| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273 |
- /*
- ** 2001 September 15
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- ** The code in this file implements execution method of the
- ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
- ** handles housekeeping details such as creating and deleting
- ** VDBE instances. This file is solely interested in executing
- ** the VDBE program.
- **
- ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
- ** to a VDBE.
- **
- ** The SQL parser generates a program which is then executed by
- ** the VDBE to do the work of the SQL statement. VDBE programs are
- ** similar in form to assembly language. The program consists of
- ** a linear sequence of operations. Each operation has an opcode
- ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
- ** is a null-terminated string. Operand P5 is an unsigned character.
- ** Few opcodes use all 5 operands.
- **
- ** Computation results are stored on a set of registers numbered beginning
- ** with 1 and going up to Vdbe.nMem. Each register can store
- ** either an integer, a null-terminated string, a floating point
- ** number, or the SQL "NULL" value. An implicit conversion from one
- ** type to the other occurs as necessary.
- **
- ** Most of the code in this file is taken up by the sqlite3VdbeExec()
- ** function which does the work of interpreting a VDBE program.
- ** But other routines are also provided to help in building up
- ** a program instruction by instruction.
- **
- ** Various scripts scan this source file in order to generate HTML
- ** documentation, headers files, or other derived files. The formatting
- ** of the code in this file is, therefore, important. See other comments
- ** in this file for details. If in doubt, do not deviate from existing
- ** commenting and indentation practices when changing or adding code.
- */
- #include "sqliteInt.h"
- #include "vdbeInt.h"
- /*
- ** Invoke this macro on memory cells just prior to changing the
- ** value of the cell. This macro verifies that shallow copies are
- ** not misused.
- */
- #ifdef SQLITE_DEBUG
- # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
- #else
- # define memAboutToChange(P,M)
- #endif
- /*
- ** The following global variable is incremented every time a cursor
- ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
- ** procedures use this information to make sure that indices are
- ** working correctly. This variable has no function other than to
- ** help verify the correct operation of the library.
- */
- #ifdef SQLITE_TEST
- int sqlite3_search_count = 0;
- #endif
- /*
- ** When this global variable is positive, it gets decremented once before
- ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
- ** field of the sqlite3 structure is set in order to simulate an interrupt.
- **
- ** This facility is used for testing purposes only. It does not function
- ** in an ordinary build.
- */
- #ifdef SQLITE_TEST
- int sqlite3_interrupt_count = 0;
- #endif
- /*
- ** The next global variable is incremented each type the OP_Sort opcode
- ** is executed. The test procedures use this information to make sure that
- ** sorting is occurring or not occurring at appropriate times. This variable
- ** has no function other than to help verify the correct operation of the
- ** library.
- */
- #ifdef SQLITE_TEST
- int sqlite3_sort_count = 0;
- #endif
- /*
- ** The next global variable records the size of the largest MEM_Blob
- ** or MEM_Str that has been used by a VDBE opcode. The test procedures
- ** use this information to make sure that the zero-blob functionality
- ** is working correctly. This variable has no function other than to
- ** help verify the correct operation of the library.
- */
- #ifdef SQLITE_TEST
- int sqlite3_max_blobsize = 0;
- static void updateMaxBlobsize(Mem *p){
- if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
- sqlite3_max_blobsize = p->n;
- }
- }
- #endif
- /*
- ** The next global variable is incremented each type the OP_Found opcode
- ** is executed. This is used to test whether or not the foreign key
- ** operation implemented using OP_FkIsZero is working. This variable
- ** has no function other than to help verify the correct operation of the
- ** library.
- */
- #ifdef SQLITE_TEST
- int sqlite3_found_count = 0;
- #endif
- /*
- ** Test a register to see if it exceeds the current maximum blob size.
- ** If it does, record the new maximum blob size.
- */
- #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
- # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
- #else
- # define UPDATE_MAX_BLOBSIZE(P)
- #endif
- /*
- ** Convert the given register into a string if it isn't one
- ** already. Return non-zero if a malloc() fails.
- */
- #define Stringify(P, enc) \
- if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
- { goto no_mem; }
- /*
- ** An ephemeral string value (signified by the MEM_Ephem flag) contains
- ** a pointer to a dynamically allocated string where some other entity
- ** is responsible for deallocating that string. Because the register
- ** does not control the string, it might be deleted without the register
- ** knowing it.
- **
- ** This routine converts an ephemeral string into a dynamically allocated
- ** string that the register itself controls. In other words, it
- ** converts an MEM_Ephem string into an MEM_Dyn string.
- */
- #define Deephemeralize(P) \
- if( ((P)->flags&MEM_Ephem)!=0 \
- && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
- /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
- # define isSorter(x) ((x)->pSorter!=0)
- /*
- ** Argument pMem points at a register that will be passed to a
- ** user-defined function or returned to the user as the result of a query.
- ** This routine sets the pMem->type variable used by the sqlite3_value_*()
- ** routines.
- */
- void sqlite3VdbeMemStoreType(Mem *pMem){
- int flags = pMem->flags;
- if( flags & MEM_Null ){
- pMem->type = SQLITE_NULL;
- }
- else if( flags & MEM_Int ){
- pMem->type = SQLITE_INTEGER;
- }
- else if( flags & MEM_Real ){
- pMem->type = SQLITE_FLOAT;
- }
- else if( flags & MEM_Str ){
- pMem->type = SQLITE_TEXT;
- }else{
- pMem->type = SQLITE_BLOB;
- }
- }
- /*
- ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
- ** if we run out of memory.
- */
- static VdbeCursor *allocateCursor(
- Vdbe *p, /* The virtual machine */
- int iCur, /* Index of the new VdbeCursor */
- int nField, /* Number of fields in the table or index */
- int iDb, /* Database the cursor belongs to, or -1 */
- int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
- ){
- /* Find the memory cell that will be used to store the blob of memory
- ** required for this VdbeCursor structure. It is convenient to use a
- ** vdbe memory cell to manage the memory allocation required for a
- ** VdbeCursor structure for the following reasons:
- **
- ** * Sometimes cursor numbers are used for a couple of different
- ** purposes in a vdbe program. The different uses might require
- ** different sized allocations. Memory cells provide growable
- ** allocations.
- **
- ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
- ** be freed lazily via the sqlite3_release_memory() API. This
- ** minimizes the number of malloc calls made by the system.
- **
- ** Memory cells for cursors are allocated at the top of the address
- ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
- ** cursor 1 is managed by memory cell (p->nMem-1), etc.
- */
- Mem *pMem = &p->aMem[p->nMem-iCur];
- int nByte;
- VdbeCursor *pCx = 0;
- nByte =
- ROUND8(sizeof(VdbeCursor)) +
- (isBtreeCursor?sqlite3BtreeCursorSize():0) +
- 2*nField*sizeof(u32);
- assert( iCur<p->nCursor );
- if( p->apCsr[iCur] ){
- sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
- p->apCsr[iCur] = 0;
- }
- if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
- p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
- memset(pCx, 0, sizeof(VdbeCursor));
- pCx->iDb = iDb;
- pCx->nField = nField;
- if( nField ){
- pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
- }
- if( isBtreeCursor ){
- pCx->pCursor = (BtCursor*)
- &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
- sqlite3BtreeCursorZero(pCx->pCursor);
- }
- }
- return pCx;
- }
- /*
- ** Try to convert a value into a numeric representation if we can
- ** do so without loss of information. In other words, if the string
- ** looks like a number, convert it into a number. If it does not
- ** look like a number, leave it alone.
- */
- static void applyNumericAffinity(Mem *pRec){
- if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
- double rValue;
- i64 iValue;
- u8 enc = pRec->enc;
- if( (pRec->flags&MEM_Str)==0 ) return;
- if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
- if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
- pRec->u.i = iValue;
- pRec->flags |= MEM_Int;
- }else{
- pRec->r = rValue;
- pRec->flags |= MEM_Real;
- }
- }
- }
- /*
- ** Processing is determine by the affinity parameter:
- **
- ** SQLITE_AFF_INTEGER:
- ** SQLITE_AFF_REAL:
- ** SQLITE_AFF_NUMERIC:
- ** Try to convert pRec to an integer representation or a
- ** floating-point representation if an integer representation
- ** is not possible. Note that the integer representation is
- ** always preferred, even if the affinity is REAL, because
- ** an integer representation is more space efficient on disk.
- **
- ** SQLITE_AFF_TEXT:
- ** Convert pRec to a text representation.
- **
- ** SQLITE_AFF_NONE:
- ** No-op. pRec is unchanged.
- */
- static void applyAffinity(
- Mem *pRec, /* The value to apply affinity to */
- char affinity, /* The affinity to be applied */
- u8 enc /* Use this text encoding */
- ){
- if( affinity==SQLITE_AFF_TEXT ){
- /* Only attempt the conversion to TEXT if there is an integer or real
- ** representation (blob and NULL do not get converted) but no string
- ** representation.
- */
- if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
- sqlite3VdbeMemStringify(pRec, enc);
- }
- pRec->flags &= ~(MEM_Real|MEM_Int);
- }else if( affinity!=SQLITE_AFF_NONE ){
- assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
- || affinity==SQLITE_AFF_NUMERIC );
- applyNumericAffinity(pRec);
- if( pRec->flags & MEM_Real ){
- sqlite3VdbeIntegerAffinity(pRec);
- }
- }
- }
- /*
- ** Try to convert the type of a function argument or a result column
- ** into a numeric representation. Use either INTEGER or REAL whichever
- ** is appropriate. But only do the conversion if it is possible without
- ** loss of information and return the revised type of the argument.
- */
- int sqlite3_value_numeric_type(sqlite3_value *pVal){
- Mem *pMem = (Mem*)pVal;
- if( pMem->type==SQLITE_TEXT ){
- applyNumericAffinity(pMem);
- sqlite3VdbeMemStoreType(pMem);
- }
- return pMem->type;
- }
- /*
- ** Exported version of applyAffinity(). This one works on sqlite3_value*,
- ** not the internal Mem* type.
- */
- void sqlite3ValueApplyAffinity(
- sqlite3_value *pVal,
- u8 affinity,
- u8 enc
- ){
- applyAffinity((Mem *)pVal, affinity, enc);
- }
- #ifdef SQLITE_DEBUG
- /*
- ** Write a nice string representation of the contents of cell pMem
- ** into buffer zBuf, length nBuf.
- */
- void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
- char *zCsr = zBuf;
- int f = pMem->flags;
- static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
- if( f&MEM_Blob ){
- int i;
- char c;
- if( f & MEM_Dyn ){
- c = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- c = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- c = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- c = 's';
- }
- sqlite3_snprintf(100, zCsr, "%c", c);
- zCsr += sqlite3Strlen30(zCsr);
- sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
- zCsr += sqlite3Strlen30(zCsr);
- for(i=0; i<16 && i<pMem->n; i++){
- sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
- zCsr += sqlite3Strlen30(zCsr);
- }
- for(i=0; i<16 && i<pMem->n; i++){
- char z = pMem->z[i];
- if( z<32 || z>126 ) *zCsr++ = '.';
- else *zCsr++ = z;
- }
- sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
- zCsr += sqlite3Strlen30(zCsr);
- if( f & MEM_Zero ){
- sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
- zCsr += sqlite3Strlen30(zCsr);
- }
- *zCsr = '\0';
- }else if( f & MEM_Str ){
- int j, k;
- zBuf[0] = ' ';
- if( f & MEM_Dyn ){
- zBuf[1] = 'z';
- assert( (f & (MEM_Static|MEM_Ephem))==0 );
- }else if( f & MEM_Static ){
- zBuf[1] = 't';
- assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
- }else if( f & MEM_Ephem ){
- zBuf[1] = 'e';
- assert( (f & (MEM_Static|MEM_Dyn))==0 );
- }else{
- zBuf[1] = 's';
- }
- k = 2;
- sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
- k += sqlite3Strlen30(&zBuf[k]);
- zBuf[k++] = '[';
- for(j=0; j<15 && j<pMem->n; j++){
- u8 c = pMem->z[j];
- if( c>=0x20 && c<0x7f ){
- zBuf[k++] = c;
- }else{
- zBuf[k++] = '.';
- }
- }
- zBuf[k++] = ']';
- sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
- k += sqlite3Strlen30(&zBuf[k]);
- zBuf[k++] = 0;
- }
- }
- #endif
- #ifdef SQLITE_DEBUG
- /*
- ** Print the value of a register for tracing purposes:
- */
- static void memTracePrint(FILE *out, Mem *p){
- if( p->flags & MEM_Invalid ){
- fprintf(out, " undefined");
- }else if( p->flags & MEM_Null ){
- fprintf(out, " NULL");
- }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
- fprintf(out, " si:%lld", p->u.i);
- }else if( p->flags & MEM_Int ){
- fprintf(out, " i:%lld", p->u.i);
- #ifndef SQLITE_OMIT_FLOATING_POINT
- }else if( p->flags & MEM_Real ){
- fprintf(out, " r:%g", p->r);
- #endif
- }else if( p->flags & MEM_RowSet ){
- fprintf(out, " (rowset)");
- }else{
- char zBuf[200];
- sqlite3VdbeMemPrettyPrint(p, zBuf);
- fprintf(out, " ");
- fprintf(out, "%s", zBuf);
- }
- }
- static void registerTrace(FILE *out, int iReg, Mem *p){
- fprintf(out, "REG[%d] = ", iReg);
- memTracePrint(out, p);
- fprintf(out, "\n");
- }
- #endif
- #ifdef SQLITE_DEBUG
- # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
- #else
- # define REGISTER_TRACE(R,M)
- #endif
- #ifdef VDBE_PROFILE
- /*
- ** hwtime.h contains inline assembler code for implementing
- ** high-performance timing routines.
- */
- #include "hwtime.h"
- #endif
- /*
- ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
- ** sqlite3_interrupt() routine has been called. If it has been, then
- ** processing of the VDBE program is interrupted.
- **
- ** This macro added to every instruction that does a jump in order to
- ** implement a loop. This test used to be on every single instruction,
- ** but that meant we more testing than we needed. By only testing the
- ** flag on jump instructions, we get a (small) speed improvement.
- */
- #define CHECK_FOR_INTERRUPT \
- if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
- #ifndef NDEBUG
- /*
- ** This function is only called from within an assert() expression. It
- ** checks that the sqlite3.nTransaction variable is correctly set to
- ** the number of non-transaction savepoints currently in the
- ** linked list starting at sqlite3.pSavepoint.
- **
- ** Usage:
- **
- ** assert( checkSavepointCount(db) );
- */
- static int checkSavepointCount(sqlite3 *db){
- int n = 0;
- Savepoint *p;
- for(p=db->pSavepoint; p; p=p->pNext) n++;
- assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
- return 1;
- }
- #endif
- /*
- ** Execute as much of a VDBE program as we can then return.
- **
- ** sqlite3VdbeMakeReady() must be called before this routine in order to
- ** close the program with a final OP_Halt and to set up the callbacks
- ** and the error message pointer.
- **
- ** Whenever a row or result data is available, this routine will either
- ** invoke the result callback (if there is one) or return with
- ** SQLITE_ROW.
- **
- ** If an attempt is made to open a locked database, then this routine
- ** will either invoke the busy callback (if there is one) or it will
- ** return SQLITE_BUSY.
- **
- ** If an error occurs, an error message is written to memory obtained
- ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
- ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
- **
- ** If the callback ever returns non-zero, then the program exits
- ** immediately. There will be no error message but the p->rc field is
- ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
- **
- ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
- ** routine to return SQLITE_ERROR.
- **
- ** Other fatal errors return SQLITE_ERROR.
- **
- ** After this routine has finished, sqlite3VdbeFinalize() should be
- ** used to clean up the mess that was left behind.
- */
- int sqlite3VdbeExec(
- Vdbe *p /* The VDBE */
- ){
- int pc=0; /* The program counter */
- Op *aOp = p->aOp; /* Copy of p->aOp */
- Op *pOp; /* Current operation */
- int rc = SQLITE_OK; /* Value to return */
- sqlite3 *db = p->db; /* The database */
- u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
- u8 encoding = ENC(db); /* The database encoding */
- int iCompare = 0; /* Result of last OP_Compare operation */
- unsigned nVmStep = 0; /* Number of virtual machine steps */
- #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
- #endif
- Mem *aMem = p->aMem; /* Copy of p->aMem */
- Mem *pIn1 = 0; /* 1st input operand */
- Mem *pIn2 = 0; /* 2nd input operand */
- Mem *pIn3 = 0; /* 3rd input operand */
- Mem *pOut = 0; /* Output operand */
- int *aPermute = 0; /* Permutation of columns for OP_Compare */
- i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
- #ifdef VDBE_PROFILE
- u64 start; /* CPU clock count at start of opcode */
- int origPc; /* Program counter at start of opcode */
- #endif
- /*** INSERT STACK UNION HERE ***/
- assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
- sqlite3VdbeEnter(p);
- if( p->rc==SQLITE_NOMEM ){
- /* This happens if a malloc() inside a call to sqlite3_column_text() or
- ** sqlite3_column_text16() failed. */
- goto no_mem;
- }
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
- assert( p->bIsReader || p->readOnly!=0 );
- p->rc = SQLITE_OK;
- p->iCurrentTime = 0;
- assert( p->explain==0 );
- p->pResultSet = 0;
- db->busyHandler.nBusy = 0;
- CHECK_FOR_INTERRUPT;
- sqlite3VdbeIOTraceSql(p);
- #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- if( db->xProgress ){
- assert( 0 < db->nProgressOps );
- nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
- if( nProgressLimit==0 ){
- nProgressLimit = db->nProgressOps;
- }else{
- nProgressLimit %= (unsigned)db->nProgressOps;
- }
- }
- #endif
- #ifdef SQLITE_DEBUG
- sqlite3BeginBenignMalloc();
- if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
- int i;
- printf("VDBE Program Listing:\n");
- sqlite3VdbePrintSql(p);
- for(i=0; i<p->nOp; i++){
- sqlite3VdbePrintOp(stdout, i, &aOp[i]);
- }
- }
- sqlite3EndBenignMalloc();
- #endif
- for(pc=p->pc; rc==SQLITE_OK; pc++){
- assert( pc>=0 && pc<p->nOp );
- if( db->mallocFailed ) goto no_mem;
- #ifdef VDBE_PROFILE
- origPc = pc;
- start = sqlite3Hwtime();
- #endif
- nVmStep++;
- pOp = &aOp[pc];
- /* Only allow tracing if SQLITE_DEBUG is defined.
- */
- #ifdef SQLITE_DEBUG
- if( p->trace ){
- if( pc==0 ){
- printf("VDBE Execution Trace:\n");
- sqlite3VdbePrintSql(p);
- }
- sqlite3VdbePrintOp(p->trace, pc, pOp);
- }
- #endif
-
- /* Check to see if we need to simulate an interrupt. This only happens
- ** if we have a special test build.
- */
- #ifdef SQLITE_TEST
- if( sqlite3_interrupt_count>0 ){
- sqlite3_interrupt_count--;
- if( sqlite3_interrupt_count==0 ){
- sqlite3_interrupt(db);
- }
- }
- #endif
- /* On any opcode with the "out2-prerelease" tag, free any
- ** external allocations out of mem[p2] and set mem[p2] to be
- ** an undefined integer. Opcodes will either fill in the integer
- ** value or convert mem[p2] to a different type.
- */
- assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
- if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=(p->nMem-p->nCursor) );
- pOut = &aMem[pOp->p2];
- memAboutToChange(p, pOut);
- VdbeMemRelease(pOut);
- pOut->flags = MEM_Int;
- }
- /* Sanity checking on other operands */
- #ifdef SQLITE_DEBUG
- if( (pOp->opflags & OPFLG_IN1)!=0 ){
- assert( pOp->p1>0 );
- assert( pOp->p1<=(p->nMem-p->nCursor) );
- assert( memIsValid(&aMem[pOp->p1]) );
- REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
- }
- if( (pOp->opflags & OPFLG_IN2)!=0 ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=(p->nMem-p->nCursor) );
- assert( memIsValid(&aMem[pOp->p2]) );
- REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
- }
- if( (pOp->opflags & OPFLG_IN3)!=0 ){
- assert( pOp->p3>0 );
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- assert( memIsValid(&aMem[pOp->p3]) );
- REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
- }
- if( (pOp->opflags & OPFLG_OUT2)!=0 ){
- assert( pOp->p2>0 );
- assert( pOp->p2<=(p->nMem-p->nCursor) );
- memAboutToChange(p, &aMem[pOp->p2]);
- }
- if( (pOp->opflags & OPFLG_OUT3)!=0 ){
- assert( pOp->p3>0 );
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- memAboutToChange(p, &aMem[pOp->p3]);
- }
- #endif
-
- switch( pOp->opcode ){
- /*****************************************************************************
- ** What follows is a massive switch statement where each case implements a
- ** separate instruction in the virtual machine. If we follow the usual
- ** indentation conventions, each case should be indented by 6 spaces. But
- ** that is a lot of wasted space on the left margin. So the code within
- ** the switch statement will break with convention and be flush-left. Another
- ** big comment (similar to this one) will mark the point in the code where
- ** we transition back to normal indentation.
