memheap.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. /*
  2. * File : memheap.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2012-04-10 Bernard first implementation
  13. */
  14. #include <rtthread.h>
  15. #ifdef RT_USING_MEMHEAP
  16. /* dynamic pool magic and mask */
  17. #define RT_MEMHEAP_MAGIC 0x1ea01ea0
  18. #define RT_MEMHEAP_MASK 0xfffffffe
  19. #define RT_MEMHEAP_USED 0x01
  20. #define RT_MEMHEAP_FREED 0x00
  21. #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
  22. #define RT_MEMHEAP_MINIALLOC 12
  23. #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
  24. /*
  25. * The initialized memory pool will be:
  26. * +-----------------------------------+--------------------------+
  27. * | whole freed memory block | Used Memory Block Tailer |
  28. * +-----------------------------------+--------------------------+
  29. *
  30. * block_list --> whole freed memory block
  31. *
  32. * The length of Used Memory Block Tailer is 0, which is prevents block merging across list
  33. */
  34. rt_err_t rt_memheap_init(struct rt_memheap* memheap, const char* name,
  35. void *start_addr,
  36. rt_uint32_t size)
  37. {
  38. struct rt_memheap_item *item;
  39. RT_ASSERT(memheap != RT_NULL);
  40. /* initialize pool object */
  41. rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
  42. memheap->start_addr = start_addr;
  43. memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
  44. memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
  45. /* initialize the free list header */
  46. item = &(memheap->free_header);
  47. item->magic = RT_MEMHEAP_MAGIC;
  48. item->pool_ptr = memheap;
  49. item->next = RT_NULL;
  50. item->prev = RT_NULL;
  51. item->next_free = item;
  52. item->prev_free = item;
  53. /* set the free list to free list header */
  54. memheap->free_list = item;
  55. /* initialize the first big memory block */
  56. item = (struct rt_memheap_item*) start_addr;
  57. item->magic = RT_MEMHEAP_MAGIC;
  58. item->pool_ptr = memheap;
  59. item->next = RT_NULL;
  60. item->prev = RT_NULL;
  61. item->next_free = item;
  62. item->prev_free = item;
  63. item->next = (struct rt_memheap_item *)
  64. ((rt_uint8_t*) item + memheap->available_size + RT_MEMHEAP_SIZE);
  65. item->prev = item->next;
  66. /* block list header */
  67. memheap->block_list = item;
  68. /* place the big memory block to free list */
  69. item->next_free = memheap->free_list->next_free;
  70. item->prev_free = memheap->free_list;
  71. memheap->free_list->next_free->prev_free = item;
  72. memheap->free_list->next_free = item;
  73. /* move to the end of memory pool to build a small tailer block, which prevents block merging */
  74. item = item->next;
  75. /* it's a used memory block */
  76. item->magic = RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED;
  77. item->pool_ptr = memheap;
  78. item->next = (struct rt_memheap_item *) start_addr;
  79. item->prev = (struct rt_memheap_item *) start_addr;
  80. /* not in free list */
  81. item->next_free = item->prev_free = RT_NULL;
  82. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("memory heap: start addr 0x%08x, size %d, free list header 0x%08x",
  83. start_addr, size, &(memheap->free_header)));
  84. return RT_EOK;
  85. }
  86. rt_err_t rt_memheap_detach(struct rt_memheap* heap)
  87. {
  88. rt_object_detach(&(heap->parent));
  89. /* Return a successful completion. */
  90. return RT_EOK;
  91. }
  92. void* rt_memheap_alloc(struct rt_memheap *pool_ptr, rt_uint32_t size)
  93. {
  94. rt_uint32_t free_size;
  95. struct rt_memheap_item *header_ptr;
  96. RT_ASSERT(pool_ptr != RT_NULL);
  97. /* align allocated size */
  98. size = RT_ALIGN(size, RT_ALIGN_SIZE);
  99. if (size < RT_MEMHEAP_MINIALLOC) size = RT_MEMHEAP_MINIALLOC;
  100. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d", size));
  101. if (size < pool_ptr->available_size)
  102. {
  103. /* search on free list */
  104. free_size = 0;
  105. /* get the first free memory block */
  106. header_ptr = pool_ptr->free_list->next_free;
  107. while (header_ptr != pool_ptr->free_list && free_size < size)
  108. {
  109. /* get current freed memory block size */
  110. free_size = (rt_uint32_t)(header_ptr->next) - (rt_uint32_t)header_ptr - RT_MEMHEAP_SIZE;
  111. if (free_size < size)
  112. {
  113. /* move to next free memory block */
  114. header_ptr = header_ptr->next_free;
  115. }
  116. }
  117. /* determine if the memory is available. */
  118. if (free_size >= size)
  119. {
  120. /* a block that satisfies the request has been found. */
  121. /* determine if the block needs to be split. */
  122. if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
  123. {
  124. struct rt_memheap_item* new_ptr;
  125. /* split the block. */
  126. new_ptr = (struct rt_memheap_item*) (((rt_uint8_t*) header_ptr) + size + RT_MEMHEAP_SIZE);
  127. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("split: h[0x%08x] nm[0x%08x] pm[0x%08x] to n[0x%08x]", header_ptr,
  128. header_ptr->next, header_ptr->prev,
  129. new_ptr));
  130. /* mark the new block as a memory block and freed. */
