workqueue.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-02-27 bernard fix the re-work issue.
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <rtdevice.h>
  13. #ifdef RT_USING_HEAP
  14. static void _delayed_work_timeout_handler(void *parameter);
  15. rt_inline rt_err_t _workqueue_work_completion(struct rt_workqueue *queue)
  16. {
  17. rt_err_t result;
  18. rt_enter_critical();
  19. while (1)
  20. {
  21. /* try to take condition semaphore */
  22. result = rt_sem_trytake(&(queue->sem));
  23. if (result == -RT_ETIMEOUT)
  24. {
  25. /* it's timeout, release this semaphore */
  26. rt_sem_release(&(queue->sem));
  27. }
  28. else if (result == RT_EOK)
  29. {
  30. /* keep the sem value = 0 */
  31. result = RT_EOK;
  32. break;
  33. }
  34. else
  35. {
  36. result = -RT_ERROR;
  37. break;
  38. }
  39. }
  40. rt_exit_critical();
  41. return result;
  42. }
  43. static void _workqueue_thread_entry(void *parameter)
  44. {
  45. rt_base_t level;
  46. struct rt_work *work;
  47. struct rt_workqueue *queue;
  48. queue = (struct rt_workqueue *) parameter;
  49. RT_ASSERT(queue != RT_NULL);
  50. while (1)
  51. {
  52. level = rt_hw_interrupt_disable();
  53. if (rt_list_isempty(&(queue->work_list)))
  54. {
  55. /* no software timer exist, suspend self. */
  56. rt_thread_suspend(rt_thread_self());
  57. rt_hw_interrupt_enable(level);
  58. rt_schedule();
  59. continue;
  60. }
  61. /* we have work to do with. */
  62. work = rt_list_entry(queue->work_list.next, struct rt_work, list);
  63. rt_list_remove(&(work->list));
  64. queue->work_current = work;
  65. work->flags &= ~RT_WORK_STATE_PENDING;
  66. work->workqueue = RT_NULL;
  67. rt_hw_interrupt_enable(level);
  68. /* do work */
  69. work->work_func(work, work->work_data);
  70. /* clean current work */
  71. queue->work_current = RT_NULL;
  72. /* ack work completion */
  73. _workqueue_work_completion(queue);
  74. }
  75. }
  76. static rt_err_t _workqueue_submit_work(struct rt_workqueue *queue,
  77. struct rt_work *work, rt_tick_t ticks)
  78. {
  79. rt_base_t level;
  80. rt_err_t err;
  81. level = rt_hw_interrupt_disable();
  82. /* remove list */
  83. rt_list_remove(&(work->list));
  84. work->flags &= ~RT_WORK_STATE_PENDING;
  85. /* */
  86. if (ticks == 0)
  87. {
  88. if (queue->work_current != work)
  89. {
  90. rt_list_insert_after(queue->work_list.prev, &(work->list));
  91. work->flags |= RT_WORK_STATE_PENDING;
  92. work->workqueue = queue;
  93. err = RT_EOK;
  94. }
  95. else
  96. {
  97. err = -RT_EBUSY;
  98. }
  99. /* whether the workqueue is doing work */
  100. if (queue->work_current == RT_NULL &&
  101. ((queue->work_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND))
  102. {
  103. /* resume work thread */
  104. rt_thread_resume(queue->work_thread);
  105. rt_hw_interrupt_enable(level);
  106. rt_schedule();
  107. }
  108. else
  109. {
  110. rt_hw_interrupt_enable(level);
  111. }
  112. return err;
  113. }
  114. else if (ticks < RT_TICK_MAX / 2)
  115. {
  116. /* Timer started */
  117. if (work->flags & RT_WORK_STATE_SUBMITTING)
  118. {
  119. rt_timer_stop(&work->timer);
  120. rt_timer_control(&work->timer, RT_TIMER_CTRL_SET_TIME, &ticks);
  121. }
  122. else
  123. {
  124. rt_timer_init(&(work->timer), "work", _delayed_work_timeout_handler,
  125. work, ticks, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
  126. work->flags |= RT_WORK_STATE_SUBMITTING;