- **
- ** The formatting of each case is important. The makefile for SQLite
- ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
- ** file looking for lines that begin with "case OP_". The opcodes.h files
- ** will be filled with #defines that give unique integer values to each
- ** opcode and the opcodes.c file is filled with an array of strings where
- ** each string is the symbolic name for the corresponding opcode. If the
- ** case statement is followed by a comment of the form "/# same as ... #/"
- ** that comment is used to determine the particular value of the opcode.
- **
- ** Other keywords in the comment that follows each case are used to
- ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
- ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
- ** the mkopcodeh.awk script for additional information.
- **
- ** Documentation about VDBE opcodes is generated by scanning this file
- ** for lines of that contain "Opcode:". That line and all subsequent
- ** comment lines are used in the generation of the opcode.html documentation
- ** file.
- **
- ** SUMMARY:
- **
- ** Formatting is important to scripts that scan this file.
- ** Do not deviate from the formatting style currently in use.
- **
- *****************************************************************************/
- /* Opcode: Goto * P2 * * *
- **
- ** An unconditional jump to address P2.
- ** The next instruction executed will be
- ** the one at index P2 from the beginning of
- ** the program.
- */
- case OP_Goto: { /* jump */
- pc = pOp->p2 - 1;
- /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
- ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
- ** completion. Check to see if sqlite3_interrupt() has been called
- ** or if the progress callback needs to be invoked.
- **
- ** This code uses unstructured "goto" statements and does not look clean.
- ** But that is not due to sloppy coding habits. The code is written this
- ** way for performance, to avoid having to run the interrupt and progress
- ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
- ** faster according to "valgrind --tool=cachegrind" */
- check_for_interrupt:
- CHECK_FOR_INTERRUPT;
- #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
- /* Call the progress callback if it is configured and the required number
- ** of VDBE ops have been executed (either since this invocation of
- ** sqlite3VdbeExec() or since last time the progress callback was called).
- ** If the progress callback returns non-zero, exit the virtual machine with
- ** a return code SQLITE_ABORT.
- */
- if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
- int prc;
- prc = db->xProgress(db->pProgressArg);
- if( prc!=0 ){
- rc = SQLITE_INTERRUPT;
- goto vdbe_error_halt;
- }
- if( db->xProgress!=0 ){
- nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
- }
- }
- #endif
-
- break;
- }
- /* Opcode: Gosub P1 P2 * * *
- **
- ** Write the current address onto register P1
- ** and then jump to address P2.
- */
- case OP_Gosub: { /* jump */
- assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
- pIn1 = &aMem[pOp->p1];
- assert( (pIn1->flags & MEM_Dyn)==0 );
- memAboutToChange(p, pIn1);
- pIn1->flags = MEM_Int;
- pIn1->u.i = pc;
- REGISTER_TRACE(pOp->p1, pIn1);
- pc = pOp->p2 - 1;
- break;
- }
- /* Opcode: Return P1 * * * *
- **
- ** Jump to the next instruction after the address in register P1.
- */
- case OP_Return: { /* in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags & MEM_Int );
- pc = (int)pIn1->u.i;
- break;
- }
- /* Opcode: Yield P1 * * * *
- **
- ** Swap the program counter with the value in register P1.
- */
- case OP_Yield: { /* in1 */
- int pcDest;
- pIn1 = &aMem[pOp->p1];
- assert( (pIn1->flags & MEM_Dyn)==0 );
- pIn1->flags = MEM_Int;
- pcDest = (int)pIn1->u.i;
- pIn1->u.i = pc;
- REGISTER_TRACE(pOp->p1, pIn1);
- pc = pcDest;
- break;
- }
- /* Opcode: HaltIfNull P1 P2 P3 P4 *
- **
- ** Check the value in register P3. If it is NULL then Halt using
- ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
- ** value in register P3 is not NULL, then this routine is a no-op.
- */
- case OP_HaltIfNull: { /* in3 */
- pIn3 = &aMem[pOp->p3];
- if( (pIn3->flags & MEM_Null)==0 ) break;
- /* Fall through into OP_Halt */
- }
- /* Opcode: Halt P1 P2 * P4 *
- **
- ** Exit immediately. All open cursors, etc are closed
- ** automatically.
- **
- ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
- ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
- ** For errors, it can be some other value. If P1!=0 then P2 will determine
- ** whether or not to rollback the current transaction. Do not rollback
- ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
- ** then back out all changes that have occurred during this execution of the
- ** VDBE, but do not rollback the transaction.
- **
- ** If P4 is not null then it is an error message string.
- **
- ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
- ** every program. So a jump past the last instruction of the program
- ** is the same as executing Halt.
- */
- case OP_Halt: {
- if( pOp->p1==SQLITE_OK && p->pFrame ){
- /* Halt the sub-program. Return control to the parent frame. */
- VdbeFrame *pFrame = p->pFrame;
- p->pFrame = pFrame->pParent;
- p->nFrame--;
- sqlite3VdbeSetChanges(db, p->nChange);
- pc = sqlite3VdbeFrameRestore(pFrame);
- lastRowid = db->lastRowid;
- if( pOp->p2==OE_Ignore ){
- /* Instruction pc is the OP_Program that invoked the sub-program
- ** currently being halted. If the p2 instruction of this OP_Halt
- ** instruction is set to OE_Ignore, then the sub-program is throwing
- ** an IGNORE exception. In this case jump to the address specified
- ** as the p2 of the calling OP_Program. */
- pc = p->aOp[pc].p2-1;
- }
- aOp = p->aOp;
- aMem = p->aMem;
- break;
- }
- p->rc = pOp->p1;
- p->errorAction = (u8)pOp->p2;
- p->pc = pc;
- if( pOp->p4.z ){
- assert( p->rc!=SQLITE_OK );
- sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
- testcase( sqlite3GlobalConfig.xLog!=0 );
- sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
- }else if( p->rc ){
- testcase( sqlite3GlobalConfig.xLog!=0 );
- sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
- }
- rc = sqlite3VdbeHalt(p);
- assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
- if( rc==SQLITE_BUSY ){
- p->rc = rc = SQLITE_BUSY;
- }else{
- assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
- assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
- rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
- }
- goto vdbe_return;
- }
- /* Opcode: Integer P1 P2 * * *
- **
- ** The 32-bit integer value P1 is written into register P2.
- */
- case OP_Integer: { /* out2-prerelease */
- pOut->u.i = pOp->p1;
- break;
- }
- /* Opcode: Int64 * P2 * P4 *
- **
- ** P4 is a pointer to a 64-bit integer value.
- ** Write that value into register P2.
- */
- case OP_Int64: { /* out2-prerelease */
- assert( pOp->p4.pI64!=0 );
- pOut->u.i = *pOp->p4.pI64;
- break;
- }
- #ifndef SQLITE_OMIT_FLOATING_POINT
- /* Opcode: Real * P2 * P4 *
- **
- ** P4 is a pointer to a 64-bit floating point value.
- ** Write that value into register P2.
- */
- case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
- pOut->flags = MEM_Real;
- assert( !sqlite3IsNaN(*pOp->p4.pReal) );
- pOut->r = *pOp->p4.pReal;
- break;
- }
- #endif
- /* Opcode: String8 * P2 * P4 *
- **
- ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
- ** into an OP_String before it is executed for the first time.
- */
- case OP_String8: { /* same as TK_STRING, out2-prerelease */
- assert( pOp->p4.z!=0 );
- pOp->opcode = OP_String;
- pOp->p1 = sqlite3Strlen30(pOp->p4.z);
- #ifndef SQLITE_OMIT_UTF16
- if( encoding!=SQLITE_UTF8 ){
- rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
- if( rc==SQLITE_TOOBIG ) goto too_big;
- if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
- assert( pOut->zMalloc==pOut->z );
- assert( pOut->flags & MEM_Dyn );
- pOut->zMalloc = 0;
- pOut->flags |= MEM_Static;
- pOut->flags &= ~MEM_Dyn;
- if( pOp->p4type==P4_DYNAMIC ){
- sqlite3DbFree(db, pOp->p4.z);
- }
- pOp->p4type = P4_DYNAMIC;
- pOp->p4.z = pOut->z;
- pOp->p1 = pOut->n;
- }
- #endif
- if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- /* Fall through to the next case, OP_String */
- }
-
- /* Opcode: String P1 P2 * P4 *
- **
- ** The string value P4 of length P1 (bytes) is stored in register P2.
- */
- case OP_String: { /* out2-prerelease */
- assert( pOp->p4.z!=0 );
- pOut->flags = MEM_Str|MEM_Static|MEM_Term;
- pOut->z = pOp->p4.z;
- pOut->n = pOp->p1;
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
- /* Opcode: Null P1 P2 P3 * *
- **
- ** Write a NULL into registers P2. If P3 greater than P2, then also write
- ** NULL into register P3 and every register in between P2 and P3. If P3
- ** is less than P2 (typically P3 is zero) then only register P2 is
- ** set to NULL.
- **
- ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
- ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
- ** OP_Ne or OP_Eq.
- */
- case OP_Null: { /* out2-prerelease */
- int cnt;
- u16 nullFlag;
- cnt = pOp->p3-pOp->p2;
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
- while( cnt>0 ){
- pOut++;
- memAboutToChange(p, pOut);
- VdbeMemRelease(pOut);
- pOut->flags = nullFlag;
- cnt--;
- }
- break;
- }
- /* Opcode: Blob P1 P2 * P4
- **
- ** P4 points to a blob of data P1 bytes long. Store this
- ** blob in register P2.
- */
- case OP_Blob: { /* out2-prerelease */
- assert( pOp->p1 <= SQLITE_MAX_LENGTH );
- sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
- /* Opcode: Variable P1 P2 * P4 *
- **
- ** Transfer the values of bound parameter P1 into register P2
- **
- ** If the parameter is named, then its name appears in P4 and P3==1.
- ** The P4 value is used by sqlite3_bind_parameter_name().
- */
- case OP_Variable: { /* out2-prerelease */
- Mem *pVar; /* Value being transferred */
- assert( pOp->p1>0 && pOp->p1<=p->nVar );
- assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
- pVar = &p->aVar[pOp->p1 - 1];
- if( sqlite3VdbeMemTooBig(pVar) ){
- goto too_big;
- }
- sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
- /* Opcode: Move P1 P2 P3 * *
- **
- ** Move the values in register P1..P1+P3 over into
- ** registers P2..P2+P3. Registers P1..P1+P3 are
- ** left holding a NULL. It is an error for register ranges
- ** P1..P1+P3 and P2..P2+P3 to overlap.
- */
- case OP_Move: {
- char *zMalloc; /* Holding variable for allocated memory */
- int n; /* Number of registers left to copy */
- int p1; /* Register to copy from */
- int p2; /* Register to copy to */
- n = pOp->p3 + 1;
- p1 = pOp->p1;
- p2 = pOp->p2;
- assert( n>0 && p1>0 && p2>0 );
- assert( p1+n<=p2 || p2+n<=p1 );
- pIn1 = &aMem[p1];
- pOut = &aMem[p2];
- while( n-- ){
- assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
- assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
- assert( memIsValid(pIn1) );
- memAboutToChange(p, pOut);
- zMalloc = pOut->zMalloc;
- pOut->zMalloc = 0;
- sqlite3VdbeMemMove(pOut, pIn1);
- #ifdef SQLITE_DEBUG
- if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
- pOut->pScopyFrom += p1 - pOp->p2;
- }
- #endif
- pIn1->zMalloc = zMalloc;
- REGISTER_TRACE(p2++, pOut);
- pIn1++;
- pOut++;
- }
- break;
- }
- /* Opcode: Copy P1 P2 P3 * *
- **
- ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
- **
- ** This instruction makes a deep copy of the value. A duplicate
- ** is made of any string or blob constant. See also OP_SCopy.
- */
- case OP_Copy: {
- int n;
- n = pOp->p3;
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- assert( pOut!=pIn1 );
- while( 1 ){
- sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
- Deephemeralize(pOut);
- #ifdef SQLITE_DEBUG
- pOut->pScopyFrom = 0;
- #endif
- REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
- if( (n--)==0 ) break;
- pOut++;
- pIn1++;
- }
- break;
- }
- /* Opcode: SCopy P1 P2 * * *
- **
- ** Make a shallow copy of register P1 into register P2.
- **
- ** This instruction makes a shallow copy of the value. If the value
- ** is a string or blob, then the copy is only a pointer to the
- ** original and hence if the original changes so will the copy.
- ** Worse, if the original is deallocated, the copy becomes invalid.
- ** Thus the program must guarantee that the original will not change
- ** during the lifetime of the copy. Use OP_Copy to make a complete
- ** copy.
- */
- case OP_SCopy: { /* in1, out2 */
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- assert( pOut!=pIn1 );
- sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
- #ifdef SQLITE_DEBUG
- if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
- #endif
- REGISTER_TRACE(pOp->p2, pOut);
- break;
- }
- /* Opcode: ResultRow P1 P2 * * *
- **
- ** The registers P1 through P1+P2-1 contain a single row of
- ** results. This opcode causes the sqlite3_step() call to terminate
- ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
- ** structure to provide access to the top P1 values as the result
- ** row.
- */
- case OP_ResultRow: {
- Mem *pMem;
- int i;
- assert( p->nResColumn==pOp->p2 );
- assert( pOp->p1>0 );
- assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
- /* If this statement has violated immediate foreign key constraints, do
- ** not return the number of rows modified. And do not RELEASE the statement
- ** transaction. It needs to be rolled back. */
- if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
- assert( db->flags&SQLITE_CountRows );
- assert( p->usesStmtJournal );
- break;
- }
- /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
- ** DML statements invoke this opcode to return the number of rows
- ** modified to the user. This is the only way that a VM that
- ** opens a statement transaction may invoke this opcode.
- **
- ** In case this is such a statement, close any statement transaction
- ** opened by this VM before returning control to the user. This is to
- ** ensure that statement-transactions are always nested, not overlapping.
- ** If the open statement-transaction is not closed here, then the user
- ** may step another VM that opens its own statement transaction. This
- ** may lead to overlapping statement transactions.
- **
- ** The statement transaction is never a top-level transaction. Hence
- ** the RELEASE call below can never fail.
- */
- assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
- rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
- if( NEVER(rc!=SQLITE_OK) ){
- break;
- }
- /* Invalidate all ephemeral cursor row caches */
- p->cacheCtr = (p->cacheCtr + 2)|1;
- /* Make sure the results of the current row are \000 terminated
- ** and have an assigned type. The results are de-ephemeralized as
- ** a side effect.
- */
- pMem = p->pResultSet = &aMem[pOp->p1];
- for(i=0; i<pOp->p2; i++){
- assert( memIsValid(&pMem[i]) );
- Deephemeralize(&pMem[i]);
- assert( (pMem[i].flags & MEM_Ephem)==0
- || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
- sqlite3VdbeMemNulTerminate(&pMem[i]);
- sqlite3VdbeMemStoreType(&pMem[i]);
- REGISTER_TRACE(pOp->p1+i, &pMem[i]);
- }
- if( db->mallocFailed ) goto no_mem;
- /* Return SQLITE_ROW
- */
- p->pc = pc + 1;
- rc = SQLITE_ROW;
- goto vdbe_return;
- }
- /* Opcode: Concat P1 P2 P3 * *
- **
- ** Add the text in register P1 onto the end of the text in
- ** register P2 and store the result in register P3.
- ** If either the P1 or P2 text are NULL then store NULL in P3.
- **
- ** P3 = P2 || P1
- **
- ** It is illegal for P1 and P3 to be the same register. Sometimes,
- ** if P3 is the same register as P2, the implementation is able
- ** to avoid a memcpy().
- */
- case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
- i64 nByte;
- pIn1 = &aMem[pOp->p1];
- pIn2 = &aMem[pOp->p2];
- pOut = &aMem[pOp->p3];
- assert( pIn1!=pOut );
- if( (pIn1->flags | pIn2->flags) & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- break;
- }
- if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
- Stringify(pIn1, encoding);
- Stringify(pIn2, encoding);
- nByte = pIn1->n + pIn2->n;
- if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- MemSetTypeFlag(pOut, MEM_Str);
- if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
- goto no_mem;
- }
- if( pOut!=pIn2 ){
- memcpy(pOut->z, pIn2->z, pIn2->n);
- }
- memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
- pOut->z[nByte] = 0;
- pOut->z[nByte+1] = 0;
- pOut->flags |= MEM_Term;
- pOut->n = (int)nByte;
- pOut->enc = encoding;
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
- /* Opcode: Add P1 P2 P3 * *
- **
- ** Add the value in register P1 to the value in register P2
- ** and store the result in register P3.
- ** If either input is NULL, the result is NULL.
- */
- /* Opcode: Multiply P1 P2 P3 * *
- **
- **
- ** Multiply the value in register P1 by the value in register P2
- ** and store the result in register P3.
- ** If either input is NULL, the result is NULL.
- */
- /* Opcode: Subtract P1 P2 P3 * *
- **
- ** Subtract the value in register P1 from the value in register P2
- ** and store the result in register P3.
- ** If either input is NULL, the result is NULL.
- */
- /* Opcode: Divide P1 P2 P3 * *
- **
- ** Divide the value in register P1 by the value in register P2
- ** and store the result in register P3 (P3=P2/P1). If the value in
- ** register P1 is zero, then the result is NULL. If either input is
- ** NULL, the result is NULL.
- */
- /* Opcode: Remainder P1 P2 P3 * *
- **
- ** Compute the remainder after integer division of the value in
- ** register P1 by the value in register P2 and store the result in P3.
- ** If the value in register P2 is zero the result is NULL.
- ** If either operand is NULL, the result is NULL.
- */
- case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
- case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
- case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
- case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
- case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
- char bIntint; /* Started out as two integer operands */
- int flags; /* Combined MEM_* flags from both inputs */
- i64 iA; /* Integer value of left operand */
- i64 iB; /* Integer value of right operand */
- double rA; /* Real value of left operand */
- double rB; /* Real value of right operand */
- pIn1 = &aMem[pOp->p1];
- applyNumericAffinity(pIn1);
- pIn2 = &aMem[pOp->p2];
- applyNumericAffinity(pIn2);
- pOut = &aMem[pOp->p3];
- flags = pIn1->flags | pIn2->flags;
- if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
- if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
- iA = pIn1->u.i;
- iB = pIn2->u.i;
- bIntint = 1;
- switch( pOp->opcode ){
- case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
- case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
- case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
- case OP_Divide: {
- if( iA==0 ) goto arithmetic_result_is_null;
- if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
- iB /= iA;
- break;
- }
- default: {
- if( iA==0 ) goto arithmetic_result_is_null;
- if( iA==-1 ) iA = 1;
- iB %= iA;
- break;
- }
- }
- pOut->u.i = iB;
- MemSetTypeFlag(pOut, MEM_Int);
- }else{
- bIntint = 0;
- fp_math:
- rA = sqlite3VdbeRealValue(pIn1);
- rB = sqlite3VdbeRealValue(pIn2);
- switch( pOp->opcode ){
- case OP_Add: rB += rA; break;
- case OP_Subtract: rB -= rA; break;
- case OP_Multiply: rB *= rA; break;
- case OP_Divide: {
- /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
- if( rA==(double)0 ) goto arithmetic_result_is_null;
- rB /= rA;
- break;
- }
- default: {
- iA = (i64)rA;
- iB = (i64)rB;
- if( iA==0 ) goto arithmetic_result_is_null;
- if( iA==-1 ) iA = 1;
- rB = (double)(iB % iA);
- break;
- }
- }
- #ifdef SQLITE_OMIT_FLOATING_POINT
- pOut->u.i = rB;
- MemSetTypeFlag(pOut, MEM_Int);
- #else
- if( sqlite3IsNaN(rB) ){
- goto arithmetic_result_is_null;
- }
- pOut->r = rB;
- MemSetTypeFlag(pOut, MEM_Real);
- if( (flags & MEM_Real)==0 && !bIntint ){
- sqlite3VdbeIntegerAffinity(pOut);
- }
- #endif
- }
- break;
- arithmetic_result_is_null:
- sqlite3VdbeMemSetNull(pOut);
- break;
- }
- /* Opcode: CollSeq P1 * * P4
- **
- ** P4 is a pointer to a CollSeq struct. If the next call to a user function
- ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
- ** be returned. This is used by the built-in min(), max() and nullif()
- ** functions.
