memheap.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. /*
  2. * File : memheap.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2012-04-10 Bernard first implementation
  13. * 2012-10-16 Bernard add the mutex lock for heap object.
  14. */
  15. #include <rtthread.h>
  16. #ifdef RT_USING_MEMHEAP
  17. /* dynamic pool magic and mask */
  18. #define RT_MEMHEAP_MAGIC 0x1ea01ea0
  19. #define RT_MEMHEAP_MASK 0xfffffffe
  20. #define RT_MEMHEAP_USED 0x01
  21. #define RT_MEMHEAP_FREED 0x00
  22. #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
  23. #define RT_MEMHEAP_MINIALLOC 12
  24. #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
  25. /*
  26. * The initialized memory pool will be:
  27. * +-----------------------------------+--------------------------+
  28. * | whole freed memory block | Used Memory Block Tailer |
  29. * +-----------------------------------+--------------------------+
  30. *
  31. * block_list --> whole freed memory block
  32. *
  33. * The length of Used Memory Block Tailer is 0, which is prevents block merging across list
  34. */
  35. rt_err_t rt_memheap_init(struct rt_memheap *memheap, const char *name,
  36. void *start_addr,
  37. rt_uint32_t size)
  38. {
  39. struct rt_memheap_item *item;
  40. RT_ASSERT(memheap != RT_NULL);
  41. /* initialize pool object */
  42. rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
  43. memheap->start_addr = start_addr;
  44. memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
  45. memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
  46. /* initialize the free list header */
  47. item = &(memheap->free_header);
  48. item->magic = RT_MEMHEAP_MAGIC;
  49. item->pool_ptr = memheap;
  50. item->next = RT_NULL;
  51. item->prev = RT_NULL;
  52. item->next_free = item;
  53. item->prev_free = item;
  54. /* set the free list to free list header */
  55. memheap->free_list = item;
  56. /* initialize the first big memory block */
  57. item = (struct rt_memheap_item *)start_addr;
  58. item->magic = RT_MEMHEAP_MAGIC;
  59. item->pool_ptr = memheap;
  60. item->next = RT_NULL;
  61. item->prev = RT_NULL;
  62. item->next_free = item;
  63. item->prev_free = item;
  64. item->next = (struct rt_memheap_item *)
  65. ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
  66. item->prev = item->next;
  67. /* block list header */
  68. memheap->block_list = item;
  69. /* place the big memory block to free list */
  70. item->next_free = memheap->free_list->next_free;
  71. item->prev_free = memheap->free_list;
  72. memheap->free_list->next_free->prev_free = item;
  73. memheap->free_list->next_free = item;
  74. /* move to the end of memory pool to build a small tailer block, which prevents block merging */
  75. item = item->next;
  76. /* it's a used memory block */
  77. item->magic = RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED;
  78. item->pool_ptr = memheap;
  79. item->next = (struct rt_memheap_item *)start_addr;
  80. item->prev = (struct rt_memheap_item *)start_addr;
  81. /* not in free list */
  82. item->next_free = item->prev_free = RT_NULL;
  83. /* initialize mutex lock */
  84. rt_mutex_init(&(memheap->lock), name, RT_IPC_FLAG_FIFO);
  85. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("memory heap: start addr 0x%08x, size %d, free list header 0x%08x",
  86. start_addr, size, &(memheap->free_header)));
  87. return RT_EOK;
  88. }
  89. RTM_EXPORT(rt_memheap_init);
  90. rt_err_t rt_memheap_detach(struct rt_memheap *heap)
  91. {
  92. RT_ASSERT(heap);
  93. rt_object_detach(&(heap->lock.parent.parent));
  94. rt_object_detach(&(heap->parent));
  95. /* Return a successful completion. */
  96. return RT_EOK;
  97. }
  98. RTM_EXPORT(rt_memheap_detach);
  99. void *rt_memheap_alloc(struct rt_memheap *heap, rt_uint32_t size)
  100. {
  101. rt_err_t result;
  102. rt_uint32_t free_size;
  103. struct rt_memheap_item *header_ptr;
  104. RT_ASSERT(heap != RT_NULL);
  105. /* align allocated size */
  106. size = RT_ALIGN(size, RT_ALIGN_SIZE);
  107. if (size < RT_MEMHEAP_MINIALLOC)
  108. size = RT_MEMHEAP_MINIALLOC;
  109. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d", size));
  110. if (size < heap->available_size)
  111. {
  112. /* search on free list */
  113. free_size = 0;
  114. /* lock memheap */
  115. result = rt_mutex_take(&(heap->lock), RT_WAITING_FOREVER);
  116. if (result != RT_EOK)
  117. {
  118. rt_set_errno(result);
  119. return RT_NULL;
  120. }
  121. /* get the first free memory block */
  122. header_ptr = heap->free_list->next_free;
  123. while (header_ptr != heap->free_list && free_size < size)
  124. {
  125. /* get current freed memory block size */
  126. free_size = (rt_uint32_t)(header_ptr->next) - (rt_uint32_t)header_ptr - RT_MEMHEAP_SIZE;
  127. if (free_size < size)
  128. {
  129. /* move to next free memory block */
  130. header_ptr = header_ptr->next_free;
  131. }
  132. }
  133. /* determine if the memory is available. */
  134. if (free_size >= size)
  135. {
  136. /* a block that satisfies the request has been found. */
  137. /* determine if the block needs to be split. */
  138. if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
  139. {
  140. struct rt_memheap_item *new_ptr;
  141. /* split the block. */
  142. new_ptr = (struct rt_memheap_item *)(((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
  143. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("split: h[0x%08x] nm[0x%08x] pm[0x%08x] to n[0x%08x]", header_ptr,
  144. header_ptr->next, header_ptr->prev,
  145. new_ptr));