  131. new_ptr->magic = RT_MEMHEAP_MAGIC;
  132. /* put the pool pointer into the new block. */
  133. new_ptr->pool_ptr = pool_ptr;
  134. /* break down the block list */
  135. new_ptr->prev = header_ptr;
  136. new_ptr->next = header_ptr->next;
  137. header_ptr->next->prev = new_ptr;
  138. header_ptr->next = new_ptr;
  139. /* remove header ptr from free list */
  140. header_ptr->next_free->prev_free = header_ptr->prev_free;
  141. header_ptr->prev_free->next_free = header_ptr->next_free;
  142. header_ptr->next_free = RT_NULL;
  143. header_ptr->prev_free = RT_NULL;
  144. /* insert new_ptr to free list */
  145. new_ptr->next_free = pool_ptr->free_list->next_free;
  146. new_ptr->prev_free = pool_ptr->free_list;
  147. pool_ptr->free_list->next_free->prev_free = new_ptr;
  148. pool_ptr->free_list->next_free = new_ptr;
  149. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: nf 0x%08x, pf 0x%08x",
  150. new_ptr->next_free, new_ptr->prev_free));
  151. /* decrement the available byte count. */
  152. pool_ptr->available_size = pool_ptr->available_size - size - RT_MEMHEAP_SIZE;
  153. }
  154. else
  155. {
  156. /* decrement the entire free size from the available bytes count. */
  157. pool_ptr->available_size = pool_ptr->available_size - free_size;
  158. /* remove header_ptr from free list */
  159. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("one block: h[0x%08x], nf 0x%08x, pf 0x%08x", header_ptr,
  160. header_ptr->next_free, header_ptr->prev_free));
  161. header_ptr->next_free->prev_free = header_ptr->prev_free;
  162. header_ptr->prev_free->next_free = header_ptr->next_free;
  163. header_ptr->next_free = RT_NULL;
  164. header_ptr->prev_free = RT_NULL;
  165. }
  166. /* Mark the allocated block as not available. */
  167. header_ptr->magic |= RT_MEMHEAP_USED;
  168. /* Return a memory address to the caller. */
  169. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("am: m[0x%08x], h[0x%08x], size: %d",
  170. (void*) ((rt_uint8_t*)header_ptr + RT_MEMHEAP_SIZE), header_ptr, size);
  171. return (void*) ((rt_uint8_t*)header_ptr + RT_MEMHEAP_SIZE));
  172. }
  173. }
  174. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n"));
  175. /* Return the completion status. */
  176. return RT_NULL;
  177. }
  178. void rt_memheap_free(void* ptr)
  179. {
  180. struct rt_memheap *pool_ptr;
  181. struct rt_memheap_item *header_ptr, *new_ptr;
  182. rt_uint32_t insert_header;
  183. /* set initial status as OK */
  184. insert_header = 1; new_ptr = RT_NULL;
  185. header_ptr = (struct rt_memheap_item*)((rt_uint8_t*)ptr - RT_MEMHEAP_SIZE);
  186. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: m[0x%08x], h[0x%08x]", ptr, header_ptr));
  187. /* check magic */
  188. RT_ASSERT((header_ptr->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  189. /* get pool ptr */
  190. pool_ptr = header_ptr->pool_ptr;
  191. /* Mark the memory as available. */
  192. header_ptr->magic &= ~RT_MEMHEAP_USED;
  193. /* Adjust the available number of bytes. */
  194. pool_ptr->available_size = pool_ptr->available_size +
  195. ((rt_uint32_t)(header_ptr->next) -
  196. (rt_uint32_t)header_ptr) - RT_MEMHEAP_SIZE;
  197. /* Determine if the block can be merged with the previous neighbor. */
  198. if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
  199. {
  200. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x", header_ptr->prev));
  201. /* adjust the available number of bytes. */
  202. pool_ptr->available_size = pool_ptr->available_size + RT_MEMHEAP_SIZE;
  203. /* yes, merge block with previous neighbor. */
  204. (header_ptr->prev)->next = header_ptr->next;
  205. (header_ptr->next)->prev = header_ptr->prev;
  206. /* move header pointer to previous. */
  207. header_ptr = header_ptr->prev;
  208. insert_header = 0; /* don't insert header to free list */
  209. }
  210. /* determine if the block can be merged with the next neighbor. */
  211. if (!RT_MEMHEAP_IS_USED(header_ptr->next))
  212. {
  213. /* adjust the available number of bytes. */
  214. pool_ptr->available_size = pool_ptr->available_size + RT_MEMHEAP_SIZE;
  215. /* merge block with next neighbor. */
  216. new_ptr = header_ptr->next;
  217. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: right node 0x%08x, nf 0x%08x, pf 0x%08x",
  218. new_ptr, new_ptr->next_free, new_ptr->prev_free));
  219. new_ptr->next->prev = header_ptr;
  220. header_ptr->next = new_ptr->next;
  221. /* remove new ptr from free list */
  222. new_ptr->next_free->prev_free = new_ptr->prev_free;
  223. new_ptr->prev_free->next_free = new_ptr->next_free;
  224. }
  225. if (insert_header)
  226. {
  227. /* no left merge, insert to free list */
  228. header_ptr->next_free = pool_ptr->free_list->next_free;
  229. header_ptr->prev_free = pool_ptr->free_list;
  230. pool_ptr->free_list->next_free->prev_free = header_ptr;
  231. pool_ptr->free_list->next_free = header_ptr;
  232. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("insert to free list: nf 0x%08x, pf 0x%08x",
  233. header_ptr->next_free, header_ptr->prev_free));
  234. }
  235. }
  236. #endif