- **
- ** If P1 is not zero, then it is a register that a subsequent min() or
- ** max() aggregate will set to 1 if the current row is not the minimum or
- ** maximum. The P1 register is initialized to 0 by this instruction.
- **
- ** The interface used by the implementation of the aforementioned functions
- ** to retrieve the collation sequence set by this opcode is not available
- ** publicly, only to user functions defined in func.c.
- */
- case OP_CollSeq: {
- assert( pOp->p4type==P4_COLLSEQ );
- if( pOp->p1 ){
- sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
- }
- break;
- }
- /* Opcode: Function P1 P2 P3 P4 P5
- **
- ** Invoke a user function (P4 is a pointer to a Function structure that
- ** defines the function) with P5 arguments taken from register P2 and
- ** successors. The result of the function is stored in register P3.
- ** Register P3 must not be one of the function inputs.
- **
- ** P1 is a 32-bit bitmask indicating whether or not each argument to the
- ** function was determined to be constant at compile time. If the first
- ** argument was constant then bit 0 of P1 is set. This is used to determine
- ** whether meta data associated with a user function argument using the
- ** sqlite3_set_auxdata() API may be safely retained until the next
- ** invocation of this opcode.
- **
- ** See also: AggStep and AggFinal
- */
- case OP_Function: {
- int i;
- Mem *pArg;
- sqlite3_context ctx;
- sqlite3_value **apVal;
- int n;
- n = pOp->p5;
- apVal = p->apArg;
- assert( apVal || n==0 );
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pOut = &aMem[pOp->p3];
- memAboutToChange(p, pOut);
- assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
- assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
- pArg = &aMem[pOp->p2];
- for(i=0; i<n; i++, pArg++){
- assert( memIsValid(pArg) );
- apVal[i] = pArg;
- Deephemeralize(pArg);
- sqlite3VdbeMemStoreType(pArg);
- REGISTER_TRACE(pOp->p2+i, pArg);
- }
- assert( pOp->p4type==P4_FUNCDEF );
- ctx.pFunc = pOp->p4.pFunc;
- ctx.s.flags = MEM_Null;
- ctx.s.db = db;
- ctx.s.xDel = 0;
- ctx.s.zMalloc = 0;
- ctx.iOp = pc;
- ctx.pVdbe = p;
- /* The output cell may already have a buffer allocated. Move
- ** the pointer to ctx.s so in case the user-function can use
- ** the already allocated buffer instead of allocating a new one.
- */
- sqlite3VdbeMemMove(&ctx.s, pOut);
- MemSetTypeFlag(&ctx.s, MEM_Null);
- ctx.fErrorOrAux = 0;
- if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
- assert( pOp>aOp );
- assert( pOp[-1].p4type==P4_COLLSEQ );
- assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = pOp[-1].p4.pColl;
- }
- db->lastRowid = lastRowid;
- (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
- lastRowid = db->lastRowid;
- if( db->mallocFailed ){
- /* Even though a malloc() has failed, the implementation of the
- ** user function may have called an sqlite3_result_XXX() function
- ** to return a value. The following call releases any resources
- ** associated with such a value.
- */
- sqlite3VdbeMemRelease(&ctx.s);
- goto no_mem;
- }
- /* If the function returned an error, throw an exception */
- if( ctx.fErrorOrAux ){
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
- rc = ctx.isError;
- }
- sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
- }
- /* Copy the result of the function into register P3 */
- sqlite3VdbeChangeEncoding(&ctx.s, encoding);
- sqlite3VdbeMemMove(pOut, &ctx.s);
- if( sqlite3VdbeMemTooBig(pOut) ){
- goto too_big;
- }
- #if 0
- /* The app-defined function has done something that as caused this
- ** statement to expire. (Perhaps the function called sqlite3_exec()
- ** with a CREATE TABLE statement.)
- */
- if( p->expired ) rc = SQLITE_ABORT;
- #endif
- REGISTER_TRACE(pOp->p3, pOut);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
- /* Opcode: BitAnd P1 P2 P3 * *
- **
- ** Take the bit-wise AND of the values in register P1 and P2 and
- ** store the result in register P3.
- ** If either input is NULL, the result is NULL.
- */
- /* Opcode: BitOr P1 P2 P3 * *
- **
- ** Take the bit-wise OR of the values in register P1 and P2 and
- ** store the result in register P3.
- ** If either input is NULL, the result is NULL.
- */
- /* Opcode: ShiftLeft P1 P2 P3 * *
- **
- ** Shift the integer value in register P2 to the left by the
- ** number of bits specified by the integer in register P1.
- ** Store the result in register P3.
- ** If either input is NULL, the result is NULL.
- */
- /* Opcode: ShiftRight P1 P2 P3 * *
- **
- ** Shift the integer value in register P2 to the right by the
- ** number of bits specified by the integer in register P1.
- ** Store the result in register P3.
- ** If either input is NULL, the result is NULL.
- */
- case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
- case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
- case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
- case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
- i64 iA;
- u64 uA;
- i64 iB;
- u8 op;
- pIn1 = &aMem[pOp->p1];
- pIn2 = &aMem[pOp->p2];
- pOut = &aMem[pOp->p3];
- if( (pIn1->flags | pIn2->flags) & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- break;
- }
- iA = sqlite3VdbeIntValue(pIn2);
- iB = sqlite3VdbeIntValue(pIn1);
- op = pOp->opcode;
- if( op==OP_BitAnd ){
- iA &= iB;
- }else if( op==OP_BitOr ){
- iA |= iB;
- }else if( iB!=0 ){
- assert( op==OP_ShiftRight || op==OP_ShiftLeft );
- /* If shifting by a negative amount, shift in the other direction */
- if( iB<0 ){
- assert( OP_ShiftRight==OP_ShiftLeft+1 );
- op = 2*OP_ShiftLeft + 1 - op;
- iB = iB>(-64) ? -iB : 64;
- }
- if( iB>=64 ){
- iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
- }else{
- memcpy(&uA, &iA, sizeof(uA));
- if( op==OP_ShiftLeft ){
- uA <<= iB;
- }else{
- uA >>= iB;
- /* Sign-extend on a right shift of a negative number */
- if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
- }
- memcpy(&iA, &uA, sizeof(iA));
- }
- }
- pOut->u.i = iA;
- MemSetTypeFlag(pOut, MEM_Int);
- break;
- }
- /* Opcode: AddImm P1 P2 * * *
- **
- ** Add the constant P2 to the value in register P1.
- ** The result is always an integer.
- **
- ** To force any register to be an integer, just add 0.
- */
- case OP_AddImm: { /* in1 */
- pIn1 = &aMem[pOp->p1];
- memAboutToChange(p, pIn1);
- sqlite3VdbeMemIntegerify(pIn1);
- pIn1->u.i += pOp->p2;
- break;
- }
- /* Opcode: MustBeInt P1 P2 * * *
- **
- ** Force the value in register P1 to be an integer. If the value
- ** in P1 is not an integer and cannot be converted into an integer
- ** without data loss, then jump immediately to P2, or if P2==0
- ** raise an SQLITE_MISMATCH exception.
- */
- case OP_MustBeInt: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
- if( (pIn1->flags & MEM_Int)==0 ){
- if( pOp->p2==0 ){
- rc = SQLITE_MISMATCH;
- goto abort_due_to_error;
- }else{
- pc = pOp->p2 - 1;
- }
- }else{
- MemSetTypeFlag(pIn1, MEM_Int);
- }
- break;
- }
- #ifndef SQLITE_OMIT_FLOATING_POINT
- /* Opcode: RealAffinity P1 * * * *
- **
- ** If register P1 holds an integer convert it to a real value.
- **
- ** This opcode is used when extracting information from a column that
- ** has REAL affinity. Such column values may still be stored as
- ** integers, for space efficiency, but after extraction we want them
- ** to have only a real value.
- */
- case OP_RealAffinity: { /* in1 */
- pIn1 = &aMem[pOp->p1];
- if( pIn1->flags & MEM_Int ){
- sqlite3VdbeMemRealify(pIn1);
- }
- break;
- }
- #endif
- #ifndef SQLITE_OMIT_CAST
- /* Opcode: ToText P1 * * * *
- **
- ** Force the value in register P1 to be text.
- ** If the value is numeric, convert it to a string using the
- ** equivalent of printf(). Blob values are unchanged and
- ** are afterwards simply interpreted as text.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToText: { /* same as TK_TO_TEXT, in1 */
- pIn1 = &aMem[pOp->p1];
- memAboutToChange(p, pIn1);
- if( pIn1->flags & MEM_Null ) break;
- assert( MEM_Str==(MEM_Blob>>3) );
- pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
- applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
- rc = ExpandBlob(pIn1);
- assert( pIn1->flags & MEM_Str || db->mallocFailed );
- pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
- UPDATE_MAX_BLOBSIZE(pIn1);
- break;
- }
- /* Opcode: ToBlob P1 * * * *
- **
- ** Force the value in register P1 to be a BLOB.
- ** If the value is numeric, convert it to a string first.
- ** Strings are simply reinterpreted as blobs with no change
- ** to the underlying data.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
- pIn1 = &aMem[pOp->p1];
- if( pIn1->flags & MEM_Null ) break;
- if( (pIn1->flags & MEM_Blob)==0 ){
- applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
- assert( pIn1->flags & MEM_Str || db->mallocFailed );
- MemSetTypeFlag(pIn1, MEM_Blob);
- }else{
- pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
- }
- UPDATE_MAX_BLOBSIZE(pIn1);
- break;
- }
- /* Opcode: ToNumeric P1 * * * *
- **
- ** Force the value in register P1 to be numeric (either an
- ** integer or a floating-point number.)
- ** If the value is text or blob, try to convert it to an using the
- ** equivalent of atoi() or atof() and store 0 if no such conversion
- ** is possible.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
- pIn1 = &aMem[pOp->p1];
- sqlite3VdbeMemNumerify(pIn1);
- break;
- }
- #endif /* SQLITE_OMIT_CAST */
- /* Opcode: ToInt P1 * * * *
- **
- ** Force the value in register P1 to be an integer. If
- ** The value is currently a real number, drop its fractional part.
- ** If the value is text or blob, try to convert it to an integer using the
- ** equivalent of atoi() and store 0 if no such conversion is possible.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToInt: { /* same as TK_TO_INT, in1 */
- pIn1 = &aMem[pOp->p1];
- if( (pIn1->flags & MEM_Null)==0 ){
- sqlite3VdbeMemIntegerify(pIn1);
- }
- break;
- }
- #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
- /* Opcode: ToReal P1 * * * *
- **
- ** Force the value in register P1 to be a floating point number.
- ** If The value is currently an integer, convert it.
- ** If the value is text or blob, try to convert it to an integer using the
- ** equivalent of atoi() and store 0.0 if no such conversion is possible.
- **
- ** A NULL value is not changed by this routine. It remains NULL.
- */
- case OP_ToReal: { /* same as TK_TO_REAL, in1 */
- pIn1 = &aMem[pOp->p1];
- memAboutToChange(p, pIn1);
- if( (pIn1->flags & MEM_Null)==0 ){
- sqlite3VdbeMemRealify(pIn1);
- }
- break;
- }
- #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
- /* Opcode: Lt P1 P2 P3 P4 P5
- **
- ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
- ** jump to address P2.
- **
- ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
- ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
- ** bit is clear then fall through if either operand is NULL.
- **
- ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
- ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
- ** to coerce both inputs according to this affinity before the
- ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
- ** affinity is used. Note that the affinity conversions are stored
- ** back into the input registers P1 and P3. So this opcode can cause
- ** persistent changes to registers P1 and P3.
- **
- ** Once any conversions have taken place, and neither value is NULL,
- ** the values are compared. If both values are blobs then memcmp() is
- ** used to determine the results of the comparison. If both values
- ** are text, then the appropriate collating function specified in
- ** P4 is used to do the comparison. If P4 is not specified then
- ** memcmp() is used to compare text string. If both values are
- ** numeric, then a numeric comparison is used. If the two values
- ** are of different types, then numbers are considered less than
- ** strings and strings are considered less than blobs.
- **
- ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
- ** store a boolean result (either 0, or 1, or NULL) in register P2.
- **
- ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
- ** equal to one another, provided that they do not have their MEM_Cleared
- ** bit set.
- */
- /* Opcode: Ne P1 P2 P3 P4 P5
- **
- ** This works just like the Lt opcode except that the jump is taken if
- ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
- ** additional information.
- **
- ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
- ** true or false and is never NULL. If both operands are NULL then the result
- ** of comparison is false. If either operand is NULL then the result is true.
- ** If neither operand is NULL the result is the same as it would be if
- ** the SQLITE_NULLEQ flag were omitted from P5.
- */
- /* Opcode: Eq P1 P2 P3 P4 P5
- **
- ** This works just like the Lt opcode except that the jump is taken if
- ** the operands in registers P1 and P3 are equal.
- ** See the Lt opcode for additional information.
- **
- ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
- ** true or false and is never NULL. If both operands are NULL then the result
- ** of comparison is true. If either operand is NULL then the result is false.
- ** If neither operand is NULL the result is the same as it would be if
- ** the SQLITE_NULLEQ flag were omitted from P5.
- */
- /* Opcode: Le P1 P2 P3 P4 P5
- **
- ** This works just like the Lt opcode except that the jump is taken if
- ** the content of register P3 is less than or equal to the content of
- ** register P1. See the Lt opcode for additional information.
- */
- /* Opcode: Gt P1 P2 P3 P4 P5
- **
- ** This works just like the Lt opcode except that the jump is taken if
- ** the content of register P3 is greater than the content of
- ** register P1. See the Lt opcode for additional information.
- */
- /* Opcode: Ge P1 P2 P3 P4 P5
- **
- ** This works just like the Lt opcode except that the jump is taken if
- ** the content of register P3 is greater than or equal to the content of
- ** register P1. See the Lt opcode for additional information.
- */
- case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
- case OP_Ne: /* same as TK_NE, jump, in1, in3 */
- case OP_Lt: /* same as TK_LT, jump, in1, in3 */
- case OP_Le: /* same as TK_LE, jump, in1, in3 */
- case OP_Gt: /* same as TK_GT, jump, in1, in3 */
- case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
- int res; /* Result of the comparison of pIn1 against pIn3 */
- char affinity; /* Affinity to use for comparison */
- u16 flags1; /* Copy of initial value of pIn1->flags */
- u16 flags3; /* Copy of initial value of pIn3->flags */
- pIn1 = &aMem[pOp->p1];
- pIn3 = &aMem[pOp->p3];
- flags1 = pIn1->flags;
- flags3 = pIn3->flags;
- if( (flags1 | flags3)&MEM_Null ){
- /* One or both operands are NULL */
- if( pOp->p5 & SQLITE_NULLEQ ){
- /* If SQLITE_NULLEQ is set (which will only happen if the operator is
- ** OP_Eq or OP_Ne) then take the jump or not depending on whether
- ** or not both operands are null.
- */
- assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
- assert( (flags1 & MEM_Cleared)==0 );
- if( (flags1&MEM_Null)!=0
- && (flags3&MEM_Null)!=0
- && (flags3&MEM_Cleared)==0
- ){
- res = 0; /* Results are equal */
- }else{
- res = 1; /* Results are not equal */
- }
- }else{
- /* SQLITE_NULLEQ is clear and at least one operand is NULL,
- ** then the result is always NULL.
- ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
- */
- if( pOp->p5 & SQLITE_JUMPIFNULL ){
- pc = pOp->p2-1;
- }else if( pOp->p5 & SQLITE_STOREP2 ){
- pOut = &aMem[pOp->p2];
- MemSetTypeFlag(pOut, MEM_Null);
- REGISTER_TRACE(pOp->p2, pOut);
- }
- break;
- }
- }else{
- /* Neither operand is NULL. Do a comparison. */
- affinity = pOp->p5 & SQLITE_AFF_MASK;
- if( affinity ){
- applyAffinity(pIn1, affinity, encoding);
- applyAffinity(pIn3, affinity, encoding);
- if( db->mallocFailed ) goto no_mem;
- }
- assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
- ExpandBlob(pIn1);
- ExpandBlob(pIn3);
- res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
- }
- switch( pOp->opcode ){
- case OP_Eq: res = res==0; break;
- case OP_Ne: res = res!=0; break;
- case OP_Lt: res = res<0; break;
- case OP_Le: res = res<=0; break;
- case OP_Gt: res = res>0; break;
- default: res = res>=0; break;
- }
- if( pOp->p5 & SQLITE_STOREP2 ){
- pOut = &aMem[pOp->p2];
- memAboutToChange(p, pOut);
- MemSetTypeFlag(pOut, MEM_Int);
- pOut->u.i = res;
- REGISTER_TRACE(pOp->p2, pOut);
- }else if( res ){
- pc = pOp->p2-1;
- }
- /* Undo any changes made by applyAffinity() to the input registers. */
- pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
- pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
- break;
- }
- /* Opcode: Permutation * * * P4 *
- **
- ** Set the permutation used by the OP_Compare operator to be the array
- ** of integers in P4.
- **
- ** The permutation is only valid until the next OP_Compare that has
- ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
- ** occur immediately prior to the OP_Compare.
- */
- case OP_Permutation: {
- assert( pOp->p4type==P4_INTARRAY );
- assert( pOp->p4.ai );
- aPermute = pOp->p4.ai;
- break;
- }
- /* Opcode: Compare P1 P2 P3 P4 P5
- **
- ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
- ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
- ** the comparison for use by the next OP_Jump instruct.
- **
- ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
- ** determined by the most recent OP_Permutation operator. If the
- ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
- ** order.
- **
- ** P4 is a KeyInfo structure that defines collating sequences and sort
- ** orders for the comparison. The permutation applies to registers
- ** only. The KeyInfo elements are used sequentially.
- **
- ** The comparison is a sort comparison, so NULLs compare equal,
- ** NULLs are less than numbers, numbers are less than strings,
- ** and strings are less than blobs.
- */
- case OP_Compare: {
- int n;
- int i;
- int p1;
- int p2;
- const KeyInfo *pKeyInfo;
- int idx;
- CollSeq *pColl; /* Collating sequence to use on this term */
- int bRev; /* True for DESCENDING sort order */
- if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
- n = pOp->p3;
- pKeyInfo = pOp->p4.pKeyInfo;
- assert( n>0 );
- assert( pKeyInfo!=0 );
- p1 = pOp->p1;
- p2 = pOp->p2;
- #if SQLITE_DEBUG
- if( aPermute ){
- int k, mx = 0;
- for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
- assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
- assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
- }else{
- assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
- assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
- }
- #endif /* SQLITE_DEBUG */
- for(i=0; i<n; i++){
- idx = aPermute ? aPermute[i] : i;
- assert( memIsValid(&aMem[p1+idx]) );
- assert( memIsValid(&aMem[p2+idx]) );
- REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
- REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
- assert( i<pKeyInfo->nField );
- pColl = pKeyInfo->aColl[i];
- bRev = pKeyInfo->aSortOrder[i];
- iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
- if( iCompare ){
- if( bRev ) iCompare = -iCompare;
- break;
- }
- }
- aPermute = 0;
- break;
- }
- /* Opcode: Jump P1 P2 P3 * *
- **
- ** Jump to the instruction at address P1, P2, or P3 depending on whether
- ** in the most recent OP_Compare instruction the P1 vector was less than
- ** equal to, or greater than the P2 vector, respectively.
- */
- case OP_Jump: { /* jump */
- if( iCompare<0 ){
- pc = pOp->p1 - 1;
- }else if( iCompare==0 ){
- pc = pOp->p2 - 1;
- }else{
- pc = pOp->p3 - 1;
- }
- break;
- }
- /* Opcode: And P1 P2 P3 * *
- **
- ** Take the logical AND of the values in registers P1 and P2 and
- ** write the result into register P3.
- **
- ** If either P1 or P2 is 0 (false) then the result is 0 even if
- ** the other input is NULL. A NULL and true or two NULLs give
- ** a NULL output.
- */
- /* Opcode: Or P1 P2 P3 * *
- **
- ** Take the logical OR of the values in register P1 and P2 and
- ** store the answer in register P3.
- **
- ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
- ** even if the other input is NULL. A NULL and false or two NULLs
- ** give a NULL output.
