uart.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2011-08-08 lgnq first version
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include "uart.h"
  13. /**
  14. * @addtogroup Loongson LS1B
  15. */
  16. /*@{*/
  17. #if defined(RT_USING_UART) && defined(RT_USING_DEVICE)
  18. struct rt_uart_ls1b
  19. {
  20. struct rt_device parent;
  21. rt_uint32_t hw_base;
  22. rt_uint32_t irq;
  23. /* buffer for reception */
  24. rt_uint8_t read_index, save_index;
  25. rt_uint8_t rx_buffer[RT_UART_RX_BUFFER_SIZE];
  26. }uart_device;
  27. static void rt_uart_irqhandler(int irqno, void *param)
  28. {
  29. rt_ubase_t level;
  30. rt_uint8_t isr;
  31. struct rt_uart_ls1b *uart = &uart_device;
  32. /* read interrupt status and clear it */
  33. isr = UART_IIR(uart->hw_base);
  34. isr = (isr >> 1) & 0x3;
  35. /* receive data available */
  36. if (isr & 0x02)
  37. {
  38. /* Receive Data Available */
  39. while (UART_LSR(uart->hw_base) & UARTLSR_DR)
  40. {
  41. uart->rx_buffer[uart->save_index] = UART_DAT(uart->hw_base);
  42. level = rt_hw_interrupt_disable();
  43. uart->save_index ++;
  44. if (uart->save_index >= RT_UART_RX_BUFFER_SIZE)
  45. uart->save_index = 0;
  46. rt_hw_interrupt_enable(level);
  47. }
  48. /* invoke callback */
  49. if (uart->parent.rx_indicate != RT_NULL)
  50. {
  51. rt_size_t length;
  52. if (uart->read_index > uart->save_index)
  53. length = RT_UART_RX_BUFFER_SIZE - uart->read_index + uart->save_index;
  54. else
  55. length = uart->save_index - uart->read_index;
  56. uart->parent.rx_indicate(&uart->parent, length);
  57. }
  58. }
  59. return;
  60. }
  61. static rt_err_t rt_uart_init(rt_device_t dev)
  62. {
  63. rt_uint32_t baud_div;
  64. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  65. RT_ASSERT(uart != RT_NULL);
  66. #if 0
  67. /* init UART Hardware */
  68. UART_IER(uart->hw_base) = 0; /* clear interrupt */
  69. UART_FCR(uart->hw_base) = 0x60; /* reset UART Rx/Tx */
  70. /* enable UART clock */
  71. /* set databits, stopbits and parity. (8-bit data, 1 stopbit, no parity) */
  72. UART_LCR(uart->hw_base) = 0x3;
  73. /* set baudrate */
  74. baud_div = DEV_CLK / 16 / UART_BAUDRATE;
  75. UART_LCR(uart->hw_base) |= UARTLCR_DLAB;
  76. UART_MSB(uart->hw_base) = (baud_div >> 8) & 0xff;
  77. UART_LSB(uart->hw_base) = baud_div & 0xff;
  78. UART_LCR(uart->hw_base) &= ~UARTLCR_DLAB;
  79. /* Enable UART unit, enable and clear FIFO */
  80. UART_FCR(uart->hw_base) = UARTFCR_UUE | UARTFCR_FE | UARTFCR_TFLS | UARTFCR_RFLS;
  81. #endif
  82. return RT_EOK;
  83. }
  84. static rt_err_t rt_uart_open(rt_device_t dev, rt_uint16_t oflag)
  85. {
  86. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  87. RT_ASSERT(uart != RT_NULL);
  88. if (dev->flag & RT_DEVICE_FLAG_INT_RX)
  89. {
  90. /* Enable the UART Interrupt */
  91. UART_IER(uart->hw_base) |= UARTIER_IRXE;
  92. /* install interrupt */
  93. rt_hw_interrupt_install(uart->irq, rt_uart_irqhandler, RT_NULL, "UART");
  94. rt_hw_interrupt_umask(uart->irq);
  95. }
  96. return RT_EOK;
  97. }
  98. static rt_err_t rt_uart_close(rt_device_t dev)
  99. {
  100. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  101. RT_ASSERT(uart != RT_NULL);
  102. if (dev->flag & RT_DEVICE_FLAG_INT_RX)
  103. {
  104. /* Disable the UART Interrupt */
  105. UART_IER(uart->hw_base) &= ~(UARTIER_IRXE);
  106. }
  107. return RT_EOK;
