #endif #ifdef BSP_USING_UART6 UART6_CONFIG, #endif #ifdef BSP_USING_UART7 UART7_CONFIG, #endif #ifdef BSP_USING_UART8 UART8_CONFIG, #endif #ifdef BSP_USING_LPUART1 LPUART1_CONFIG, #endif }; static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0}; static rt_uint32_t stm32_uart_get_mask(rt_uint32_t word_length, rt_uint32_t parity) { rt_uint32_t mask; if (word_length == UART_WORDLENGTH_8B) { if (parity == UART_PARITY_NONE) { mask = 0x00FFU ; } else { mask = 0x007FU ; } } #ifdef UART_WORDLENGTH_9B else if (word_length == UART_WORDLENGTH_9B) { if (parity == UART_PARITY_NONE) { mask = 0x01FFU ; } else { mask = 0x00FFU ; } } #endif #ifdef UART_WORDLENGTH_7B else if (word_length == UART_WORDLENGTH_7B) { if (parity == UART_PARITY_NONE) { mask = 0x007FU ; } else { mask = 0x003FU ; } } else { mask = 0x0000U; } #endif return mask; } static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); RT_ASSERT(cfg != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); uart->handle.Instance = uart->uart_config->Instance; uart->handle.Init.BaudRate = cfg->baud_rate; uart->handle.Init.Mode = UART_MODE_TX_RX; uart->handle.Init.OverSampling = UART_OVERSAMPLING_16; switch (cfg->flowcontrol) { case RT_SERIAL_FLOWCONTROL_NONE: uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE; break; case RT_SERIAL_FLOWCONTROL_CTSRTS: uart->handle.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS; break; default: uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE; break; } switch (cfg->data_bits) { case DATA_BITS_8: if (cfg->parity == PARITY_ODD || cfg->parity == PARITY_EVEN) uart->handle.Init.WordLength = UART_WORDLENGTH_9B; else uart->handle.Init.WordLength = UART_WORDLENGTH_8B; break; case DATA_BITS_9: uart->handle.Init.WordLength = UART_WORDLENGTH_9B; break; default: uart->handle.Init.WordLength = UART_WORDLENGTH_8B; break; } switch (cfg->stop_bits) { case STOP_BITS_1: uart->handle.Init.StopBits = UART_STOPBITS_1; break; case STOP_BITS_2: uart->handle.Init.StopBits = UART_STOPBITS_2; break; default: uart->handle.Init.StopBits = UART_STOPBITS_1; break; } switch (cfg->parity) { case PARITY_NONE: uart->handle.Init.Parity = UART_PARITY_NONE; break; case PARITY_ODD: uart->handle.Init.Parity = UART_PARITY_ODD; break; case PARITY_EVEN: uart->handle.Init.Parity = UART_PARITY_EVEN; break; default: uart->handle.Init.Parity = UART_PARITY_NONE; break; } uart->uart_config->mask = stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity); if (HAL_UART_Init(&uart->handle) != HAL_OK) { return -RT_ERROR; } return RT_EOK; } static rt_err_t stm32_init(struct rt_serial_device *serial) { if (stm32_configure(serial, &serial->config) != RT_EOK) { return -RT_ERROR; } return RT_EOK; } static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg) { struct stm32_uart *uart; rt_ubase_t ctrl_arg = (rt_ubase_t)arg; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); switch (cmd) { case RT_DEVICE_CTRL_OPEN: __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE); UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE); UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE); UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC); /* enable interrupt */ HAL_NVIC_SetPriority(uart->uart_config->irq_type, 1, 0); HAL_NVIC_EnableIRQ(uart->uart_config->irq_type); #ifdef RT_SERIAL_USING_DMA uart->dmaTxing = RT_FALSE; #endif break; case RT_DEVICE_CTRL_CLOSE: HAL_NVIC_DisableIRQ(uart->uart_config->irq_type); #ifdef RT_SERIAL_USING_DMA HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_rx->dma_irq); if (HAL_DMA_Abort(&(uart->dma_rx.handle)) != HAL_OK) { RT_ASSERT(0); } if (HAL_DMA_DeInit(&(uart->dma_rx.handle)) != HAL_OK) { RT_ASSERT(0); } HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_tx->dma_irq); if (HAL_DMA_Abort(&(uart->dma_tx.handle)) != HAL_OK) { RT_ASSERT(0); } if (HAL_DMA_DeInit(&(uart->dma_tx.handle)) != HAL_OK) { RT_ASSERT(0); } #endif __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE); __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE); if (HAL_UART_DeInit(&(uart->handle)) != HAL_OK ) { } break; /* disable interrupt */ case RT_DEVICE_CTRL_CLR_INT: /* disable interrupt */ if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) { __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE); } #ifdef RT_SERIAL_USING_DMA /* disable DMA */ if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) { HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_rx->dma_irq); } if(ctrl_arg & RT_DEVICE_FLAG_DMA_TX) { HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_tx->dma_irq); } #endif break; /* enable interrupt */ case RT_DEVICE_CTRL_SET_INT: /* enable rx irq */ if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) { __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE); } break; #ifdef RT_SERIAL_USING_DMA case RT_DEVICE_CTRL_CONFIG: if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) { stm32_dma_rx_config(serial); } else if (ctrl_arg & RT_DEVICE_FLAG_DMA_TX) { stm32_dma_tx_config(serial); } break; #endif default : break; } return