  146. /* mark the new block as a memory block and freed. */
  147. new_ptr->magic = RT_MEMHEAP_MAGIC;
  148. /* put the pool pointer into the new block. */
  149. new_ptr->pool_ptr = heap;
  150. /* break down the block list */
  151. new_ptr->prev = header_ptr;
  152. new_ptr->next = header_ptr->next;
  153. header_ptr->next->prev = new_ptr;
  154. header_ptr->next = new_ptr;
  155. /* remove header ptr from free list */
  156. header_ptr->next_free->prev_free = header_ptr->prev_free;
  157. header_ptr->prev_free->next_free = header_ptr->next_free;
  158. header_ptr->next_free = RT_NULL;
  159. header_ptr->prev_free = RT_NULL;
  160. /* insert new_ptr to free list */
  161. new_ptr->next_free = heap->free_list->next_free;
  162. new_ptr->prev_free = heap->free_list;
  163. heap->free_list->next_free->prev_free = new_ptr;
  164. heap->free_list->next_free = new_ptr;
  165. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: nf 0x%08x, pf 0x%08x",
  166. new_ptr->next_free, new_ptr->prev_free));
  167. /* decrement the available byte count. */
  168. heap->available_size = heap->available_size - size - RT_MEMHEAP_SIZE;
  169. }
  170. else
  171. {
  172. /* decrement the entire free size from the available bytes count. */
  173. heap->available_size = heap->available_size - free_size;
  174. /* remove header_ptr from free list */
  175. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("one block: h[0x%08x], nf 0x%08x, pf 0x%08x", header_ptr,
  176. header_ptr->next_free, header_ptr->prev_free));
  177. header_ptr->next_free->prev_free = header_ptr->prev_free;
  178. header_ptr->prev_free->next_free = header_ptr->next_free;
  179. header_ptr->next_free = RT_NULL;
  180. header_ptr->prev_free = RT_NULL;
  181. }
  182. /* release lock */
  183. rt_mutex_release(&(heap->lock));
  184. /* Mark the allocated block as not available. */
  185. header_ptr->magic |= RT_MEMHEAP_USED;
  186. /* Return a memory address to the caller. */
  187. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("am: m[0x%08x], h[0x%08x], size: %d",
  188. (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE), header_ptr, size);
  189. return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE));
  190. }
  191. /* release lock */
  192. rt_mutex_release(&(heap->lock));
  193. }
  194. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n"));
  195. /* Return the completion status. */
  196. return RT_NULL;
  197. }
  198. RTM_EXPORT(rt_memheap_alloc);
  199. void rt_memheap_free(void *ptr)
  200. {
  201. rt_err_t result;
  202. struct rt_memheap *heap;
  203. struct rt_memheap_item *header_ptr, *new_ptr;
  204. rt_uint32_t insert_header;
  205. /* set initial status as OK */
  206. insert_header = 1;
  207. new_ptr = RT_NULL;
  208. header_ptr = (struct rt_memheap_item *)((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
  209. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: m[0x%08x], h[0x%08x]", ptr, header_ptr));
  210. /* check magic */
  211. RT_ASSERT((header_ptr->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  212. /* get pool ptr */
  213. heap = header_ptr->pool_ptr;
  214. /* lock memheap */
  215. result = rt_mutex_take(&(heap->lock), RT_WAITING_FOREVER);
  216. if (result != RT_EOK)
  217. {
  218. rt_set_errno(result);
  219. return ;
  220. }
  221. /* Mark the memory as available. */
  222. header_ptr->magic &= ~RT_MEMHEAP_USED;
  223. /* Adjust the available number of bytes. */
  224. heap->available_size = heap->available_size +
  225. ((rt_uint32_t)(header_ptr->next) -
  226. (rt_uint32_t)header_ptr) - RT_MEMHEAP_SIZE;
  227. /* Determine if the block can be merged with the previous neighbor. */
  228. if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
  229. {
  230. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x", header_ptr->prev));
  231. /* adjust the available number of bytes. */
  232. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  233. /* yes, merge block with previous neighbor. */
  234. (header_ptr->prev)->next = header_ptr->next;
  235. (header_ptr->next)->prev = header_ptr->prev;
  236. /* move header pointer to previous. */
  237. header_ptr = header_ptr->prev;
  238. /* don't insert header to free list */
  239. insert_header = 0;
  240. }
  241. /* determine if the block can be merged with the next neighbor. */
  242. if (!RT_MEMHEAP_IS_USED(header_ptr->next))
  243. {
  244. /* adjust the available number of bytes. */
  245. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  246. /* merge block with next neighbor. */
  247. new_ptr = header_ptr->next;
  248. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: right node 0x%08x, nf 0x%08x, pf 0x%08x",
  249. new_ptr, new_ptr->next_free, new_ptr->prev_free));
  250. new_ptr->next->prev = header_ptr;
  251. header_ptr->next = new_ptr->next;
  252. /* remove new ptr from free list */
  253. new_ptr->next_free->prev_free = new_ptr->prev_free;
  254. new_ptr->prev_free->next_free = new_ptr->next_free;
  255. }
  256. if (insert_header)
  257. {
  258. /* no left merge, insert to free list */
  259. header_ptr->next_free = heap->free_list->next_free;
  260. header_ptr->prev_free = heap->free_list;
  261. heap->free_list->next_free->prev_free = header_ptr;
  262. heap->free_list->next_free = header_ptr;
  263. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("insert to free list: nf 0x%08x, pf 0x%08x",
  264. header_ptr->next_free, header_ptr->prev_free));
  265. }
  266. /* release lock */
  267. rt_mutex_release(&(heap->lock));
  268. }
  269. RTM_EXPORT(rt_memheap_free);
  270. #endif