  127. }
  128. work->workqueue = queue;
  129. /* insert delay work list */
  130. rt_list_insert_after(queue->delayed_list.prev, &(work->list));
  131. rt_hw_interrupt_enable(level);
  132. rt_timer_start(&(work->timer));
  133. return RT_EOK;
  134. }
  135. rt_hw_interrupt_enable(level);
  136. return -RT_ERROR;
  137. }
  138. static rt_err_t _workqueue_cancel_work(struct rt_workqueue *queue, struct rt_work *work)
  139. {
  140. rt_base_t level;
  141. rt_err_t err;
  142. level = rt_hw_interrupt_disable();
  143. rt_list_remove(&(work->list));
  144. work->flags &= ~RT_WORK_STATE_PENDING;
  145. /* Timer started */
  146. if (work->flags & RT_WORK_STATE_SUBMITTING)
  147. {
  148. rt_timer_stop(&(work->timer));
  149. rt_timer_detach(&(work->timer));
  150. work->flags &= ~RT_WORK_STATE_SUBMITTING;
  151. }
  152. err = queue->work_current != work ? RT_EOK : -RT_EBUSY;
  153. work->workqueue = RT_NULL;
  154. rt_hw_interrupt_enable(level);
  155. return err;
  156. }
  157. static void _delayed_work_timeout_handler(void *parameter)
  158. {
  159. struct rt_work *work;
  160. struct rt_workqueue *queue;
  161. rt_base_t level;
  162. work = (struct rt_work *)parameter;
  163. queue = work->workqueue;
  164. RT_ASSERT(queue != RT_NULL);
  165. level = rt_hw_interrupt_disable();
  166. rt_timer_detach(&(work->timer));
  167. work->flags &= ~RT_WORK_STATE_SUBMITTING;
  168. /* remove delay list */
  169. rt_list_remove(&(work->list));
  170. /* insert work queue */
  171. if (queue->work_current != work)
  172. {
  173. rt_list_insert_after(queue->work_list.prev, &(work->list));
  174. work->flags |= RT_WORK_STATE_PENDING;
  175. }
  176. /* whether the workqueue is doing work */
  177. if (queue->work_current == RT_NULL &&
  178. ((queue->work_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND))
  179. {
  180. /* resume work thread */
  181. rt_thread_resume(queue->work_thread);
  182. rt_hw_interrupt_enable(level);
  183. rt_schedule();
  184. }
  185. else
  186. {
  187. rt_hw_interrupt_enable(level);
  188. }
  189. }
  190. struct rt_workqueue *rt_workqueue_create(const char *name, rt_uint16_t stack_size, rt_uint8_t priority)
  191. {
  192. struct rt_workqueue *queue = RT_NULL;
  193. queue = (struct rt_workqueue *)RT_KERNEL_MALLOC(sizeof(struct rt_workqueue));
  194. if (queue != RT_NULL)
  195. {
  196. /* initialize work list */
  197. rt_list_init(&(queue->work_list));
  198. rt_list_init(&(queue->delayed_list));
  199. queue->work_current = RT_NULL;
  200. rt_sem_init(&(queue->sem), "wqueue", 0, RT_IPC_FLAG_FIFO);
  201. /* create the work thread */
  202. queue->work_thread = rt_thread_create(name, _workqueue_thread_entry, queue, stack_size, priority, 10);
  203. if (queue->work_thread == RT_NULL)
  204. {
  205. RT_KERNEL_FREE(queue);
  206. return RT_NULL;
  207. }
  208. rt_thread_startup(queue->work_thread);
  209. }
  210. return queue;
  211. }
  212. rt_err_t rt_workqueue_destroy(struct rt_workqueue *queue)
  213. {
  214. RT_ASSERT(queue != RT_NULL);
  215. rt_workqueue_cancel_all_work(queue);
  216. rt_thread_delete(queue->work_thread);
  217. rt_sem_detach(&(queue->sem));
  218. RT_KERNEL_FREE(queue);
  219. return RT_EOK;
  220. }
  221. rt_err_t rt_workqueue_dowork(struct rt_workqueue *queue, struct rt_work *work)
  222. {
  223. RT_ASSERT(queue != RT_NULL);
  224. RT_ASSERT(work != RT_NULL);
  225. return _workqueue_submit_work(queue, work, 0);
  226. }