RT_EOK; } static int stm32_putc(struct rt_serial_device *serial, char c) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) == RESET); UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC); #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \ || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \ || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32F3) uart->handle.Instance->TDR = c; #else uart->handle.Instance->DR = c; #endif return 1; } static int stm32_getc(struct rt_serial_device *serial) { int ch = -1; struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) == RESET) { return -1; } #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \ || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \ || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)|| defined(SOC_SERIES_STM32F3) ch = uart->handle.Instance->RDR & uart->uart_config->mask; #else ch = uart->handle.Instance->DR & uart->uart_config->mask; #endif return ch; } static int stm32_flush(struct rt_serial_device *serial) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET); return 1; } static void stm32_start_tx(struct rt_serial_device *serial) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_TXE); } static void stm32_stop_tx(struct rt_serial_device *serial) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE); } #ifdef RT_SERIAL_USING_DMA static rt_bool_t stm32_is_dma_txing(struct rt_serial_device *serial) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); return uart->dmaTxing; //RT_FALSE; } static void stm32_start_dma_tx(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size) { struct stm32_uart *uart; HAL_StatusTypeDef status; DMA_HandleTypeDef *hdma; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); do { // may fallin dead loop status = HAL_UART_Transmit_DMA(&uart->handle, buf, size); } while (status != HAL_OK); uart->dmaTxing = RT_TRUE; } static void stm32_stop_dma_tx(struct rt_serial_device *serial) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); if ((uart->dma_tx.handle.Instance->CR & DMA_SxCR_EN) == DMA_SxCR_EN) { return; } __HAL_DMA_DISABLE(&uart->dma_tx.handle); uart->dmaTxing = RT_FALSE; } #endif static void stm32_enable_interrupt(struct rt_serial_device *serial) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); HAL_NVIC_EnableIRQ(uart->uart_config->irq_type); #ifdef RT_SERIAL_USING_DMA if (uart->uart_dma_flag) { HAL_NVIC_EnableIRQ(uart->uart_config->dma_conf_rx->dma_irq); } #endif } static void stm32_disable_interrupt(struct rt_serial_device *serial) { struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); HAL_NVIC_DisableIRQ(uart->uart_config->irq_type); #ifdef RT_SERIAL_USING_DMA if (uart->uart_dma_flag) { HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_rx->dma_irq); } #endif } /** * Uart common interrupt process. This need add to uart ISR. * * @param serial serial device */ static void uart_isr(struct rt_serial_device *serial) { struct stm32_uart *uart; #ifdef RT_SERIAL_USING_DMA rt_size_t dma_cnt; #endif RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); /* UART in mode Receiver -------------------------------------------------*/ if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET)) { rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND); } if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET) && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TXE) != RESET)) { rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE); } #ifdef RT_SERIAL_USING_DMA else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET) && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET)) { __HAL_UART_CLEAR_IDLEFLAG(&uart->handle); dma_cnt = RT_SERIAL_DMA_BUFSZ - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle)); rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8)); } else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TC) != RESET)) { if ((serial->parent.open_flag & RT_DEVICE_FLAG_DMA_TX) != 0) { HAL_UART_IRQHandler(&(uart->handle)); } } #endif else { if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET) { __HAL_UART_CLEAR_OREFLAG(&uart->handle); } if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET) { __HAL_UART_CLEAR_NEFLAG(&uart->handle); } if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET) { __HAL_UART_CLEAR_FEFLAG(&uart->handle); } if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET) { __HAL_UART_CLEAR_PEFLAG(&uart->handle); } #if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32WL) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \ && !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0) && !defined(SOC_SERIES_STM32H7) \ && !defined(SOC_SERIES_STM32G4) && !defined(SOC_SERIES_STM32MP1) && !defined(SOC_SERIES_STM32WB) #ifdef SOC_SERIES_STM32F3 if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBDF) != RESET) { UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBDF); } #else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET) { UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD); } #endif #endif if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET) { UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS); } // if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET) // { // UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE); // } // if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) != RESET) // { // UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC); // } // if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) // { // UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE); // } } } #ifdef RT_SERIAL_USING_DMA static void dma_isr(struct rt_serial_device *serial) { struct stm32_uart *uart; rt_size_t dma_cnt; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); if ((__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_TC) != RESET) || (__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_HT) != RESET)) { dma_cnt = RT_SERIAL_DMA_BUFSZ - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle)); rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8)); } } #endif #if defined(BSP_USING_UART1) void USART1_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); uart_isr(&(uart_obj[UART1_INDEX].serial)); /* leave interrupt */ rt_interrupt_leave(); } #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) void UART1_DMA_RX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_rx.handle); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */ #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) void UART1_DMA_TX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_tx.handle); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) */ #endif /* BSP_USING_UART1 */ #ifdef RT_SERIAL_USING_DMA static void stm32_uart_get_dma_config(void) { #ifdef BSP_USING_UART1 uart_obj[UART1_INDEX].uart_dma_flag = 0; #ifdef BSP_UART1_RX_USING_DMA uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG; uart_config[UART1_INDEX].dma_conf_rx = &uart1_dma_rx; #endif #ifdef BSP_UART1_TX_USING_DMA uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG; uart_config[UART1_INDEX].dma_conf_tx = &uart1_dma_tx; #endif #endif } static void stm32_dma_rx_config(struct rt_serial_device *serial) { DMA_HandleTypeDef *DMA_Handle; struct dma_config *dma_config; struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); DMA_Handle = &uart->dma_rx.handle; dma_config = uart->uart_config->dma_conf_rx; LOG_D("%s dma config start", uart->uart_config->name); { rt_uint32_t tmpreg = 0x00U; #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \ || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->AHBENR, dma_config->dma_rcc); tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc); #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \ || defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc); tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc); #elif defined(SOC_SERIES_STM32MP1) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc); tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc); #endif #if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1) /* enable DMAMUX clock for L4+ and G4 */ __HAL_RCC_DMAMUX1_CLK_ENABLE(); #elif defined(SOC_SERIES_STM32MP1) __HAL_RCC_DMAMUX_CLK_ENABLE(); #endif UNUSED(tmpreg); /* To avoid compiler warnings */ } __HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma_rx.handle); #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1) DMA_Handle->Instance = dma_config->Instance; #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) DMA_Handle->Instance = dma_config->Instance; DMA_Handle->Init.Channel = dma_config->channel; #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\ || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1) DMA_Handle->Instance = dma_config->Instance; DMA_Handle->Init.Request = dma_config->request; #endif DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE; DMA_Handle->Init.MemInc = DMA_MINC_ENABLE; DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; DMA_Handle->Init.Direction = DMA_PERIPH_TO_MEMORY; DMA_Handle->Init.Mode = DMA_CIRCULAR; DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM; #if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1) DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE; #endif if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK) { RT_ASSERT(0); } if (HAL_DMA_Init(DMA_Handle) != HAL_OK) { RT_ASSERT(0); } /* enable interrupt */ /* Start DMA transfer */ if (HAL_UART_Receive_DMA(&(uart->handle), serial->serial_dma_rx, RT_SERIAL_DMA_BUFSZ) != HAL_OK) { /* Transfer error in reception process */ RT_ASSERT(0); } CLEAR_BIT(uart->handle.Instance->CR3, USART_CR3_EIE); __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE); /* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */ HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0); HAL_NVIC_EnableIRQ(dma_config->dma_irq); } static void stm32_dma_tx_config(struct rt_serial_device *serial) { DMA_HandleTypeDef *DMA_Handle; struct dma_config *dma_config; struct stm32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct stm32_uart, serial); DMA_Handle = &uart->dma_tx.handle; dma_config = uart->uart_config->dma_conf_tx; LOG_D("%s dma config start", uart->uart_config->name); { rt_uint32_t tmpreg = 0x00U; #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \ || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->AHBENR, dma_config->dma_rcc); tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc); #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \ || defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc); tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc); #elif defined(SOC_SERIES_STM32MP1) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc); tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc); #endif #if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1) /* enable DMAMUX clock for L4+ and G4 */ __HAL_RCC_DMAMUX1_CLK_ENABLE(); #elif defined(SOC_SERIES_STM32MP1) __HAL_RCC_DMAMUX_CLK_ENABLE(); #endif UNUSED(tmpreg); /* To avoid compiler warnings */ } __HAL_LINKDMA(&(uart->handle), hdmatx, uart->dma_tx.handle); #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1) DMA_Handle->Instance = dma_config->Instance; #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) DMA_Handle->Instance = dma_config->Instance; DMA_Handle->Init.Channel = dma_config->channel; #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\ || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1) DMA_Handle->Instance = dma_config->Instance; DMA_Handle->Init.Request = dma_config->request; #endif DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE; DMA_Handle->Init.MemInc = DMA_MINC_ENABLE; DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; DMA_Handle->Init.Direction = DMA_MEMORY_TO_PERIPH; DMA_Handle->Init.Mode = DMA_NORMAL; DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM; #if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1) DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE; #endif if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK) { RT_ASSERT(0); } if (HAL_DMA_Init(DMA_Handle) != HAL_OK) { RT_ASSERT(0); } /* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */ HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0); HAL_NVIC_EnableIRQ(dma_config->dma_irq); } /** * @brief UART error callbacks * @param huart: UART handle * @note This example shows a simple way to report transfer error, and you can * add your own implementation. * @retval None */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { struct stm32_uart *uart; RT_ASSERT(huart != NULL); uart = (struct stm32_uart *)huart; LOG_D("%s: %s %d\n", __FUNCTION__, uart->uart_config->name, huart->ErrorCode); UNUSED(uart); } /** * @brief Rx Transfer completed callback * @param huart: UART handle * @note This example shows a simple way to report end of DMA Rx transfer, and * you can add your own implementation. * @retval None */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { struct stm32_uart *uart; RT_ASSERT(huart != NULL); uart = (struct stm32_uart *)huart; dma_isr(&uart->serial); } /** * @brief Rx Half transfer completed callback * @param huart: UART handle * @note This example shows a simple way to report end of DMA Rx Half transfer, * and you can add your own implementation. * @retval None */ void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) { struct stm32_uart *uart; RT_ASSERT(huart != NULL); uart = (struct stm32_uart *)huart; dma_isr(&uart->serial); } /** * @brief HAL_UART_TxCpltCallback * @param huart: UART handle * @note This callback can be called by two functions, first in UART_EndTransmit_IT when * UART Tx complete and second in UART_DMATransmitCplt function in DMA Circular mode. * @retval None */ void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { struct stm32_uart *uart; rt_size_t dma_cnt; RT_ASSERT(huart != NULL); uart = (struct stm32_uart *)huart; dma_cnt = __HAL_DMA_GET_COUNTER(&(uart->dma_tx.handle)); if (dma_cnt == 0) { rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE); } } #endif /* RT_SERIAL_USING_DMA */ static const struct rt_uart_ops stm32_uart_ops = { .init = stm32_init, .configure = stm32_configure, .control = stm32_control, .putc = stm32_putc, .getc = stm32_getc, .flush = stm32_flush, .start_tx = stm32_start_tx, .stop_tx = stm32_stop_tx, #ifdef RT_SERIAL_USING_DMA .is_dma_txing = stm32_is_dma_txing, .start_dma_tx = stm32_start_dma_tx, .stop_dma_tx = stm32_stop_dma_tx, #endif .enable_interrupt = stm32_enable_interrupt, .disable_interrupt = stm32_disable_interrupt, }; int rt_hw_usart_init(void) { rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart); rt_err_t result = 0; #ifdef RT_SERIAL_USING_DMA stm32_uart_get_dma_config(); #endif for (int i = 0; i < obj_num; i++) { /* init UART object */ uart_obj[i].uart_config = &uart_config[i]; uart_obj[i].serial.ops = &stm32_uart_ops; /* register UART device */ result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].uart_config->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX #ifdef RT_SERIAL_USING_DMA | uart_obj[i].uart_dma_flag #endif , NULL); RT_ASSERT(result == RT_EOK); } return result; } #endif /* RT_USING_SERIAL */