- */
- case OP_And: /* same as TK_AND, in1, in2, out3 */
- case OP_Or: { /* same as TK_OR, in1, in2, out3 */
- int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
- int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
- pIn1 = &aMem[pOp->p1];
- if( pIn1->flags & MEM_Null ){
- v1 = 2;
- }else{
- v1 = sqlite3VdbeIntValue(pIn1)!=0;
- }
- pIn2 = &aMem[pOp->p2];
- if( pIn2->flags & MEM_Null ){
- v2 = 2;
- }else{
- v2 = sqlite3VdbeIntValue(pIn2)!=0;
- }
- if( pOp->opcode==OP_And ){
- static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
- v1 = and_logic[v1*3+v2];
- }else{
- static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
- v1 = or_logic[v1*3+v2];
- }
- pOut = &aMem[pOp->p3];
- if( v1==2 ){
- MemSetTypeFlag(pOut, MEM_Null);
- }else{
- pOut->u.i = v1;
- MemSetTypeFlag(pOut, MEM_Int);
- }
- break;
- }
- /* Opcode: Not P1 P2 * * *
- **
- ** Interpret the value in register P1 as a boolean value. Store the
- ** boolean complement in register P2. If the value in register P1 is
- ** NULL, then a NULL is stored in P2.
- */
- case OP_Not: { /* same as TK_NOT, in1, out2 */
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- if( pIn1->flags & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- }else{
- sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
- }
- break;
- }
- /* Opcode: BitNot P1 P2 * * *
- **
- ** Interpret the content of register P1 as an integer. Store the
- ** ones-complement of the P1 value into register P2. If P1 holds
- ** a NULL then store a NULL in P2.
- */
- case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
- pIn1 = &aMem[pOp->p1];
- pOut = &aMem[pOp->p2];
- if( pIn1->flags & MEM_Null ){
- sqlite3VdbeMemSetNull(pOut);
- }else{
- sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
- }
- break;
- }
- /* Opcode: Once P1 P2 * * *
- **
- ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
- ** set the flag and fall through to the next instruction.
- */
- case OP_Once: { /* jump */
- assert( pOp->p1<p->nOnceFlag );
- if( p->aOnceFlag[pOp->p1] ){
- pc = pOp->p2-1;
- }else{
- p->aOnceFlag[pOp->p1] = 1;
- }
- break;
- }
- /* Opcode: If P1 P2 P3 * *
- **
- ** Jump to P2 if the value in register P1 is true. The value
- ** is considered true if it is numeric and non-zero. If the value
- ** in P1 is NULL then take the jump if P3 is non-zero.
- */
- /* Opcode: IfNot P1 P2 P3 * *
- **
- ** Jump to P2 if the value in register P1 is False. The value
- ** is considered false if it has a numeric value of zero. If the value
- ** in P1 is NULL then take the jump if P3 is zero.
- */
- case OP_If: /* jump, in1 */
- case OP_IfNot: { /* jump, in1 */
- int c;
- pIn1 = &aMem[pOp->p1];
- if( pIn1->flags & MEM_Null ){
- c = pOp->p3;
- }else{
- #ifdef SQLITE_OMIT_FLOATING_POINT
- c = sqlite3VdbeIntValue(pIn1)!=0;
- #else
- c = sqlite3VdbeRealValue(pIn1)!=0.0;
- #endif
- if( pOp->opcode==OP_IfNot ) c = !c;
- }
- if( c ){
- pc = pOp->p2-1;
- }
- break;
- }
- /* Opcode: IsNull P1 P2 * * *
- **
- ** Jump to P2 if the value in register P1 is NULL.
- */
- case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
- pIn1 = &aMem[pOp->p1];
- if( (pIn1->flags & MEM_Null)!=0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: NotNull P1 P2 * * *
- **
- ** Jump to P2 if the value in register P1 is not NULL.
- */
- case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
- pIn1 = &aMem[pOp->p1];
- if( (pIn1->flags & MEM_Null)==0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: Column P1 P2 P3 P4 P5
- **
- ** Interpret the data that cursor P1 points to as a structure built using
- ** the MakeRecord instruction. (See the MakeRecord opcode for additional
- ** information about the format of the data.) Extract the P2-th column
- ** from this record. If there are less that (P2+1)
- ** values in the record, extract a NULL.
- **
- ** The value extracted is stored in register P3.
- **
- ** If the column contains fewer than P2 fields, then extract a NULL. Or,
- ** if the P4 argument is a P4_MEM use the value of the P4 argument as
- ** the result.
- **
- ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
- ** then the cache of the cursor is reset prior to extracting the column.
- ** The first OP_Column against a pseudo-table after the value of the content
- ** register has changed should have this bit set.
- **
- ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
- ** the result is guaranteed to only be used as the argument of a length()
- ** or typeof() function, respectively. The loading of large blobs can be
- ** skipped for length() and all content loading can be skipped for typeof().
- */
- case OP_Column: {
- u32 payloadSize; /* Number of bytes in the record */
- i64 payloadSize64; /* Number of bytes in the record */
- int p1; /* P1 value of the opcode */
- int p2; /* column number to retrieve */
- VdbeCursor *pC; /* The VDBE cursor */
- char *zRec; /* Pointer to complete record-data */
- BtCursor *pCrsr; /* The BTree cursor */
- u32 *aType; /* aType[i] holds the numeric type of the i-th column */
- u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
- int nField; /* number of fields in the record */
- int len; /* The length of the serialized data for the column */
- int i; /* Loop counter */
- char *zData; /* Part of the record being decoded */
- Mem *pDest; /* Where to write the extracted value */
- Mem sMem; /* For storing the record being decoded */
- u8 *zIdx; /* Index into header */
- u8 *zEndHdr; /* Pointer to first byte after the header */
- u32 offset; /* Offset into the data */
- u32 szField; /* Number of bytes in the content of a field */
- int szHdr; /* Size of the header size field at start of record */
- int avail; /* Number of bytes of available data */
- u32 t; /* A type code from the record header */
- Mem *pReg; /* PseudoTable input register */
- p1 = pOp->p1;
- p2 = pOp->p2;
- pC = 0;
- memset(&sMem, 0, sizeof(sMem));
- assert( p1<p->nCursor );
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pDest = &aMem[pOp->p3];
- memAboutToChange(p, pDest);
- zRec = 0;
- /* This block sets the variable payloadSize to be the total number of
- ** bytes in the record.
- **
- ** zRec is set to be the complete text of the record if it is available.
- ** The complete record text is always available for pseudo-tables
- ** If the record is stored in a cursor, the complete record text
- ** might be available in the pC->aRow cache. Or it might not be.
- ** If the data is unavailable, zRec is set to NULL.
- **
- ** We also compute the number of columns in the record. For cursors,
- ** the number of columns is stored in the VdbeCursor.nField element.
- */
- pC = p->apCsr[p1];
- assert( pC!=0 );
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- assert( pC->pVtabCursor==0 );
- #endif
- pCrsr = pC->pCursor;
- if( pCrsr!=0 ){
- /* The record is stored in a B-Tree */
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->nullRow ){
- payloadSize = 0;
- }else if( pC->cacheStatus==p->cacheCtr ){
- payloadSize = pC->payloadSize;
- zRec = (char*)pC->aRow;
- }else if( pC->isIndex ){
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
- VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
- assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
- /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
- ** payload size, so it is impossible for payloadSize64 to be
- ** larger than 32 bits. */
- assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
- payloadSize = (u32)payloadSize64;
- }else{
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
- VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
- assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
- }
- }else if( ALWAYS(pC->pseudoTableReg>0) ){
- pReg = &aMem[pC->pseudoTableReg];
- if( pC->multiPseudo ){
- sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
- Deephemeralize(pDest);
- goto op_column_out;
- }
- assert( pReg->flags & MEM_Blob );
- assert( memIsValid(pReg) );
- payloadSize = pReg->n;
- zRec = pReg->z;
- pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
- assert( payloadSize==0 || zRec!=0 );
- }else{
- /* Consider the row to be NULL */
- payloadSize = 0;
- }
- /* If payloadSize is 0, then just store a NULL. This can happen because of
- ** nullRow or because of a corrupt database. */
- if( payloadSize==0 ){
- MemSetTypeFlag(pDest, MEM_Null);
- goto op_column_out;
- }
- assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
- if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- nField = pC->nField;
- assert( p2<nField );
- /* Read and parse the table header. Store the results of the parse
- ** into the record header cache fields of the cursor.
- */
- aType = pC->aType;
- if( pC->cacheStatus==p->cacheCtr ){
- aOffset = pC->aOffset;
- }else{
- assert(aType);
- avail = 0;
- pC->aOffset = aOffset = &aType[nField];
- pC->payloadSize = payloadSize;
- pC->cacheStatus = p->cacheCtr;
- /* Figure out how many bytes are in the header */
- if( zRec ){
- zData = zRec;
- }else{
- if( pC->isIndex ){
- zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
- }else{
- zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
- }
- /* If KeyFetch()/DataFetch() managed to get the entire payload,
- ** save the payload in the pC->aRow cache. That will save us from
- ** having to make additional calls to fetch the content portion of
- ** the record.
- */
- assert( avail>=0 );
- if( payloadSize <= (u32)avail ){
- zRec = zData;
- pC->aRow = (u8*)zData;
- }else{
- pC->aRow = 0;
- }
- }
- /* The following assert is true in all cases except when
- ** the database file has been corrupted externally.
- ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
- szHdr = getVarint32((u8*)zData, offset);
- /* Make sure a corrupt database has not given us an oversize header.
- ** Do this now to avoid an oversize memory allocation.
- **
- ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
- ** types use so much data space that there can only be 4096 and 32 of
- ** them, respectively. So the maximum header length results from a
- ** 3-byte type for each of the maximum of 32768 columns plus three
- ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
- */
- if( offset > 98307 ){
- rc = SQLITE_CORRUPT_BKPT;
- goto op_column_out;
- }
- /* Compute in len the number of bytes of data we need to read in order
- ** to get nField type values. offset is an upper bound on this. But
- ** nField might be significantly less than the true number of columns
- ** in the table, and in that case, 5*nField+3 might be smaller than offset.
- ** We want to minimize len in order to limit the size of the memory
- ** allocation, especially if a corrupt database file has caused offset
- ** to be oversized. Offset is limited to 98307 above. But 98307 might
- ** still exceed Robson memory allocation limits on some configurations.
- ** On systems that cannot tolerate large memory allocations, nField*5+3
- ** will likely be much smaller since nField will likely be less than
- ** 20 or so. This insures that Robson memory allocation limits are
- ** not exceeded even for corrupt database files.
- */
- len = nField*5 + 3;
- if( len > (int)offset ) len = (int)offset;
- /* The KeyFetch() or DataFetch() above are fast and will get the entire
- ** record header in most cases. But they will fail to get the complete
- ** record header if the record header does not fit on a single page
- ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
- ** acquire the complete header text.
- */
- if( !zRec && avail<len ){
- sMem.flags = 0;
- sMem.db = 0;
- rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- zData = sMem.z;
- }
- zEndHdr = (u8 *)&zData[len];
- zIdx = (u8 *)&zData[szHdr];
- /* Scan the header and use it to fill in the aType[] and aOffset[]
- ** arrays. aType[i] will contain the type integer for the i-th
- ** column and aOffset[i] will contain the offset from the beginning
- ** of the record to the start of the data for the i-th column
- */
- for(i=0; i<nField; i++){
- if( zIdx<zEndHdr ){
- aOffset[i] = offset;
- if( zIdx[0]<0x80 ){
- t = zIdx[0];
- zIdx++;
- }else{
- zIdx += sqlite3GetVarint32(zIdx, &t);
- }
- aType[i] = t;
- szField = sqlite3VdbeSerialTypeLen(t);
- offset += szField;
- if( offset<szField ){ /* True if offset overflows */
- zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
- break;
- }
- }else{
- /* If i is less that nField, then there are fewer fields in this
- ** record than SetNumColumns indicated there are columns in the
- ** table. Set the offset for any extra columns not present in
- ** the record to 0. This tells code below to store the default value
- ** for the column instead of deserializing a value from the record.
- */
- aOffset[i] = 0;
- }
- }
- sqlite3VdbeMemRelease(&sMem);
- sMem.flags = MEM_Null;
- /* If we have read more header data than was contained in the header,
- ** or if the end of the last field appears to be past the end of the
- ** record, or if the end of the last field appears to be before the end
- ** of the record (when all fields present), then we must be dealing
- ** with a corrupt database.
- */
- if( (zIdx > zEndHdr) || (offset > payloadSize)
- || (zIdx==zEndHdr && offset!=payloadSize) ){
- rc = SQLITE_CORRUPT_BKPT;
- goto op_column_out;
- }
- }
- /* Get the column information. If aOffset[p2] is non-zero, then
- ** deserialize the value from the record. If aOffset[p2] is zero,
- ** then there are not enough fields in the record to satisfy the
- ** request. In this case, set the value NULL or to P4 if P4 is
- ** a pointer to a Mem object.
- */
- if( aOffset[p2] ){
- assert( rc==SQLITE_OK );
- if( zRec ){
- /* This is the common case where the whole row fits on a single page */
- VdbeMemRelease(pDest);
- sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
- }else{
- /* This branch happens only when the row overflows onto multiple pages */
- t = aType[p2];
- if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
- && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
- ){
- /* Content is irrelevant for the typeof() function and for
- ** the length(X) function if X is a blob. So we might as well use
- ** bogus content rather than reading content from disk. NULL works
- ** for text and blob and whatever is in the payloadSize64 variable
- ** will work for everything else. */
- zData = t<12 ? (char*)&payloadSize64 : 0;
- }else{
- len = sqlite3VdbeSerialTypeLen(t);
- sqlite3VdbeMemMove(&sMem, pDest);
- rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
- &sMem);
- if( rc!=SQLITE_OK ){
- goto op_column_out;
- }
- zData = sMem.z;
- }
- sqlite3VdbeSerialGet((u8*)zData, t, pDest);
- }
- pDest->enc = encoding;
- }else{
- if( pOp->p4type==P4_MEM ){
- sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
- }else{
- MemSetTypeFlag(pDest, MEM_Null);
- }
- }
- /* If we dynamically allocated space to hold the data (in the
- ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
- ** dynamically allocated space over to the pDest structure.
- ** This prevents a memory copy.
- */
- if( sMem.zMalloc ){
- assert( sMem.z==sMem.zMalloc );
- assert( !(pDest->flags & MEM_Dyn) );
- assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
- pDest->flags &= ~(MEM_Ephem|MEM_Static);
- pDest->flags |= MEM_Term;
- pDest->z = sMem.z;
- pDest->zMalloc = sMem.zMalloc;
- }
- rc = sqlite3VdbeMemMakeWriteable(pDest);
- op_column_out:
- UPDATE_MAX_BLOBSIZE(pDest);
- REGISTER_TRACE(pOp->p3, pDest);
- break;
- }
- /* Opcode: Affinity P1 P2 * P4 *
- **
- ** Apply affinities to a range of P2 registers starting with P1.
- **
- ** P4 is a string that is P2 characters long. The nth character of the
- ** string indicates the column affinity that should be used for the nth
- ** memory cell in the range.
- */
- case OP_Affinity: {
- const char *zAffinity; /* The affinity to be applied */
- char cAff; /* A single character of affinity */
- zAffinity = pOp->p4.z;
- assert( zAffinity!=0 );
- assert( zAffinity[pOp->p2]==0 );
- pIn1 = &aMem[pOp->p1];
- while( (cAff = *(zAffinity++))!=0 ){
- assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
- assert( memIsValid(pIn1) );
- ExpandBlob(pIn1);
- applyAffinity(pIn1, cAff, encoding);
- pIn1++;
- }
- break;
- }
- /* Opcode: MakeRecord P1 P2 P3 P4 *
- **
- ** Convert P2 registers beginning with P1 into the [record format]
- ** use as a data record in a database table or as a key
- ** in an index. The OP_Column opcode can decode the record later.
- **
- ** P4 may be a string that is P2 characters long. The nth character of the
- ** string indicates the column affinity that should be used for the nth
- ** field of the index key.
- **
- ** The mapping from character to affinity is given by the SQLITE_AFF_
- ** macros defined in sqliteInt.h.
- **
- ** If P4 is NULL then all index fields have the affinity NONE.
- */
- case OP_MakeRecord: {
- u8 *zNewRecord; /* A buffer to hold the data for the new record */
- Mem *pRec; /* The new record */
- u64 nData; /* Number of bytes of data space */
- int nHdr; /* Number of bytes of header space */
- i64 nByte; /* Data space required for this record */
- int nZero; /* Number of zero bytes at the end of the record */
- int nVarint; /* Number of bytes in a varint */
- u32 serial_type; /* Type field */
- Mem *pData0; /* First field to be combined into the record */
- Mem *pLast; /* Last field of the record */
- int nField; /* Number of fields in the record */
- char *zAffinity; /* The affinity string for the record */
- int file_format; /* File format to use for encoding */
- int i; /* Space used in zNewRecord[] */
- int len; /* Length of a field */
- /* Assuming the record contains N fields, the record format looks
- ** like this:
- **
- ** ------------------------------------------------------------------------
- ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
- ** ------------------------------------------------------------------------
- **
- ** Data(0) is taken from register P1. Data(1) comes from register P1+1
- ** and so froth.
- **
- ** Each type field is a varint representing the serial type of the
- ** corresponding data element (see sqlite3VdbeSerialType()). The
- ** hdr-size field is also a varint which is the offset from the beginning
- ** of the record to data0.
- */
- nData = 0; /* Number of bytes of data space */
- nHdr = 0; /* Number of bytes of header space */
- nZero = 0; /* Number of zero bytes at the end of the record */
- nField = pOp->p1;
- zAffinity = pOp->p4.z;
- assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
- pData0 = &aMem[nField];
- nField = pOp->p2;
- pLast = &pData0[nField-1];
- file_format = p->minWriteFileFormat;
- /* Identify the output register */
- assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
- pOut = &aMem[pOp->p3];
- memAboutToChange(p, pOut);
- /* Loop through the elements that will make up the record to figure
- ** out how much space is required for the new record.
- */
- for(pRec=pData0; pRec<=pLast; pRec++){
- assert( memIsValid(pRec) );
- if( zAffinity ){
- applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
- }
- if( pRec->flags&MEM_Zero && pRec->n>0 ){
- sqlite3VdbeMemExpandBlob(pRec);
- }
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- len = sqlite3VdbeSerialTypeLen(serial_type);
- nData += len;
- nHdr += sqlite3VarintLen(serial_type);
- if( pRec->flags & MEM_Zero ){
- /* Only pure zero-filled BLOBs can be input to this Opcode.
- ** We do not allow blobs with a prefix and a zero-filled tail. */
- nZero += pRec->u.nZero;
- }else if( len ){
- nZero = 0;
- }
- }
- /* Add the initial header varint and total the size */
- nHdr += nVarint = sqlite3VarintLen(nHdr);
- if( nVarint<sqlite3VarintLen(nHdr) ){
- nHdr++;
- }
- nByte = nHdr+nData-nZero;
- if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- /* Make sure the output register has a buffer large enough to store
- ** the new record. The output register (pOp->p3) is not allowed to
- ** be one of the input registers (because the following call to
- ** sqlite3VdbeMemGrow() could clobber the value before it is used).
- */
- if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
- goto no_mem;
- }
- zNewRecord = (u8 *)pOut->z;
- /* Write the record */
- i = putVarint32(zNewRecord, nHdr);
- for(pRec=pData0; pRec<=pLast; pRec++){
- serial_type = sqlite3VdbeSerialType(pRec, file_format);
- i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
- }
- for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
- i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
- }
- assert( i==nByte );
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pOut->n = (int)nByte;
- pOut->flags = MEM_Blob | MEM_Dyn;
- pOut->xDel = 0;
- if( nZero ){
- pOut->u.nZero = nZero;
- pOut->flags |= MEM_Zero;
- }
- pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
- REGISTER_TRACE(pOp->p3, pOut);
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
- /* Opcode: Count P1 P2 * * *
- **
- ** Store the number of entries (an integer value) in the table or index
- ** opened by cursor P1 in register P2
- */
- #ifndef SQLITE_OMIT_BTREECOUNT
- case OP_Count: { /* out2-prerelease */
- i64 nEntry;
- BtCursor *pCrsr;
- pCrsr = p->apCsr[pOp->p1]->pCursor;
- if( ALWAYS(pCrsr) ){
- rc = sqlite3BtreeCount(pCrsr, &nEntry);
- }else{
- nEntry = 0;
- }
- pOut->u.i = nEntry;
- break;
- }
- #endif
- /* Opcode: Savepoint P1 * * P4 *
- **
- ** Open, release or rollback the savepoint named by parameter P4, depending
- ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
- ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
- */
- case OP_Savepoint: {
- int p1; /* Value of P1 operand */
- char *zName; /* Name of savepoint */
- int nName;
- Savepoint *pNew;
- Savepoint *pSavepoint;
- Savepoint *pTmp;
- int iSavepoint;
- int ii;
- p1 = pOp->p1;
- zName = pOp->p4.z;
- /* Assert that the p1 parameter is valid. Also that if there is no open
- ** transaction, then there cannot be any savepoints.