  227. rt_err_t rt_workqueue_submit_work(struct rt_workqueue *queue, struct rt_work *work, rt_tick_t time)
  228. {
  229. RT_ASSERT(queue != RT_NULL);
  230. RT_ASSERT(work != RT_NULL);
  231. return _workqueue_submit_work(queue, work, time);
  232. }
  233. rt_err_t rt_workqueue_critical_work(struct rt_workqueue *queue, struct rt_work *work)
  234. {
  235. rt_base_t level;
  236. RT_ASSERT(queue != RT_NULL);
  237. RT_ASSERT(work != RT_NULL);
  238. level = rt_hw_interrupt_disable();
  239. /* NOTE: the work MUST be initialized firstly */
  240. rt_list_remove(&(work->list));
  241. rt_list_insert_after(&queue->work_list, &(work->list));
  242. /* whether the workqueue is doing work */
  243. if (queue->work_current == RT_NULL &&
  244. ((queue->work_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND))
  245. {
  246. /* resume work thread */
  247. rt_thread_resume(queue->work_thread);
  248. rt_hw_interrupt_enable(level);
  249. rt_schedule();
  250. }
  251. else
  252. {
  253. rt_hw_interrupt_enable(level);
  254. }
  255. return RT_EOK;
  256. }
  257. rt_err_t rt_workqueue_cancel_work(struct rt_workqueue *queue, struct rt_work *work)
  258. {
  259. RT_ASSERT(work != RT_NULL);
  260. RT_ASSERT(queue != RT_NULL);
  261. return _workqueue_cancel_work(queue, work);
  262. }
  263. rt_err_t rt_workqueue_cancel_work_sync(struct rt_workqueue *queue, struct rt_work *work)
  264. {
  265. RT_ASSERT(queue != RT_NULL);
  266. RT_ASSERT(work != RT_NULL);
  267. if (queue->work_current == work) /* it's current work in the queue */
  268. {
  269. /* wait for work completion */
  270. rt_sem_take(&(queue->sem), RT_WAITING_FOREVER);
  271. }
  272. else
  273. {
  274. _workqueue_cancel_work(queue, work);
  275. }
  276. return RT_EOK;
  277. }
  278. rt_err_t rt_workqueue_cancel_all_work(struct rt_workqueue *queue)
  279. {
  280. struct rt_work *work;
  281. RT_ASSERT(queue != RT_NULL);
  282. /* cancel work */
  283. rt_enter_critical();
  284. while (rt_list_isempty(&queue->work_list) == RT_FALSE)
  285. {
  286. work = rt_list_first_entry(&queue->work_list, struct rt_work, list);
  287. _workqueue_cancel_work(queue, work);
  288. }
  289. /* cancel delay work */
  290. while (rt_list_isempty(&queue->delayed_list) == RT_FALSE)
  291. {
  292. work = rt_list_first_entry(&queue->delayed_list, struct rt_work, list);
  293. _workqueue_cancel_work(queue, work);
  294. }
  295. rt_exit_critical();
  296. return RT_EOK;
  297. }
  298. void rt_delayed_work_init(struct rt_delayed_work *work, void (*work_func)(struct rt_work *work,
  299. void *work_data), void *work_data)
  300. {
  301. rt_work_init(&work->work, work_func, work_data);
  302. }
  303. #ifdef RT_USING_SYSTEM_WORKQUEUE
  304. static struct rt_workqueue *sys_workq;
  305. rt_err_t rt_work_submit(struct rt_work *work, rt_tick_t time)
  306. {
  307. return rt_workqueue_submit_work(sys_workq, work, time);
  308. }
  309. rt_err_t rt_work_cancel(struct rt_work *work)
  310. {
  311. return rt_workqueue_cancel_work(sys_workq, work);
  312. }
  313. static int rt_work_sys_workqueue_init(void)
  314. {
  315. if (sys_workq != RT_NULL)
  316. return RT_EOK;
  317. sys_workq = rt_workqueue_create("sys_work", RT_SYSTEM_WORKQUEUE_STACKSIZE,
  318. RT_SYSTEM_WORKQUEUE_PRIORITY);
  319. RT_ASSERT(sys_workq != RT_NULL);
  320. return RT_EOK;
  321. }
  322. INIT_PREV_EXPORT(rt_work_sys_workqueue_init);
  323. #endif /* RT_USING_SYSTEM_WORKQUEUE */
  324. #endif /* RT_USING_HEAP */