  108. }
  109. static rt_size_t rt_uart_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  110. {
  111. rt_uint8_t *ptr;
  112. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  113. RT_ASSERT(uart != RT_NULL);
  114. /* point to buffer */
  115. ptr = (rt_uint8_t *)buffer;
  116. if (dev->flag & RT_DEVICE_FLAG_INT_RX)
  117. {
  118. while (size)
  119. {
  120. /* interrupt receive */
  121. rt_base_t level;
  122. /* disable interrupt */
  123. level = rt_hw_interrupt_disable();
  124. if (uart->read_index != uart->save_index)
  125. {
  126. *ptr = uart->rx_buffer[uart->read_index];
  127. uart->read_index ++;
  128. if (uart->read_index >= RT_UART_RX_BUFFER_SIZE)
  129. uart->read_index = 0;
  130. }
  131. else
  132. {
  133. /* no data in rx buffer */
  134. /* enable interrupt */
  135. rt_hw_interrupt_enable(level);
  136. break;
  137. }
  138. /* enable interrupt */
  139. rt_hw_interrupt_enable(level);
  140. ptr ++;
  141. size --;
  142. }
  143. return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
  144. }
  145. return 0;
  146. }
  147. static rt_size_t rt_uart_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  148. {
  149. char *ptr;
  150. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  151. RT_ASSERT(uart != RT_NULL);
  152. ptr = (char *)buffer;
  153. if (dev->flag & RT_DEVICE_FLAG_STREAM)
  154. {
  155. /* stream mode */
  156. while (size)
  157. {
  158. if (*ptr == '\n')
  159. {
  160. /* FIFO status, contain valid data */
  161. while (!(UART_LSR(uart->hw_base) & (UARTLSR_TE | UARTLSR_TFE)));
  162. /* write data */
  163. UART_DAT(uart->hw_base) = '\r';
  164. }
  165. /* FIFO status, contain valid data */
  166. while (!(UART_LSR(uart->hw_base) & (UARTLSR_TE | UARTLSR_TFE)));
  167. /* write data */
  168. UART_DAT(uart->hw_base) = *ptr;
  169. ptr ++;
  170. size --;
  171. }
  172. }
  173. else
  174. {
  175. while (size != 0)
  176. {
  177. /* FIFO status, contain valid data */
  178. while (!(UART_LSR(uart->hw_base) & (UARTLSR_TE | UARTLSR_TFE)));
  179. /* write data */
  180. UART_DAT(uart->hw_base) = *ptr;
  181. ptr++;
  182. size--;
  183. }
  184. }
  185. return (rt_size_t)ptr - (rt_size_t)buffer;
  186. }
  187. void rt_hw_uart_init(void)
  188. {
  189. struct rt_uart_ls1b *uart;
  190. /* get uart device */
  191. uart = &uart_device;
  192. /* device initialization */
  193. uart->parent.type = RT_Device_Class_Char;
  194. rt_memset(uart->rx_buffer, 0, sizeof(uart->rx_buffer));
  195. uart->read_index = uart->save_index = 0;
  196. #if defined(RT_USING_UART0)
  197. uart->hw_base = UART0_BASE;
  198. uart->irq = LS1B_UART0_IRQ;
  199. #elif defined(RT_USING_UART1)
  200. uart->hw_base = UART1_BASE;
  201. uart->irq = LS1B_UART1_IRQ;
  202. #elif defined(RT_USING_UART3)
  203. uart->hw_base = UART3_BASE;
  204. uart->irq = LS1B_UART3_IRQ;
  205. #endif
  206. /* device interface */
  207. uart->parent.init = rt_uart_init;
  208. uart->parent.open = rt_uart_open;
  209. uart->parent.close = rt_uart_close;
  210. uart->parent.read = rt_uart_read;
  211. uart->parent.write = rt_uart_write;
  212. uart->parent.control = RT_NULL;
  213. uart->parent.user_data = RT_NULL;
  214. rt_device_register(&uart->parent, "uart0",
  215. RT_DEVICE_FLAG_RDWR |
  216. RT_DEVICE_FLAG_STREAM |
  217. RT_DEVICE_FLAG_INT_RX);
  218. }
  219. #endif /* end of UART */
  220. /*@}*/