- */
- assert( db->pSavepoint==0 || db->autoCommit==0 );
- assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
- assert( db->pSavepoint || db->isTransactionSavepoint==0 );
- assert( checkSavepointCount(db) );
- assert( p->bIsReader );
- if( p1==SAVEPOINT_BEGIN ){
- if( db->nVdbeWrite>0 ){
- /* A new savepoint cannot be created if there are active write
- ** statements (i.e. open read/write incremental blob handles).
- */
- sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
- "SQL statements in progress");
- rc = SQLITE_BUSY;
- }else{
- nName = sqlite3Strlen30(zName);
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* This call is Ok even if this savepoint is actually a transaction
- ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
- ** If this is a transaction savepoint being opened, it is guaranteed
- ** that the db->aVTrans[] array is empty. */
- assert( db->autoCommit==0 || db->nVTrans==0 );
- rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
- db->nStatement+db->nSavepoint);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- #endif
- /* Create a new savepoint structure. */
- pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
- if( pNew ){
- pNew->zName = (char *)&pNew[1];
- memcpy(pNew->zName, zName, nName+1);
-
- /* If there is no open transaction, then mark this as a special
- ** "transaction savepoint". */
- if( db->autoCommit ){
- db->autoCommit = 0;
- db->isTransactionSavepoint = 1;
- }else{
- db->nSavepoint++;
- }
-
- /* Link the new savepoint into the database handle's list. */
- pNew->pNext = db->pSavepoint;
- db->pSavepoint = pNew;
- pNew->nDeferredCons = db->nDeferredCons;
- pNew->nDeferredImmCons = db->nDeferredImmCons;
- }
- }
- }else{
- iSavepoint = 0;
- /* Find the named savepoint. If there is no such savepoint, then an
- ** an error is returned to the user. */
- for(
- pSavepoint = db->pSavepoint;
- pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
- pSavepoint = pSavepoint->pNext
- ){
- iSavepoint++;
- }
- if( !pSavepoint ){
- sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
- rc = SQLITE_ERROR;
- }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
- /* It is not possible to release (commit) a savepoint if there are
- ** active write statements.
- */
- sqlite3SetString(&p->zErrMsg, db,
- "cannot release savepoint - SQL statements in progress"
- );
- rc = SQLITE_BUSY;
- }else{
- /* Determine whether or not this is a transaction savepoint. If so,
- ** and this is a RELEASE command, then the current transaction
- ** is committed.
- */
- int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
- if( isTransaction && p1==SAVEPOINT_RELEASE ){
- if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
- goto vdbe_return;
- }
- db->autoCommit = 1;
- if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
- p->pc = pc;
- db->autoCommit = 0;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- db->isTransactionSavepoint = 0;
- rc = p->rc;
- }else{
- iSavepoint = db->nSavepoint - iSavepoint - 1;
- if( p1==SAVEPOINT_ROLLBACK ){
- for(ii=0; ii<db->nDb; ii++){
- sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
- }
- }
- for(ii=0; ii<db->nDb; ii++){
- rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- }
- if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
- sqlite3ExpirePreparedStatements(db);
- sqlite3ResetAllSchemasOfConnection(db);
- db->flags = (db->flags | SQLITE_InternChanges);
- }
- }
-
- /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
- ** savepoints nested inside of the savepoint being operated on. */
- while( db->pSavepoint!=pSavepoint ){
- pTmp = db->pSavepoint;
- db->pSavepoint = pTmp->pNext;
- sqlite3DbFree(db, pTmp);
- db->nSavepoint--;
- }
- /* If it is a RELEASE, then destroy the savepoint being operated on
- ** too. If it is a ROLLBACK TO, then set the number of deferred
- ** constraint violations present in the database to the value stored
- ** when the savepoint was created. */
- if( p1==SAVEPOINT_RELEASE ){
- assert( pSavepoint==db->pSavepoint );
- db->pSavepoint = pSavepoint->pNext;
- sqlite3DbFree(db, pSavepoint);
- if( !isTransaction ){
- db->nSavepoint--;
- }
- }else{
- db->nDeferredCons = pSavepoint->nDeferredCons;
- db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
- }
- if( !isTransaction ){
- rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }
- }
- }
- break;
- }
- /* Opcode: AutoCommit P1 P2 * * *
- **
- ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
- ** back any currently active btree transactions. If there are any active
- ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
- ** there are active writing VMs or active VMs that use shared cache.
- **
- ** This instruction causes the VM to halt.
- */
- case OP_AutoCommit: {
- int desiredAutoCommit;
- int iRollback;
- int turnOnAC;
- desiredAutoCommit = pOp->p1;
- iRollback = pOp->p2;
- turnOnAC = desiredAutoCommit && !db->autoCommit;
- assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
- assert( desiredAutoCommit==1 || iRollback==0 );
- assert( db->nVdbeActive>0 ); /* At least this one VM is active */
- assert( p->bIsReader );
- #if 0
- if( turnOnAC && iRollback && db->nVdbeActive>1 ){
- /* If this instruction implements a ROLLBACK and other VMs are
- ** still running, and a transaction is active, return an error indicating
- ** that the other VMs must complete first.
- */
- sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
- "SQL statements in progress");
- rc = SQLITE_BUSY;
- }else
- #endif
- if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
- /* If this instruction implements a COMMIT and other VMs are writing
- ** return an error indicating that the other VMs must complete first.
- */
- sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
- "SQL statements in progress");
- rc = SQLITE_BUSY;
- }else if( desiredAutoCommit!=db->autoCommit ){
- if( iRollback ){
- assert( desiredAutoCommit==1 );
- sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
- db->autoCommit = 1;
- }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
- goto vdbe_return;
- }else{
- db->autoCommit = (u8)desiredAutoCommit;
- if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
- p->pc = pc;
- db->autoCommit = (u8)(1-desiredAutoCommit);
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- }
- assert( db->nStatement==0 );
- sqlite3CloseSavepoints(db);
- if( p->rc==SQLITE_OK ){
- rc = SQLITE_DONE;
- }else{
- rc = SQLITE_ERROR;
- }
- goto vdbe_return;
- }else{
- sqlite3SetString(&p->zErrMsg, db,
- (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
- (iRollback)?"cannot rollback - no transaction is active":
- "cannot commit - no transaction is active"));
-
- rc = SQLITE_ERROR;
- }
- break;
- }
- /* Opcode: Transaction P1 P2 * * *
- **
- ** Begin a transaction. The transaction ends when a Commit or Rollback
- ** opcode is encountered. Depending on the ON CONFLICT setting, the
- ** transaction might also be rolled back if an error is encountered.
- **
- ** P1 is the index of the database file on which the transaction is
- ** started. Index 0 is the main database file and index 1 is the
- ** file used for temporary tables. Indices of 2 or more are used for
- ** attached databases.
- **
- ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
- ** obtained on the database file when a write-transaction is started. No
- ** other process can start another write transaction while this transaction is
- ** underway. Starting a write transaction also creates a rollback journal. A
- ** write transaction must be started before any changes can be made to the
- ** database. If P2 is greater than or equal to 2 then an EXCLUSIVE lock is
- ** also obtained on the file.
- **
- ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
- ** true (this flag is set if the Vdbe may modify more than one row and may
- ** throw an ABORT exception), a statement transaction may also be opened.
- ** More specifically, a statement transaction is opened iff the database
- ** connection is currently not in autocommit mode, or if there are other
- ** active statements. A statement transaction allows the changes made by this
- ** VDBE to be rolled back after an error without having to roll back the
- ** entire transaction. If no error is encountered, the statement transaction
- ** will automatically commit when the VDBE halts.
- **
- ** If P2 is zero, then a read-lock is obtained on the database file.
- */
- case OP_Transaction: {
- Btree *pBt;
- assert( p->bIsReader );
- assert( p->readOnly==0 || pOp->p2==0 );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
- if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
- rc = SQLITE_READONLY;
- goto abort_due_to_error;
- }
- pBt = db->aDb[pOp->p1].pBt;
- if( pBt ){
- rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
- if( rc==SQLITE_BUSY ){
- p->pc = pc;
- p->rc = rc = SQLITE_BUSY;
- goto vdbe_return;
- }
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( pOp->p2 && p->usesStmtJournal
- && (db->autoCommit==0 || db->nVdbeRead>1)
- ){
- assert( sqlite3BtreeIsInTrans(pBt) );
- if( p->iStatement==0 ){
- assert( db->nStatement>=0 && db->nSavepoint>=0 );
- db->nStatement++;
- p->iStatement = db->nSavepoint + db->nStatement;
- }
- rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
- }
- /* Store the current value of the database handles deferred constraint
- ** counter. If the statement transaction needs to be rolled back,
- ** the value of this counter needs to be restored too. */
- p->nStmtDefCons = db->nDeferredCons;
- p->nStmtDefImmCons = db->nDeferredImmCons;
- }
- }
- break;
- }
- /* Opcode: ReadCookie P1 P2 P3 * *
- **
- ** Read cookie number P3 from database P1 and write it into register P2.
- ** P3==1 is the schema version. P3==2 is the database format.
- ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
- ** the main database file and P1==1 is the database file used to store
- ** temporary tables.
- **
- ** There must be a read-lock on the database (either a transaction
- ** must be started or there must be an open cursor) before
- ** executing this instruction.
- */
- case OP_ReadCookie: { /* out2-prerelease */
- int iMeta;
- int iDb;
- int iCookie;
- assert( p->bIsReader );
- iDb = pOp->p1;
- iCookie = pOp->p3;
- assert( pOp->p3<SQLITE_N_BTREE_META );
- assert( iDb>=0 && iDb<db->nDb );
- assert( db->aDb[iDb].pBt!=0 );
- assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
- sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
- pOut->u.i = iMeta;
- break;
- }
- /* Opcode: SetCookie P1 P2 P3 * *
- **
- ** Write the content of register P3 (interpreted as an integer)
- ** into cookie number P2 of database P1. P2==1 is the schema version.
- ** P2==2 is the database format. P2==3 is the recommended pager cache
- ** size, and so forth. P1==0 is the main database file and P1==1 is the
- ** database file used to store temporary tables.
- **
- ** A transaction must be started before executing this opcode.
- */
- case OP_SetCookie: { /* in3 */
- Db *pDb;
- assert( pOp->p2<SQLITE_N_BTREE_META );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
- assert( p->readOnly==0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
- pIn3 = &aMem[pOp->p3];
- sqlite3VdbeMemIntegerify(pIn3);
- /* See note about index shifting on OP_ReadCookie */
- rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
- if( pOp->p2==BTREE_SCHEMA_VERSION ){
- /* When the schema cookie changes, record the new cookie internally */
- pDb->pSchema->schema_cookie = (int)pIn3->u.i;
- db->flags |= SQLITE_InternChanges;
- }else if( pOp->p2==BTREE_FILE_FORMAT ){
- /* Record changes in the file format */
- pDb->pSchema->file_format = (u8)pIn3->u.i;
- }
- if( pOp->p1==1 ){
- /* Invalidate all prepared statements whenever the TEMP database
- ** schema is changed. Ticket #1644 */
- sqlite3ExpirePreparedStatements(db);
- p->expired = 0;
- }
- break;
- }
- /* Opcode: VerifyCookie P1 P2 P3 * *
- **
- ** Check the value of global database parameter number 0 (the
- ** schema version) and make sure it is equal to P2 and that the
- ** generation counter on the local schema parse equals P3.
- **
- ** P1 is the database number which is 0 for the main database file
- ** and 1 for the file holding temporary tables and some higher number
- ** for auxiliary databases.
- **
- ** The cookie changes its value whenever the database schema changes.
- ** This operation is used to detect when that the cookie has changed
- ** and that the current process needs to reread the schema.
- **
- ** Either a transaction needs to have been started or an OP_Open needs
- ** to be executed (to establish a read lock) before this opcode is
- ** invoked.
- */
- case OP_VerifyCookie: {
- int iMeta;
- int iGen;
- Btree *pBt;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
- assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
- assert( p->bIsReader );
- pBt = db->aDb[pOp->p1].pBt;
- if( pBt ){
- sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
- iGen = db->aDb[pOp->p1].pSchema->iGeneration;
- }else{
- iGen = iMeta = 0;
- }
- if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
- /* If the schema-cookie from the database file matches the cookie
- ** stored with the in-memory representation of the schema, do
- ** not reload the schema from the database file.
- **
- ** If virtual-tables are in use, this is not just an optimization.
- ** Often, v-tables store their data in other SQLite tables, which
- ** are queried from within xNext() and other v-table methods using
- ** prepared queries. If such a query is out-of-date, we do not want to
- ** discard the database schema, as the user code implementing the
- ** v-table would have to be ready for the sqlite3_vtab structure itself
- ** to be invalidated whenever sqlite3_step() is called from within
- ** a v-table method.
- */
- if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
- sqlite3ResetOneSchema(db, pOp->p1);
- }
- p->expired = 1;
- rc = SQLITE_SCHEMA;
- }
- break;
- }
- /* Opcode: OpenRead P1 P2 P3 P4 P5
- **
- ** Open a read-only cursor for the database table whose root page is
- ** P2 in a database file. The database file is determined by P3.
- ** P3==0 means the main database, P3==1 means the database used for
- ** temporary tables, and P3>1 means used the corresponding attached
- ** database. Give the new cursor an identifier of P1. The P1
- ** values need not be contiguous but all P1 values should be small integers.
- ** It is an error for P1 to be negative.
- **
- ** If P5!=0 then use the content of register P2 as the root page, not
- ** the value of P2 itself.
- **
- ** There will be a read lock on the database whenever there is an
- ** open cursor. If the database was unlocked prior to this instruction
- ** then a read lock is acquired as part of this instruction. A read
- ** lock allows other processes to read the database but prohibits
- ** any other process from modifying the database. The read lock is
- ** released when all cursors are closed. If this instruction attempts
- ** to get a read lock but fails, the script terminates with an
- ** SQLITE_BUSY error code.
- **
- ** The P4 value may be either an integer (P4_INT32) or a pointer to
- ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
- ** structure, then said structure defines the content and collating
- ** sequence of the index being opened. Otherwise, if P4 is an integer
- ** value, it is set to the number of columns in the table.
- **
- ** See also OpenWrite.
- */
- /* Opcode: OpenWrite P1 P2 P3 P4 P5
- **
- ** Open a read/write cursor named P1 on the table or index whose root
- ** page is P2. Or if P5!=0 use the content of register P2 to find the
- ** root page.
- **
- ** The P4 value may be either an integer (P4_INT32) or a pointer to
- ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
- ** structure, then said structure defines the content and collating
- ** sequence of the index being opened. Otherwise, if P4 is an integer
- ** value, it is set to the number of columns in the table, or to the
- ** largest index of any column of the table that is actually used.
- **
- ** This instruction works just like OpenRead except that it opens the cursor
- ** in read/write mode. For a given table, there can be one or more read-only
- ** cursors or a single read/write cursor but not both.
- **
- ** See also OpenRead.
- */
- case OP_OpenRead:
- case OP_OpenWrite: {
- int nField;
- KeyInfo *pKeyInfo;
- int p2;
- int iDb;
- int wrFlag;
- Btree *pX;
- VdbeCursor *pCur;
- Db *pDb;
- assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
- assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
- assert( p->bIsReader );
- assert( pOp->opcode==OP_OpenRead || p->readOnly==0 );
- if( p->expired ){
- rc = SQLITE_ABORT;
- break;
- }
- nField = 0;
- pKeyInfo = 0;
- p2 = pOp->p2;
- iDb = pOp->p3;
- assert( iDb>=0 && iDb<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
- pDb = &db->aDb[iDb];
- pX = pDb->pBt;
- assert( pX!=0 );
- if( pOp->opcode==OP_OpenWrite ){
- wrFlag = 1;
- assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
- if( pDb->pSchema->file_format < p->minWriteFileFormat ){
- p->minWriteFileFormat = pDb->pSchema->file_format;
- }
- }else{
- wrFlag = 0;
- }
- if( pOp->p5 & OPFLAG_P2ISREG ){
- assert( p2>0 );
- assert( p2<=(p->nMem-p->nCursor) );
- pIn2 = &aMem[p2];
- assert( memIsValid(pIn2) );
- assert( (pIn2->flags & MEM_Int)!=0 );
- sqlite3VdbeMemIntegerify(pIn2);
- p2 = (int)pIn2->u.i;
- /* The p2 value always comes from a prior OP_CreateTable opcode and
- ** that opcode will always set the p2 value to 2 or more or else fail.
- ** If there were a failure, the prepared statement would have halted
- ** before reaching this instruction. */
- if( NEVER(p2<2) ) {
- rc = SQLITE_CORRUPT_BKPT;
- goto abort_due_to_error;
- }
- }
- if( pOp->p4type==P4_KEYINFO ){
- pKeyInfo = pOp->p4.pKeyInfo;
- pKeyInfo->enc = ENC(p->db);
- nField = pKeyInfo->nField+1;
- }else if( pOp->p4type==P4_INT32 ){
- nField = pOp->p4.i;
- }
- assert( pOp->p1>=0 );
- pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
- if( pCur==0 ) goto no_mem;
- pCur->nullRow = 1;
- pCur->isOrdered = 1;
- rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
- pCur->pKeyInfo = pKeyInfo;
- assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
- sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
- /* Since it performs no memory allocation or IO, the only value that
- ** sqlite3BtreeCursor() may return is SQLITE_OK. */
- assert( rc==SQLITE_OK );
- /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
- ** SQLite used to check if the root-page flags were sane at this point
- ** and report database corruption if they were not, but this check has
- ** since moved into the btree layer. */
- pCur->isTable = pOp->p4type!=P4_KEYINFO;
- pCur->isIndex = !pCur->isTable;
- break;
- }
- /* Opcode: OpenEphemeral P1 P2 * P4 P5
- **
- ** Open a new cursor P1 to a transient table.
- ** The cursor is always opened read/write even if
- ** the main database is read-only. The ephemeral
- ** table is deleted automatically when the cursor is closed.
- **
- ** P2 is the number of columns in the ephemeral table.
- ** The cursor points to a BTree table if P4==0 and to a BTree index
- ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
- ** that defines the format of keys in the index.
- **
- ** This opcode was once called OpenTemp. But that created
- ** confusion because the term "temp table", might refer either
- ** to a TEMP table at the SQL level, or to a table opened by
- ** this opcode. Then this opcode was call OpenVirtual. But
- ** that created confusion with the whole virtual-table idea.
- **
- ** The P5 parameter can be a mask of the BTREE_* flags defined
- ** in btree.h. These flags control aspects of the operation of
- ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
- ** added automatically.
- */
- /* Opcode: OpenAutoindex P1 P2 * P4 *
- **
- ** This opcode works the same as OP_OpenEphemeral. It has a
- ** different name to distinguish its use. Tables created using
- ** by this opcode will be used for automatically created transient
- ** indices in joins.
- */
- case OP_OpenAutoindex:
- case OP_OpenEphemeral: {
- VdbeCursor *pCx;
- static const int vfsFlags =
- SQLITE_OPEN_READWRITE |
- SQLITE_OPEN_CREATE |
- SQLITE_OPEN_EXCLUSIVE |
- SQLITE_OPEN_DELETEONCLOSE |
- SQLITE_OPEN_TRANSIENT_DB;
- assert( pOp->p1>=0 );
- pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
- BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
- }
- if( rc==SQLITE_OK ){
- /* If a transient index is required, create it by calling
- ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
- ** opening it. If a transient table is required, just use the
- ** automatically created table with root-page 1 (an BLOB_INTKEY table).
- */
- if( pOp->p4.pKeyInfo ){
- int pgno;
- assert( pOp->p4type==P4_KEYINFO );
- rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
- if( rc==SQLITE_OK ){
- assert( pgno==MASTER_ROOT+1 );
- rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
- (KeyInfo*)pOp->p4.z, pCx->pCursor);
- pCx->pKeyInfo = pOp->p4.pKeyInfo;
- pCx->pKeyInfo->enc = ENC(p->db);
- }
- pCx->isTable = 0;
- }else{
- rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
- pCx->isTable = 1;
- }
- }
- pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
- pCx->isIndex = !pCx->isTable;
- break;
- }
- /* Opcode: SorterOpen P1 P2 * P4 *
- **
- ** This opcode works like OP_OpenEphemeral except that it opens
- ** a transient index that is specifically designed to sort large
- ** tables using an external merge-sort algorithm.
- */
- case OP_SorterOpen: {
- VdbeCursor *pCx;
- pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
- if( pCx==0 ) goto no_mem;
- pCx->pKeyInfo = pOp->p4.pKeyInfo;
- pCx->pKeyInfo->enc = ENC(p->db);
- pCx->isSorter = 1;
- rc = sqlite3VdbeSorterInit(db, pCx);
- break;
- }
- /* Opcode: OpenPseudo P1 P2 P3 * P5
- **
- ** Open a new cursor that points to a fake table that contains a single
- ** row of data. The content of that one row in the content of memory
- ** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
- ** MEM_Blob content contained in register P2. When P5==1, then the
- ** row is represented by P3 consecutive registers beginning with P2.
- **
- ** A pseudo-table created by this opcode is used to hold a single
- ** row output from the sorter so that the row can be decomposed into
- ** individual columns using the OP_Column opcode. The OP_Column opcode
- ** is the only cursor opcode that works with a pseudo-table.
- **
- ** P3 is the number of fields in the records that will be stored by
- ** the pseudo-table.
- */
- case OP_OpenPseudo: {
- VdbeCursor *pCx;
- assert( pOp->p1>=0 );
- pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
- if( pCx==0 ) goto no_mem;
- pCx->nullRow = 1;
- pCx->pseudoTableReg = pOp->p2;
- pCx->isTable = 1;
- pCx->isIndex = 0;
- pCx->multiPseudo = pOp->p5;
- break;
- }
- /* Opcode: Close P1 * * * *
- **
- ** Close a cursor previously opened as P1. If P1 is not
- ** currently open, this instruction is a no-op.
- */
- case OP_Close: {
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
- p->apCsr[pOp->p1] = 0;
- break;
- }
- /* Opcode: SeekGe P1 P2 P3 P4 *
- **
- ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
- ** use the value in register P3 as the key. If cursor P1 refers
- ** to an SQL index, then P3 is the first in an array of P4 registers
- ** that are used as an unpacked index key.
- **
- ** Reposition cursor P1 so that it points to the smallest entry that
- ** is greater than or equal to the key value. If there are no records
- ** greater than or equal to the key and P2 is not zero, then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
- */
- /* Opcode: SeekGt P1 P2 P3 P4 *
- **
- ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
- ** use the value in register P3 as a key. If cursor P1 refers
- ** to an SQL index, then P3 is the first in an array of P4 registers
- ** that are used as an unpacked index key.
- **
- ** Reposition cursor P1 so that it points to the smallest entry that
- ** is greater than the key value. If there are no records greater than
- ** the key and P2 is not zero, then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
- */
- /* Opcode: SeekLt P1 P2 P3 P4 *
- **
- ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
- ** use the value in register P3 as a key. If cursor P1 refers
- ** to an SQL index, then P3 is the first in an array of P4 registers
- ** that are used as an unpacked index key.
- **
- ** Reposition cursor P1 so that it points to the largest entry that
- ** is less than the key value. If there are no records less than
- ** the key and P2 is not zero, then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
- */
- /* Opcode: SeekLe P1 P2 P3 P4 *
- **
- ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
- ** use the value in register P3 as a key. If cursor P1 refers
- ** to an SQL index, then P3 is the first in an array of P4 registers
- ** that are used as an unpacked index key.
- **
- ** Reposition cursor P1 so that it points to the largest entry that
- ** is less than or equal to the key value. If there are no records
- ** less than or equal to the key and P2 is not zero, then jump to P2.
- **
- ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
- */
- case OP_SeekLt: /* jump, in3 */
- case OP_SeekLe: /* jump, in3 */
- case OP_SeekGe: /* jump, in3 */
- case OP_SeekGt: { /* jump, in3 */
- int res;
- int oc;
- VdbeCursor *pC;
- UnpackedRecord r;
- int nField;
- i64 iKey; /* The rowid we are to seek to */
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( pOp->p2!=0 );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pseudoTableReg==0 );
- assert( OP_SeekLe == OP_SeekLt+1 );
- assert( OP_SeekGe == OP_SeekLt+2 );
- assert( OP_SeekGt == OP_SeekLt+3 );
- assert( pC->isOrdered );
- if( ALWAYS(pC->pCursor!=0) ){
- oc = pOp->opcode;
- pC->nullRow = 0;
- if( pC->isTable ){
- /* The input value in P3 might be of any type: integer, real, string,
- ** blob, or NULL. But it needs to be an integer before we can do
- ** the seek, so covert it. */
- pIn3 = &aMem[pOp->p3];
- applyNumericAffinity(pIn3);
- iKey = sqlite3VdbeIntValue(pIn3);
- pC->rowidIsValid = 0;
- /* If the P3 value could not be converted into an integer without
- ** loss of information, then special processing is required... */
- if( (pIn3->flags & MEM_Int)==0 ){
- if( (pIn3->flags & MEM_Real)==0 ){
- /* If the P3 value cannot be converted into any kind of a number,
- ** then the seek is not possible, so jump to P2 */
- pc = pOp->p2 - 1;
- break;
- }
- /* If we reach this point, then the P3 value must be a floating
- ** point number. */
- assert( (pIn3->flags & MEM_Real)!=0 );
- if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
- /* The P3 value is too large in magnitude to be expressed as an
- ** integer. */
- res = 1;
- if( pIn3->r<0 ){
- if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
- rc = sqlite3BtreeFirst(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }
- }else{
- if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
- rc = sqlite3BtreeLast(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- }
- }
- if( res ){
- pc = pOp->p2 - 1;
- }
- break;
- }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
- /* Use the ceiling() function to convert real->int */
- if( pIn3->r > (double)iKey ) iKey++;
- }else{
- /* Use the floor() function to convert real->int */
- assert( oc==OP_SeekLe || oc==OP_SeekGt );
- if( pIn3->r < (double)iKey ) iKey--;
- }
- }
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res==0 ){
- pC->rowidIsValid = 1;
- pC->lastRowid = iKey;
- }
- }else{
- nField = pOp->p4.i;
- assert( pOp->p4type==P4_INT32 );
- assert( nField>0 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)nField;
- /* The next line of code computes as follows, only faster:
- ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
- ** r.flags = UNPACKED_INCRKEY;
- ** }else{
- ** r.flags = 0;
- ** }
- */
- r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
- assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
- assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
- assert( oc!=OP_SeekGe || r.flags==0 );
- assert( oc!=OP_SeekLt || r.flags==0 );
- r.aMem = &aMem[pOp->p3];
- #ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
- #endif
- ExpandBlob(r.aMem);
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pC->rowidIsValid = 0;
- }
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- #ifdef SQLITE_TEST
- sqlite3_search_count++;
- #endif
- if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
- if( res<0 || (res==0 && oc==OP_SeekGt) ){
- rc = sqlite3BtreeNext(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- res = 0;
- }
- }else{
- assert( oc==OP_SeekLt || oc==OP_SeekLe );
- if( res>0 || (res==0 && oc==OP_SeekLt) ){
- rc = sqlite3BtreePrevious(pC->pCursor, &res);
- if( rc!=SQLITE_OK ) goto abort_due_to_error;
- pC->rowidIsValid = 0;
- }else{
- /* res might be negative because the table is empty. Check to
- ** see if this is the case.
- */
- res = sqlite3BtreeEof(pC->pCursor);
- }
- }
- assert( pOp->p2>0 );
- if( res ){
- pc = pOp->p2 - 1;
- }
- }else{
- /* This happens when attempting to open the sqlite3_master table
- ** for read access returns SQLITE_EMPTY. In this case always
- ** take the jump (since there are no records in the table).
- */
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: Seek P1 P2 * * *
- **
- ** P1 is an open table cursor and P2 is a rowid integer. Arrange
- ** for P1 to move so that it points to the rowid given by P2.
- **
- ** This is actually a deferred seek. Nothing actually happens until
- ** the cursor is used to read a record. That way, if no reads
- ** occur, no unnecessary I/O happens.
- */
- case OP_Seek: { /* in2 */
- VdbeCursor *pC;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- if( ALWAYS(pC->pCursor!=0) ){
- assert( pC->isTable );
- pC->nullRow = 0;
- pIn2 = &aMem[pOp->p2];
- pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 1;
- }
- break;
- }
-
- /* Opcode: Found P1 P2 P3 P4 *
- **
- ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
- ** P4>0 then register P3 is the first of P4 registers that form an unpacked
- ** record.
- **
- ** Cursor P1 is on an index btree. If the record identified by P3 and P4
- ** is a prefix of any entry in P1 then a jump is made to P2 and
- ** P1 is left pointing at the matching entry.
- */
- /* Opcode: NotFound P1 P2 P3 P4 *
- **
- ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
- ** P4>0 then register P3 is the first of P4 registers that form an unpacked
- ** record.
- **
- ** Cursor P1 is on an index btree. If the record identified by P3 and P4
- ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
- ** does contain an entry whose prefix matches the P3/P4 record then control
- ** falls through to the next instruction and P1 is left pointing at the
- ** matching entry.
- **
- ** See also: Found, NotExists, IsUnique
- */
- case OP_NotFound: /* jump, in3 */
- case OP_Found: { /* jump, in3 */
- int alreadyExists;
- VdbeCursor *pC;
- int res;
- char *pFree;
- UnpackedRecord *pIdxKey;
- UnpackedRecord r;
- char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
- #ifdef SQLITE_TEST
- sqlite3_found_count++;
- #endif
- alreadyExists = 0;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( pOp->p4type==P4_INT32 );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pIn3 = &aMem[pOp->p3];
- if( ALWAYS(pC->pCursor!=0) ){
- assert( pC->isTable==0 );
- if( pOp->p4.i>0 ){
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p4.i;
- r.aMem = pIn3;
- #ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
- #endif
- r.flags = UNPACKED_PREFIX_MATCH;
- pIdxKey = &r;
- }else{
- pIdxKey = sqlite3VdbeAllocUnpackedRecord(
- pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
- );
- if( pIdxKey==0 ) goto no_mem;
- assert( pIn3->flags & MEM_Blob );
- assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
- sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
- pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
- }
- rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
- if( pOp->p4.i==0 ){
- sqlite3DbFree(db, pFree);
- }
- if( rc!=SQLITE_OK ){
- break;
- }
- alreadyExists = (res==0);
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- if( pOp->opcode==OP_Found ){
- if( alreadyExists ) pc = pOp->p2 - 1;
- }else{
- if( !alreadyExists ) pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: IsUnique P1 P2 P3 P4 *
- **
- ** Cursor P1 is open on an index b-tree - that is to say, a btree which
- ** no data and where the key are records generated by OP_MakeRecord with
- ** the list field being the integer ROWID of the entry that the index
- ** entry refers to.
- **
- ** The P3 register contains an integer record number. Call this record
- ** number R. Register P4 is the first in a set of N contiguous registers
- ** that make up an unpacked index key that can be used with cursor P1.
- ** The value of N can be inferred from the cursor. N includes the rowid
- ** value appended to the end of the index record. This rowid value may
- ** or may not be the same as R.
- **
- ** If any of the N registers beginning with register P4 contains a NULL
- ** value, jump immediately to P2.
- **
- ** Otherwise, this instruction checks if cursor P1 contains an entry
- ** where the first (N-1) fields match but the rowid value at the end
- ** of the index entry is not R. If there is no such entry, control jumps
- ** to instruction P2. Otherwise, the rowid of the conflicting index
- ** entry is copied to register P3 and control falls through to the next
- ** instruction.
- **
- ** See also: NotFound, NotExists, Found
- */
- case OP_IsUnique: { /* jump, in3 */
- u16 ii;
- VdbeCursor *pCx;
- BtCursor *pCrsr;
- u16 nField;
- Mem *aMx;
- UnpackedRecord r; /* B-Tree index search key */
- i64 R; /* Rowid stored in register P3 */
- pIn3 = &aMem[pOp->p3];
- aMx = &aMem[pOp->p4.i];
- /* Assert that the values of parameters P1 and P4 are in range. */
- assert( pOp->p4type==P4_INT32 );
- assert( pOp->p4.i>0 && pOp->p4.i<=(p->nMem-p->nCursor) );
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- /* Find the index cursor. */
- pCx = p->apCsr[pOp->p1];
- assert( pCx->deferredMoveto==0 );
- pCx->seekResult = 0;
- pCx->cacheStatus = CACHE_STALE;
- pCrsr = pCx->pCursor;
- /* If any of the values are NULL, take the jump. */
- nField = pCx->pKeyInfo->nField;
- for(ii=0; ii<nField; ii++){
- if( aMx[ii].flags & MEM_Null ){
- pc = pOp->p2 - 1;
- pCrsr = 0;
- break;
- }
- }
- assert( (aMx[nField].flags & MEM_Null)==0 );
- if( pCrsr!=0 ){
- /* Populate the index search key. */
- r.pKeyInfo = pCx->pKeyInfo;
- r.nField = nField + 1;
- r.flags = UNPACKED_PREFIX_SEARCH;
- r.aMem = aMx;
- #ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
- #endif
- /* Extract the value of R from register P3. */
- sqlite3VdbeMemIntegerify(pIn3);
- R = pIn3->u.i;
- /* Search the B-Tree index. If no conflicting record is found, jump
- ** to P2. Otherwise, copy the rowid of the conflicting record to
- ** register P3 and fall through to the next instruction. */
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
- if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
- pc = pOp->p2 - 1;
- }else{
- pIn3->u.i = r.rowid;
- }
- }
- break;
- }
- /* Opcode: NotExists P1 P2 P3 * *
- **
- ** Use the content of register P3 as an integer key. If a record
- ** with that key does not exist in table of P1, then jump to P2.
- ** If the record does exist, then fall through. The cursor is left
- ** pointing to the record if it exists.
- **
- ** The difference between this operation and NotFound is that this
- ** operation assumes the key is an integer and that P1 is a table whereas
- ** NotFound assumes key is a blob constructed from MakeRecord and
- ** P1 is an index.
- **
- ** See also: Found, NotFound, IsUnique
- */
- case OP_NotExists: { /* jump, in3 */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
- u64 iKey;
- pIn3 = &aMem[pOp->p3];
- assert( pIn3->flags & MEM_Int );
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->isTable );
- assert( pC->pseudoTableReg==0 );
- pCrsr = pC->pCursor;
- if( ALWAYS(pCrsr!=0) ){
- res = 0;
- iKey = pIn3->u.i;
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
- pC->lastRowid = pIn3->u.i;
- pC->rowidIsValid = res==0 ?1:0;
- pC->nullRow = 0;
- pC->cacheStatus = CACHE_STALE;
- pC->deferredMoveto = 0;
- if( res!=0 ){
- pc = pOp->p2 - 1;
- assert( pC->rowidIsValid==0 );
- }
- pC->seekResult = res;
- }else{
- /* This happens when an attempt to open a read cursor on the
- ** sqlite_master table returns SQLITE_EMPTY.
- */
- pc = pOp->p2 - 1;
- assert( pC->rowidIsValid==0 );
- pC->seekResult = 0;
- }
- break;
- }
- /* Opcode: Sequence P1 P2 * * *
- **
- ** Find the next available sequence number for cursor P1.
- ** Write the sequence number into register P2.
- ** The sequence number on the cursor is incremented after this
- ** instruction.
- */
- case OP_Sequence: { /* out2-prerelease */
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( p->apCsr[pOp->p1]!=0 );
- pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
- break;
- }
- /* Opcode: NewRowid P1 P2 P3 * *
- **
- ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
- ** The record number is not previously used as a key in the database
- ** table that cursor P1 points to. The new record number is written
- ** written to register P2.
- **
- ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
- ** the largest previously generated record number. No new record numbers are
- ** allowed to be less than this value. When this value reaches its maximum,
- ** an SQLITE_FULL error is generated. The P3 register is updated with the '
- ** generated record number. This P3 mechanism is used to help implement the
- ** AUTOINCREMENT feature.
- */
- case OP_NewRowid: { /* out2-prerelease */
- i64 v; /* The new rowid */
- VdbeCursor *pC; /* Cursor of table to get the new rowid */
- int res; /* Result of an sqlite3BtreeLast() */
- int cnt; /* Counter to limit the number of searches */
- Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
- VdbeFrame *pFrame; /* Root frame of VDBE */
- v = 0;
- res = 0;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- if( NEVER(pC->pCursor==0) ){
- /* The zero initialization above is all that is needed */
- }else{
- /* The next rowid or record number (different terms for the same
- ** thing) is obtained in a two-step algorithm.
- **
- ** First we attempt to find the largest existing rowid and add one
- ** to that. But if the largest existing rowid is already the maximum
- ** positive integer, we have to fall through to the second
- ** probabilistic algorithm
- **
- ** The second algorithm is to select a rowid at random and see if
- ** it already exists in the table. If it does not exist, we have
- ** succeeded. If the random rowid does exist, we select a new one
- ** and try again, up to 100 times.
- */
- assert( pC->isTable );
- #ifdef SQLITE_32BIT_ROWID
- # define MAX_ROWID 0x7fffffff
- #else
- /* Some compilers complain about constants of the form 0x7fffffffffffffff.
- ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
- ** to provide the constant while making all compilers happy.
- */
- # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
- #endif
- if( !pC->useRandomRowid ){
- v = sqlite3BtreeGetCachedRowid(pC->pCursor);
- if( v==0 ){
- rc = sqlite3BtreeLast(pC->pCursor, &res);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- if( res ){
- v = 1; /* IMP: R-61914-48074 */
- }else{
- assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
- rc = sqlite3BtreeKeySize(pC->pCursor, &v);
- assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
- if( v>=MAX_ROWID ){
- pC->useRandomRowid = 1;
- }else{
- v++; /* IMP: R-29538-34987 */
- }
- }
- }
- #ifndef SQLITE_OMIT_AUTOINCREMENT
- if( pOp->p3 ){
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3>0 );
- if( p->pFrame ){
- for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3<=pFrame->nMem );
- pMem = &pFrame->aMem[pOp->p3];
- }else{
- /* Assert that P3 is a valid memory cell. */
- assert( pOp->p3<=(p->nMem-p->nCursor) );
- pMem = &aMem[pOp->p3];
- memAboutToChange(p, pMem);
- }
- assert( memIsValid(pMem) );
- REGISTER_TRACE(pOp->p3, pMem);
- sqlite3VdbeMemIntegerify(pMem);
- assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
- if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
- rc = SQLITE_FULL; /* IMP: R-12275-61338 */
- goto abort_due_to_error;
- }
- if( v<pMem->u.i+1 ){
- v = pMem->u.i + 1;
- }
- pMem->u.i = v;
- }
- #endif
- sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
- }
- if( pC->useRandomRowid ){
- /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
- ** largest possible integer (9223372036854775807) then the database
- ** engine starts picking positive candidate ROWIDs at random until
- ** it finds one that is not previously used. */
- assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
- ** an AUTOINCREMENT table. */
- /* on the first attempt, simply do one more than previous */
- v = lastRowid;
- v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
- v++; /* ensure non-zero */
- cnt = 0;
- while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
- 0, &res))==SQLITE_OK)
- && (res==0)
- && (++cnt<100)){
- /* collision - try another random rowid */
- sqlite3_randomness(sizeof(v), &v);
- if( cnt<5 ){
- /* try "small" random rowids for the initial attempts */
- v &= 0xffffff;
- }else{
- v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
- }
- v++; /* ensure non-zero */
- }
- if( rc==SQLITE_OK && res==0 ){
- rc = SQLITE_FULL; /* IMP: R-38219-53002 */
- goto abort_due_to_error;
- }
- assert( v>0 ); /* EV: R-40812-03570 */
- }
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- }
- pOut->u.i = v;
- break;
- }
- /* Opcode: Insert P1 P2 P3 P4 P5
- **
- ** Write an entry into the table of cursor P1. A new entry is
- ** created if it doesn't already exist or the data for an existing
- ** entry is overwritten. The data is the value MEM_Blob stored in register
- ** number P2. The key is stored in register P3. The key must
- ** be a MEM_Int.
- **
- ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
- ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
- ** then rowid is stored for subsequent return by the
- ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
- **
- ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
- ** the last seek operation (OP_NotExists) was a success, then this
- ** operation will not attempt to find the appropriate row before doing
- ** the insert but will instead overwrite the row that the cursor is
- ** currently pointing to. Presumably, the prior OP_NotExists opcode
- ** has already positioned the cursor correctly. This is an optimization
- ** that boosts performance by avoiding redundant seeks.
- **
- ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
- ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
- ** is part of an INSERT operation. The difference is only important to
- ** the update hook.
- **
- ** Parameter P4 may point to a string containing the table-name, or
- ** may be NULL. If it is not NULL, then the update-hook
- ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
- **
- ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
- ** allocated, then ownership of P2 is transferred to the pseudo-cursor
- ** and register P2 becomes ephemeral. If the cursor is changed, the
- ** value of register P2 will then change. Make sure this does not
- ** cause any problems.)
- **
- ** This instruction only works on tables. The equivalent instruction
- ** for indices is OP_IdxInsert.
- */
- /* Opcode: InsertInt P1 P2 P3 P4 P5
- **
- ** This works exactly like OP_Insert except that the key is the
- ** integer value P3, not the value of the integer stored in register P3.
- */
- case OP_Insert:
- case OP_InsertInt: {
- Mem *pData; /* MEM cell holding data for the record to be inserted */
- Mem *pKey; /* MEM cell holding key for the record */
- i64 iKey; /* The integer ROWID or key for the record to be inserted */
- VdbeCursor *pC; /* Cursor to table into which insert is written */
- int nZero; /* Number of zero-bytes to append */
- int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
- const char *zDb; /* database name - used by the update hook */
- const char *zTbl; /* Table name - used by the opdate hook */
- int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
- pData = &aMem[pOp->p2];
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( memIsValid(pData) );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pCursor!=0 );
- assert( pC->pseudoTableReg==0 );
- assert( pC->isTable );
- REGISTER_TRACE(pOp->p2, pData);
- if( pOp->opcode==OP_Insert ){
- pKey = &aMem[pOp->p3];
- assert( pKey->flags & MEM_Int );
- assert( memIsValid(pKey) );
- REGISTER_TRACE(pOp->p3, pKey);
- iKey = pKey->u.i;
- }else{
- assert( pOp->opcode==OP_InsertInt );
- iKey = pOp->p3;
- }
- if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
- if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
- if( pData->flags & MEM_Null ){
- pData->z = 0;
- pData->n = 0;
- }else{
- assert( pData->flags & (MEM_Blob|MEM_Str) );
- }
- seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
- if( pData->flags & MEM_Zero ){
- nZero = pData->u.nZero;
- }else{
- nZero = 0;
- }
- sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
- rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
- pData->z, pData->n, nZero,
- pOp->p5 & OPFLAG_APPEND, seekResult
- );
- pC->rowidIsValid = 0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
- zDb = db->aDb[pC->iDb].zName;
- zTbl = pOp->p4.z;
- op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
- assert( pC->isTable );
- db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
- break;
- }
- /* Opcode: Delete P1 P2 * P4 *
- **
- ** Delete the record at which the P1 cursor is currently pointing.
- **
- ** The cursor will be left pointing at either the next or the previous
- ** record in the table. If it is left pointing at the next record, then
- ** the next Next instruction will be a no-op. Hence it is OK to delete
- ** a record from within an Next loop.
- **
- ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
- ** incremented (otherwise not).
- **
- ** P1 must not be pseudo-table. It has to be a real table with
- ** multiple rows.
- **
- ** If P4 is not NULL, then it is the name of the table that P1 is
- ** pointing to. The update hook will be invoked, if it exists.
- ** If P4 is not NULL then the P1 cursor must have been positioned
- ** using OP_NotFound prior to invoking this opcode.
- */
- case OP_Delete: {
- i64 iKey;
- VdbeCursor *pC;
- iKey = 0;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
- /* If the update-hook will be invoked, set iKey to the rowid of the
- ** row being deleted.
- */
- if( db->xUpdateCallback && pOp->p4.z ){
- assert( pC->isTable );
- assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
- iKey = pC->lastRowid;
- }
- /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
- ** OP_Column on the same table without any intervening operations that
- ** might move or invalidate the cursor. Hence cursor pC is always pointing
- ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
- ** below is always a no-op and cannot fail. We will run it anyhow, though,
- ** to guard against future changes to the code generator.
- **/
- assert( pC->deferredMoveto==0 );
- rc = sqlite3VdbeCursorMoveto(pC);
- if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
- sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
- rc = sqlite3BtreeDelete(pC->pCursor);
- pC->cacheStatus = CACHE_STALE;
- /* Invoke the update-hook if required. */
- if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
- const char *zDb = db->aDb[pC->iDb].zName;
- const char *zTbl = pOp->p4.z;
- db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
- assert( pC->iDb>=0 );
- }
- if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
- break;
- }
- /* Opcode: ResetCount * * * * *
- **
- ** The value of the change counter is copied to the database handle
- ** change counter (returned by subsequent calls to sqlite3_changes()).
- ** Then the VMs internal change counter resets to 0.
- ** This is used by trigger programs.
- */
- case OP_ResetCount: {
- sqlite3VdbeSetChanges(db, p->nChange);
- p->nChange = 0;
- break;
- }
- /* Opcode: SorterCompare P1 P2 P3
- **
- ** P1 is a sorter cursor. This instruction compares the record blob in
- ** register P3 with the entry that the sorter cursor currently points to.
- ** If, excluding the rowid fields at the end, the two records are a match,
- ** fall through to the next instruction. Otherwise, jump to instruction P2.
- */
- case OP_SorterCompare: {
- VdbeCursor *pC;
- int res;
- pC = p->apCsr[pOp->p1];
- assert( isSorter(pC) );
- pIn3 = &aMem[pOp->p3];
- rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
- if( res ){
- pc = pOp->p2-1;
- }
- break;
- };
- /* Opcode: SorterData P1 P2 * * *
- **
- ** Write into register P2 the current sorter data for sorter cursor P1.
- */
- case OP_SorterData: {
- VdbeCursor *pC;
- pOut = &aMem[pOp->p2];
- pC = p->apCsr[pOp->p1];
- assert( pC->isSorter );
- rc = sqlite3VdbeSorterRowkey(pC, pOut);
- break;
- }
- /* Opcode: RowData P1 P2 * * *
- **
- ** Write into register P2 the complete row data for cursor P1.
- ** There is no interpretation of the data.
- ** It is just copied onto the P2 register exactly as
- ** it is found in the database file.
- **
- ** If the P1 cursor must be pointing to a valid row (not a NULL row)
- ** of a real table, not a pseudo-table.
- */
- /* Opcode: RowKey P1 P2 * * *
- **
- ** Write into register P2 the complete row key for cursor P1.
- ** There is no interpretation of the data.
- ** The key is copied onto the P3 register exactly as
- ** it is found in the database file.
- **
- ** If the P1 cursor must be pointing to a valid row (not a NULL row)
- ** of a real table, not a pseudo-table.
- */
- case OP_RowKey:
- case OP_RowData: {
- VdbeCursor *pC;
- BtCursor *pCrsr;
- u32 n;
- i64 n64;
- pOut = &aMem[pOp->p2];
- memAboutToChange(p, pOut);
- /* Note that RowKey and RowData are really exactly the same instruction */
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC->isSorter==0 );
- assert( pC->isTable || pOp->opcode!=OP_RowData );
- assert( pC->isIndex || pOp->opcode==OP_RowData );
- assert( pC!=0 );
- assert( pC->nullRow==0 );
- assert( pC->pseudoTableReg==0 );
- assert( pC->pCursor!=0 );
- pCrsr = pC->pCursor;
- assert( sqlite3BtreeCursorIsValid(pCrsr) );
- /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
- ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
- ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
- ** a no-op and can never fail. But we leave it in place as a safety.
- */
- assert( pC->deferredMoveto==0 );
- rc = sqlite3VdbeCursorMoveto(pC);
- if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
- if( pC->isIndex ){
- assert( !pC->isTable );
- VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
- assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
- if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- n = (u32)n64;
- }else{
- VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
- assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
- if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
- goto too_big;
- }
- }
- if( sqlite3VdbeMemGrow(pOut, n, 0) ){
- goto no_mem;
- }
- pOut->n = n;
- MemSetTypeFlag(pOut, MEM_Blob);
- if( pC->isIndex ){
- rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
- }else{
- rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
- }
- pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
- UPDATE_MAX_BLOBSIZE(pOut);
- break;
- }
- /* Opcode: Rowid P1 P2 * * *
- **
- ** Store in register P2 an integer which is the key of the table entry that
- ** P1 is currently point to.
- **
- ** P1 can be either an ordinary table or a virtual table. There used to
- ** be a separate OP_VRowid opcode for use with virtual tables, but this
- ** one opcode now works for both table types.
- */
- case OP_Rowid: { /* out2-prerelease */
- VdbeCursor *pC;
- i64 v;
- sqlite3_vtab *pVtab;
- const sqlite3_module *pModule;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->pseudoTableReg==0 || pC->nullRow );
- if( pC->nullRow ){
- pOut->flags = MEM_Null;
- break;
- }else if( pC->deferredMoveto ){
- v = pC->movetoTarget;
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( pC->pVtabCursor ){
- pVtab = pC->pVtabCursor->pVtab;
- pModule = pVtab->pModule;
- assert( pModule->xRowid );
- rc = pModule->xRowid(pC->pVtabCursor, &v);
- sqlite3VtabImportErrmsg(p, pVtab);
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- }else{
- assert( pC->pCursor!=0 );
- rc = sqlite3VdbeCursorMoveto(pC);
- if( rc ) goto abort_due_to_error;
- if( pC->rowidIsValid ){
- v = pC->lastRowid;
- }else{
- rc = sqlite3BtreeKeySize(pC->pCursor, &v);
- assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
- }
- }
- pOut->u.i = v;
- break;
- }
- /* Opcode: NullRow P1 * * * *
- **
- ** Move the cursor P1 to a null row. Any OP_Column operations
- ** that occur while the cursor is on the null row will always
- ** write a NULL.
- */
- case OP_NullRow: {
- VdbeCursor *pC;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pC->nullRow = 1;
- pC->rowidIsValid = 0;
- assert( pC->pCursor || pC->pVtabCursor );
- if( pC->pCursor ){
- sqlite3BtreeClearCursor(pC->pCursor);
- }
- break;
- }
- /* Opcode: Last P1 P2 * * *
- **
- ** The next use of the Rowid or Column or Next instruction for P1
- ** will refer to the last entry in the database table or index.
- ** If the table or index is empty and P2>0, then jump immediately to P2.
- ** If P2 is 0 or if the table or index is not empty, fall through
- ** to the following instruction.
- */
- case OP_Last: { /* jump */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pCrsr = pC->pCursor;
- res = 0;
- if( ALWAYS(pCrsr!=0) ){
- rc = sqlite3BtreeLast(pCrsr, &res);
- }
- pC->nullRow = (u8)res;
- pC->deferredMoveto = 0;
- pC->rowidIsValid = 0;
- pC->cacheStatus = CACHE_STALE;
- if( pOp->p2>0 && res ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: Sort P1 P2 * * *
- **
- ** This opcode does exactly the same thing as OP_Rewind except that
- ** it increments an undocumented global variable used for testing.
- **
- ** Sorting is accomplished by writing records into a sorting index,
- ** then rewinding that index and playing it back from beginning to
- ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
- ** rewinding so that the global variable will be incremented and
- ** regression tests can determine whether or not the optimizer is
- ** correctly optimizing out sorts.
- */
- case OP_SorterSort: /* jump */
- case OP_Sort: { /* jump */
- #ifdef SQLITE_TEST
- sqlite3_sort_count++;
- sqlite3_search_count--;
- #endif
- p->aCounter[SQLITE_STMTSTATUS_SORT]++;
- /* Fall through into OP_Rewind */
- }
- /* Opcode: Rewind P1 P2 * * *
- **
- ** The next use of the Rowid or Column or Next instruction for P1
- ** will refer to the first entry in the database table or index.
- ** If the table or index is empty and P2>0, then jump immediately to P2.
- ** If P2 is 0 or if the table or index is not empty, fall through
- ** to the following instruction.
- */
- case OP_Rewind: { /* jump */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
- res = 1;
- if( isSorter(pC) ){
- rc = sqlite3VdbeSorterRewind(db, pC, &res);
- }else{
- pCrsr = pC->pCursor;
- assert( pCrsr );
- rc = sqlite3BtreeFirst(pCrsr, &res);
- pC->atFirst = res==0 ?1:0;
- pC->deferredMoveto = 0;
- pC->cacheStatus = CACHE_STALE;
- pC->rowidIsValid = 0;
- }
- pC->nullRow = (u8)res;
- assert( pOp->p2>0 && pOp->p2<p->nOp );
- if( res ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: Next P1 P2 * P4 P5
- **
- ** Advance cursor P1 so that it points to the next key/data pair in its
- ** table or index. If there are no more key/value pairs then fall through
- ** to the following instruction. But if the cursor advance was successful,
- ** jump immediately to P2.
- **
- ** The P1 cursor must be for a real table, not a pseudo-table.
- **
- ** P4 is always of type P4_ADVANCE. The function pointer points to
- ** sqlite3BtreeNext().
- **
- ** If P5 is positive and the jump is taken, then event counter
- ** number P5-1 in the prepared statement is incremented.
- **
- ** See also: Prev
- */
- /* Opcode: Prev P1 P2 * * P5
- **
- ** Back up cursor P1 so that it points to the previous key/data pair in its
- ** table or index. If there is no previous key/value pairs then fall through
- ** to the following instruction. But if the cursor backup was successful,
- ** jump immediately to P2.
- **
- ** The P1 cursor must be for a real table, not a pseudo-table.
- **
- ** P4 is always of type P4_ADVANCE. The function pointer points to
- ** sqlite3BtreePrevious().
- **
- ** If P5 is positive and the jump is taken, then event counter
- ** number P5-1 in the prepared statement is incremented.
- */
- case OP_SorterNext: /* jump */
- case OP_Prev: /* jump */
- case OP_Next: { /* jump */
- VdbeCursor *pC;
- int res;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- assert( pOp->p5<ArraySize(p->aCounter) );
- pC = p->apCsr[pOp->p1];
- if( pC==0 ){
- break; /* See ticket #2273 */
- }
- assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
- if( isSorter(pC) ){
- assert( pOp->opcode==OP_SorterNext );
- rc = sqlite3VdbeSorterNext(db, pC, &res);
- }else{
- /* res = 1; // Always initialized by the xAdvance() call */
- assert( pC->deferredMoveto==0 );
- assert( pC->pCursor );
- assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
- assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
- rc = pOp->p4.xAdvance(pC->pCursor, &res);
- }
- pC->nullRow = (u8)res;
- pC->cacheStatus = CACHE_STALE;
- if( res==0 ){
- pc = pOp->p2 - 1;
- p->aCounter[pOp->p5]++;
- #ifdef SQLITE_TEST
- sqlite3_search_count++;
- #endif
- }
- pC->rowidIsValid = 0;
- goto check_for_interrupt;
- }
- /* Opcode: IdxInsert P1 P2 P3 * P5
- **
- ** Register P2 holds an SQL index key made using the
- ** MakeRecord instructions. This opcode writes that key
- ** into the index P1. Data for the entry is nil.
- **
- ** P3 is a flag that provides a hint to the b-tree layer that this
- ** insert is likely to be an append.
- **
- ** This instruction only works for indices. The equivalent instruction
- ** for tables is OP_Insert.
- */
- case OP_SorterInsert: /* in2 */
- case OP_IdxInsert: { /* in2 */
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int nKey;
- const char *zKey;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
- pIn2 = &aMem[pOp->p2];
- assert( pIn2->flags & MEM_Blob );
- pCrsr = pC->pCursor;
- if( ALWAYS(pCrsr!=0) ){
- assert( pC->isTable==0 );
- rc = ExpandBlob(pIn2);
- if( rc==SQLITE_OK ){
- if( isSorter(pC) ){
- rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
- }else{
- nKey = pIn2->n;
- zKey = pIn2->z;
- rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
- ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
- );
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- }
- }
- break;
- }
- /* Opcode: IdxDelete P1 P2 P3 * *
- **
- ** The content of P3 registers starting at register P2 form
- ** an unpacked index key. This opcode removes that entry from the
- ** index opened by cursor P1.
- */
- case OP_IdxDelete: {
- VdbeCursor *pC;
- BtCursor *pCrsr;
- int res;
- UnpackedRecord r;
- assert( pOp->p3>0 );
- assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pCrsr = pC->pCursor;
- if( ALWAYS(pCrsr!=0) ){
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p3;
- r.flags = 0;
- r.aMem = &aMem[pOp->p2];
- #ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
- #endif
- rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
- if( rc==SQLITE_OK && res==0 ){
- rc = sqlite3BtreeDelete(pCrsr);
- }
- assert( pC->deferredMoveto==0 );
- pC->cacheStatus = CACHE_STALE;
- }
- break;
- }
- /* Opcode: IdxRowid P1 P2 * * *
- **
- ** Write into register P2 an integer which is the last entry in the record at
- ** the end of the index key pointed to by cursor P1. This integer should be
- ** the rowid of the table entry to which this index entry points.
- **
- ** See also: Rowid, MakeRecord.
- */
- case OP_IdxRowid: { /* out2-prerelease */
- BtCursor *pCrsr;
- VdbeCursor *pC;
- i64 rowid;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- pCrsr = pC->pCursor;
- pOut->flags = MEM_Null;
- if( ALWAYS(pCrsr!=0) ){
- rc = sqlite3VdbeCursorMoveto(pC);
- if( NEVER(rc) ) goto abort_due_to_error;
- assert( pC->deferredMoveto==0 );
- assert( pC->isTable==0 );
- if( !pC->nullRow ){
- rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
- if( rc!=SQLITE_OK ){
- goto abort_due_to_error;
- }
- pOut->u.i = rowid;
- pOut->flags = MEM_Int;
- }
- }
- break;
- }
- /* Opcode: IdxGE P1 P2 P3 P4 P5
- **
- ** The P4 register values beginning with P3 form an unpacked index
- ** key that omits the ROWID. Compare this key value against the index
- ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
- **
- ** If the P1 index entry is greater than or equal to the key value
- ** then jump to P2. Otherwise fall through to the next instruction.
- **
- ** If P5 is non-zero then the key value is increased by an epsilon
- ** prior to the comparison. This make the opcode work like IdxGT except
- ** that if the key from register P3 is a prefix of the key in the cursor,
- ** the result is false whereas it would be true with IdxGT.
- */
- /* Opcode: IdxLT P1 P2 P3 P4 P5
- **
- ** The P4 register values beginning with P3 form an unpacked index
- ** key that omits the ROWID. Compare this key value against the index
- ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
- **
- ** If the P1 index entry is less than the key value then jump to P2.
- ** Otherwise fall through to the next instruction.
- **
- ** If P5 is non-zero then the key value is increased by an epsilon prior
- ** to the comparison. This makes the opcode work like IdxLE.
- */
- case OP_IdxLT: /* jump */
- case OP_IdxGE: { /* jump */
- VdbeCursor *pC;
- int res;
- UnpackedRecord r;
- assert( pOp->p1>=0 && pOp->p1<p->nCursor );
- pC = p->apCsr[pOp->p1];
- assert( pC!=0 );
- assert( pC->isOrdered );
- if( ALWAYS(pC->pCursor!=0) ){
- assert( pC->deferredMoveto==0 );
- assert( pOp->p5==0 || pOp->p5==1 );
- assert( pOp->p4type==P4_INT32 );
- r.pKeyInfo = pC->pKeyInfo;
- r.nField = (u16)pOp->p4.i;
- if( pOp->p5 ){
- r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
- }else{
- r.flags = UNPACKED_PREFIX_MATCH;
- }
- r.aMem = &aMem[pOp->p3];
- #ifdef SQLITE_DEBUG
- { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
- #endif
- rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
- if( pOp->opcode==OP_IdxLT ){
- res = -res;
- }else{
- assert( pOp->opcode==OP_IdxGE );
- res++;
- }
- if( res>0 ){
- pc = pOp->p2 - 1 ;
- }
- }
- break;
- }
- /* Opcode: Destroy P1 P2 P3 * *
- **
- ** Delete an entire database table or index whose root page in the database
- ** file is given by P1.
- **
- ** The table being destroyed is in the main database file if P3==0. If
- ** P3==1 then the table to be clear is in the auxiliary database file
- ** that is used to store tables create using CREATE TEMPORARY TABLE.
- **
- ** If AUTOVACUUM is enabled then it is possible that another root page
- ** might be moved into the newly deleted root page in order to keep all
- ** root pages contiguous at the beginning of the database. The former
- ** value of the root page that moved - its value before the move occurred -
- ** is stored in register P2. If no page
- ** movement was required (because the table being dropped was already
- ** the last one in the database) then a zero is stored in register P2.
- ** If AUTOVACUUM is disabled then a zero is stored in register P2.
- **
- ** See also: Clear
- */
- case OP_Destroy: { /* out2-prerelease */
- int iMoved;
- int iCnt;
- Vdbe *pVdbe;
- int iDb;
- assert( p->readOnly==0 );
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- iCnt = 0;
- for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
- if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
- && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
- ){
- iCnt++;
- }
- }
- #else
- iCnt = db->nVdbeRead;
- #endif
- pOut->flags = MEM_Null;
- if( iCnt>1 ){
- rc = SQLITE_LOCKED;
- p->errorAction = OE_Abort;
- }else{
- iDb = pOp->p3;
- assert( iCnt==1 );
- assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
- rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
- pOut->flags = MEM_Int;
- pOut->u.i = iMoved;
- #ifndef SQLITE_OMIT_AUTOVACUUM
- if( rc==SQLITE_OK && iMoved!=0 ){
- sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
- /* All OP_Destroy operations occur on the same btree */
- assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
- resetSchemaOnFault = iDb+1;
- }
- #endif
- }
- break;
- }
- /* Opcode: Clear P1 P2 P3
- **
- ** Delete all contents of the database table or index whose root page
- ** in the database file is given by P1. But, unlike Destroy, do not
- ** remove the table or index from the database file.
- **
- ** The table being clear is in the main database file if P2==0. If
- ** P2==1 then the table to be clear is in the auxiliary database file
- ** that is used to store tables create using CREATE TEMPORARY TABLE.
- **
- ** If the P3 value is non-zero, then the table referred to must be an
- ** intkey table (an SQL table, not an index). In this case the row change
- ** count is incremented by the number of rows in the table being cleared.
- ** If P3 is greater than zero, then the value stored in register P3 is
- ** also incremented by the number of rows in the table being cleared.
- **
- ** See also: Destroy
- */
- case OP_Clear: {
- int nChange;
-
- nChange = 0;
- assert( p->readOnly==0 );
- assert( pOp->p1!=1 );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
- rc = sqlite3BtreeClearTable(
- db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
- );
- if( pOp->p3 ){
- p->nChange += nChange;
- if( pOp->p3>0 ){
- assert( memIsValid(&aMem[pOp->p3]) );
- memAboutToChange(p, &aMem[pOp->p3]);
- aMem[pOp->p3].u.i += nChange;
- }
- }
- break;
- }
- /* Opcode: CreateTable P1 P2 * * *
- **
- ** Allocate a new table in the main database file if P1==0 or in the
- ** auxiliary database file if P1==1 or in an attached database if
- ** P1>1. Write the root page number of the new table into
- ** register P2
- **
- ** The difference between a table and an index is this: A table must
- ** have a 4-byte integer key and can have arbitrary data. An index
- ** has an arbitrary key but no data.
- **
- ** See also: CreateIndex
- */
- /* Opcode: CreateIndex P1 P2 * * *
- **
- ** Allocate a new index in the main database file if P1==0 or in the
- ** auxiliary database file if P1==1 or in an attached database if
- ** P1>1. Write the root page number of the new table into
- ** register P2.
- **
- ** See documentation on OP_CreateTable for additional information.
- */
- case OP_CreateIndex: /* out2-prerelease */
- case OP_CreateTable: { /* out2-prerelease */
- int pgno;
- int flags;
- Db *pDb;
- pgno = 0;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
- assert( p->readOnly==0 );
- pDb = &db->aDb[pOp->p1];
- assert( pDb->pBt!=0 );
- if( pOp->opcode==OP_CreateTable ){
- /* flags = BTREE_INTKEY; */
- flags = BTREE_INTKEY;
- }else{
- flags = BTREE_BLOBKEY;
- }
- rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
- pOut->u.i = pgno;
- break;
- }
- /* Opcode: ParseSchema P1 * * P4 *
- **
- ** Read and parse all entries from the SQLITE_MASTER table of database P1
- ** that match the WHERE clause P4.
- **
- ** This opcode invokes the parser to create a new virtual machine,
- ** then runs the new virtual machine. It is thus a re-entrant opcode.
- */
- case OP_ParseSchema: {
- int iDb;
- const char *zMaster;
- char *zSql;
- InitData initData;
- /* Any prepared statement that invokes this opcode will hold mutexes
- ** on every btree. This is a prerequisite for invoking
- ** sqlite3InitCallback().
- */
- #ifdef SQLITE_DEBUG
- for(iDb=0; iDb<db->nDb; iDb++){
- assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
- }
- #endif
- iDb = pOp->p1;
- assert( iDb>=0 && iDb<db->nDb );
- assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
- /* Used to be a conditional */ {
- zMaster = SCHEMA_TABLE(iDb);
- initData.db = db;
- initData.iDb = pOp->p1;
- initData.pzErrMsg = &p->zErrMsg;
- zSql = sqlite3MPrintf(db,
- "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
- db->aDb[iDb].zName, zMaster, pOp->p4.z);
- if( zSql==0 ){
- rc = SQLITE_NOMEM;
- }else{
- assert( db->init.busy==0 );
- db->init.busy = 1;
- initData.rc = SQLITE_OK;
- assert( !db->mallocFailed );
- rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
- if( rc==SQLITE_OK ) rc = initData.rc;
- sqlite3DbFree(db, zSql);
- db->init.busy = 0;
- }
- }
- if( rc ) sqlite3ResetAllSchemasOfConnection(db);
- if( rc==SQLITE_NOMEM ){
- goto no_mem;
- }
- break;
- }
- #if !defined(SQLITE_OMIT_ANALYZE)
- /* Opcode: LoadAnalysis P1 * * * *
- **
- ** Read the sqlite_stat1 table for database P1 and load the content
- ** of that table into the internal index hash table. This will cause
- ** the analysis to be used when preparing all subsequent queries.
- */
- case OP_LoadAnalysis: {
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- rc = sqlite3AnalysisLoad(db, pOp->p1);
- break;
- }
- #endif /* !defined(SQLITE_OMIT_ANALYZE) */
- /* Opcode: DropTable P1 * * P4 *
- **
- ** Remove the internal (in-memory) data structures that describe
- ** the table named P4 in database P1. This is called after a table
- ** is dropped in order to keep the internal representation of the
- ** schema consistent with what is on disk.
- */
- case OP_DropTable: {
- sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
- break;
- }
- /* Opcode: DropIndex P1 * * P4 *
- **
- ** Remove the internal (in-memory) data structures that describe
- ** the index named P4 in database P1. This is called after an index
- ** is dropped in order to keep the internal representation of the
- ** schema consistent with what is on disk.
- */
- case OP_DropIndex: {
- sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
- break;
- }
- /* Opcode: DropTrigger P1 * * P4 *
- **
- ** Remove the internal (in-memory) data structures that describe
- ** the trigger named P4 in database P1. This is called after a trigger
- ** is dropped in order to keep the internal representation of the
- ** schema consistent with what is on disk.
- */
- case OP_DropTrigger: {
- sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
- break;
- }
- #ifndef SQLITE_OMIT_INTEGRITY_CHECK
- /* Opcode: IntegrityCk P1 P2 P3 * P5
- **
- ** Do an analysis of the currently open database. Store in
- ** register P1 the text of an error message describing any problems.
- ** If no problems are found, store a NULL in register P1.
- **
- ** The register P3 contains the maximum number of allowed errors.
- ** At most reg(P3) errors will be reported.
- ** In other words, the analysis stops as soon as reg(P1) errors are
- ** seen. Reg(P1) is updated with the number of errors remaining.
- **
- ** The root page numbers of all tables in the database are integer
- ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
- ** total.
- **
- ** If P5 is not zero, the check is done on the auxiliary database
- ** file, not the main database file.
- **
- ** This opcode is used to implement the integrity_check pragma.
- */
- case OP_IntegrityCk: {
- int nRoot; /* Number of tables to check. (Number of root pages.) */
- int *aRoot; /* Array of rootpage numbers for tables to be checked */
- int j; /* Loop counter */
- int nErr; /* Number of errors reported */
- char *z; /* Text of the error report */
- Mem *pnErr; /* Register keeping track of errors remaining */
- assert( p->bIsReader );
- nRoot = pOp->p2;
- assert( nRoot>0 );
- aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
- if( aRoot==0 ) goto no_mem;
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pnErr = &aMem[pOp->p3];
- assert( (pnErr->flags & MEM_Int)!=0 );
- assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
- pIn1 = &aMem[pOp->p1];
- for(j=0; j<nRoot; j++){
- aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
- }
- aRoot[j] = 0;
- assert( pOp->p5<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
- z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
- (int)pnErr->u.i, &nErr);
- sqlite3DbFree(db, aRoot);
- pnErr->u.i -= nErr;
- sqlite3VdbeMemSetNull(pIn1);
- if( nErr==0 ){
- assert( z==0 );
- }else if( z==0 ){
- goto no_mem;
- }else{
- sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
- }
- UPDATE_MAX_BLOBSIZE(pIn1);
- sqlite3VdbeChangeEncoding(pIn1, encoding);
- break;
- }
- #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
- /* Opcode: RowSetAdd P1 P2 * * *
- **
- ** Insert the integer value held by register P2 into a boolean index
- ** held in register P1.
- **
- ** An assertion fails if P2 is not an integer.
- */
- case OP_RowSetAdd: { /* in1, in2 */
- pIn1 = &aMem[pOp->p1];
- pIn2 = &aMem[pOp->p2];
- assert( (pIn2->flags & MEM_Int)!=0 );
- if( (pIn1->flags & MEM_RowSet)==0 ){
- sqlite3VdbeMemSetRowSet(pIn1);
- if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
- }
- sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
- break;
- }
- /* Opcode: RowSetRead P1 P2 P3 * *
- **
- ** Extract the smallest value from boolean index P1 and put that value into
- ** register P3. Or, if boolean index P1 is initially empty, leave P3
- ** unchanged and jump to instruction P2.
- */
- case OP_RowSetRead: { /* jump, in1, out3 */
- i64 val;
- pIn1 = &aMem[pOp->p1];
- if( (pIn1->flags & MEM_RowSet)==0
- || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
- ){
- /* The boolean index is empty */
- sqlite3VdbeMemSetNull(pIn1);
- pc = pOp->p2 - 1;
- }else{
- /* A value was pulled from the index */
- sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
- }
- goto check_for_interrupt;
- }
- /* Opcode: RowSetTest P1 P2 P3 P4
- **
- ** Register P3 is assumed to hold a 64-bit integer value. If register P1
- ** contains a RowSet object and that RowSet object contains
- ** the value held in P3, jump to register P2. Otherwise, insert the
- ** integer in P3 into the RowSet and continue on to the
- ** next opcode.
- **
- ** The RowSet object is optimized for the case where successive sets
- ** of integers, where each set contains no duplicates. Each set
- ** of values is identified by a unique P4 value. The first set
- ** must have P4==0, the final set P4=-1. P4 must be either -1 or
- ** non-negative. For non-negative values of P4 only the lower 4
- ** bits are significant.
- **
- ** This allows optimizations: (a) when P4==0 there is no need to test
- ** the rowset object for P3, as it is guaranteed not to contain it,
- ** (b) when P4==-1 there is no need to insert the value, as it will
- ** never be tested for, and (c) when a value that is part of set X is
- ** inserted, there is no need to search to see if the same value was
- ** previously inserted as part of set X (only if it was previously
- ** inserted as part of some other set).
- */
- case OP_RowSetTest: { /* jump, in1, in3 */
- int iSet;
- int exists;
- pIn1 = &aMem[pOp->p1];
- pIn3 = &aMem[pOp->p3];
- iSet = pOp->p4.i;
- assert( pIn3->flags&MEM_Int );
- /* If there is anything other than a rowset object in memory cell P1,
- ** delete it now and initialize P1 with an empty rowset
- */
- if( (pIn1->flags & MEM_RowSet)==0 ){
- sqlite3VdbeMemSetRowSet(pIn1);
- if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
- }
- assert( pOp->p4type==P4_INT32 );
- assert( iSet==-1 || iSet>=0 );
- if( iSet ){
- exists = sqlite3RowSetTest(pIn1->u.pRowSet,
- (u8)(iSet>=0 ? iSet & 0xf : 0xff),
- pIn3->u.i);
- if( exists ){
- pc = pOp->p2 - 1;
- break;
- }
- }
- if( iSet>=0 ){
- sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
- }
- break;
- }
- #ifndef SQLITE_OMIT_TRIGGER
- /* Opcode: Program P1 P2 P3 P4 *
- **
- ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
- **
- ** P1 contains the address of the memory cell that contains the first memory
- ** cell in an array of values used as arguments to the sub-program. P2
- ** contains the address to jump to if the sub-program throws an IGNORE
- ** exception using the RAISE() function. Register P3 contains the address
- ** of a memory cell in this (the parent) VM that is used to allocate the
- ** memory required by the sub-vdbe at runtime.
- **
- ** P4 is a pointer to the VM containing the trigger program.
- */
- case OP_Program: { /* jump */
- int nMem; /* Number of memory registers for sub-program */
- int nByte; /* Bytes of runtime space required for sub-program */
- Mem *pRt; /* Register to allocate runtime space */
- Mem *pMem; /* Used to iterate through memory cells */
- Mem *pEnd; /* Last memory cell in new array */
- VdbeFrame *pFrame; /* New vdbe frame to execute in */
- SubProgram *pProgram; /* Sub-program to execute */
- void *t; /* Token identifying trigger */
- pProgram = pOp->p4.pProgram;
- pRt = &aMem[pOp->p3];
- assert( pProgram->nOp>0 );
-
- /* If the p5 flag is clear, then recursive invocation of triggers is
- ** disabled for backwards compatibility (p5 is set if this sub-program
- ** is really a trigger, not a foreign key action, and the flag set
- ** and cleared by the "PRAGMA recursive_triggers" command is clear).
- **
- ** It is recursive invocation of triggers, at the SQL level, that is
- ** disabled. In some cases a single trigger may generate more than one
- ** SubProgram (if the trigger may be executed with more than one different
- ** ON CONFLICT algorithm). SubProgram structures associated with a
- ** single trigger all have the same value for the SubProgram.token
- ** variable. */
- if( pOp->p5 ){
- t = pProgram->token;
- for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
- if( pFrame ) break;
- }
- if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
- rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
- break;
- }
- /* Register pRt is used to store the memory required to save the state
- ** of the current program, and the memory required at runtime to execute
- ** the trigger program. If this trigger has been fired before, then pRt
- ** is already allocated. Otherwise, it must be initialized. */
- if( (pRt->flags&MEM_Frame)==0 ){
- /* SubProgram.nMem is set to the number of memory cells used by the
- ** program stored in SubProgram.aOp. As well as these, one memory
- ** cell is required for each cursor used by the program. Set local
- ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
- */
- nMem = pProgram->nMem + pProgram->nCsr;
- nByte = ROUND8(sizeof(VdbeFrame))
- + nMem * sizeof(Mem)
- + pProgram->nCsr * sizeof(VdbeCursor *)
- + pProgram->nOnce * sizeof(u8);
- pFrame = sqlite3DbMallocZero(db, nByte);
- if( !pFrame ){
- goto no_mem;
- }
- sqlite3VdbeMemRelease(pRt);
- pRt->flags = MEM_Frame;
- pRt->u.pFrame = pFrame;
- pFrame->v = p;
- pFrame->nChildMem = nMem;
- pFrame->nChildCsr = pProgram->nCsr;
- pFrame->pc = pc;
- pFrame->aMem = p->aMem;
- pFrame->nMem = p->nMem;
- pFrame->apCsr = p->apCsr;
- pFrame->nCursor = p->nCursor;
- pFrame->aOp = p->aOp;
- pFrame->nOp = p->nOp;
- pFrame->token = pProgram->token;
- pFrame->aOnceFlag = p->aOnceFlag;
- pFrame->nOnceFlag = p->nOnceFlag;
- pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
- for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
- pMem->flags = MEM_Invalid;
- pMem->db = db;
- }
- }else{
- pFrame = pRt->u.pFrame;
- assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
- assert( pProgram->nCsr==pFrame->nChildCsr );
- assert( pc==pFrame->pc );
- }
- p->nFrame++;
- pFrame->pParent = p->pFrame;
- pFrame->lastRowid = lastRowid;
- pFrame->nChange = p->nChange;
- p->nChange = 0;
- p->pFrame = pFrame;
- p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
- p->nMem = pFrame->nChildMem;
- p->nCursor = (u16)pFrame->nChildCsr;
- p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
- p->aOp = aOp = pProgram->aOp;
- p->nOp = pProgram->nOp;
- p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
- p->nOnceFlag = pProgram->nOnce;
- pc = -1;
- memset(p->aOnceFlag, 0, p->nOnceFlag);
- break;
- }
- /* Opcode: Param P1 P2 * * *
- **
- ** This opcode is only ever present in sub-programs called via the
- ** OP_Program instruction. Copy a value currently stored in a memory
- ** cell of the calling (parent) frame to cell P2 in the current frames
- ** address space. This is used by trigger programs to access the new.*
- ** and old.* values.
- **
- ** The address of the cell in the parent frame is determined by adding
- ** the value of the P1 argument to the value of the P1 argument to the
- ** calling OP_Program instruction.
- */
- case OP_Param: { /* out2-prerelease */
- VdbeFrame *pFrame;
- Mem *pIn;
- pFrame = p->pFrame;
- pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
- sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
- break;
- }
- #endif /* #ifndef SQLITE_OMIT_TRIGGER */
- #ifndef SQLITE_OMIT_FOREIGN_KEY
- /* Opcode: FkCounter P1 P2 * * *
- **
- ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
- ** If P1 is non-zero, the database constraint counter is incremented
- ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
- ** statement counter is incremented (immediate foreign key constraints).
- */
- case OP_FkCounter: {
- if( db->flags & SQLITE_DeferFKs ){
- db->nDeferredImmCons += pOp->p2;
- }else if( pOp->p1 ){
- db->nDeferredCons += pOp->p2;
- }else{
- p->nFkConstraint += pOp->p2;
- }
- break;
- }
- /* Opcode: FkIfZero P1 P2 * * *
- **
- ** This opcode tests if a foreign key constraint-counter is currently zero.
- ** If so, jump to instruction P2. Otherwise, fall through to the next
- ** instruction.
- **
- ** If P1 is non-zero, then the jump is taken if the database constraint-counter
- ** is zero (the one that counts deferred constraint violations). If P1 is
- ** zero, the jump is taken if the statement constraint-counter is zero
- ** (immediate foreign key constraint violations).
- */
- case OP_FkIfZero: { /* jump */
- if( pOp->p1 ){
- if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
- }else{
- if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
- }
- break;
- }
- #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
- #ifndef SQLITE_OMIT_AUTOINCREMENT
- /* Opcode: MemMax P1 P2 * * *
- **
- ** P1 is a register in the root frame of this VM (the root frame is
- ** different from the current frame if this instruction is being executed
- ** within a sub-program). Set the value of register P1 to the maximum of
- ** its current value and the value in register P2.
- **
- ** This instruction throws an error if the memory cell is not initially
- ** an integer.
- */
- case OP_MemMax: { /* in2 */
- Mem *pIn1;
- VdbeFrame *pFrame;
- if( p->pFrame ){
- for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
- pIn1 = &pFrame->aMem[pOp->p1];
- }else{
- pIn1 = &aMem[pOp->p1];
- }
- assert( memIsValid(pIn1) );
- sqlite3VdbeMemIntegerify(pIn1);
- pIn2 = &aMem[pOp->p2];
- sqlite3VdbeMemIntegerify(pIn2);
- if( pIn1->u.i<pIn2->u.i){
- pIn1->u.i = pIn2->u.i;
- }
- break;
- }
- #endif /* SQLITE_OMIT_AUTOINCREMENT */
- /* Opcode: IfPos P1 P2 * * *
- **
- ** If the value of register P1 is 1 or greater, jump to P2.
- **
- ** It is illegal to use this instruction on a register that does
- ** not contain an integer. An assertion fault will result if you try.
- */
- case OP_IfPos: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags&MEM_Int );
- if( pIn1->u.i>0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: IfNeg P1 P2 * * *
- **
- ** If the value of register P1 is less than zero, jump to P2.
- **
- ** It is illegal to use this instruction on a register that does
- ** not contain an integer. An assertion fault will result if you try.
- */
- case OP_IfNeg: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags&MEM_Int );
- if( pIn1->u.i<0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: IfZero P1 P2 P3 * *
- **
- ** The register P1 must contain an integer. Add literal P3 to the
- ** value in register P1. If the result is exactly 0, jump to P2.
- **
- ** It is illegal to use this instruction on a register that does
- ** not contain an integer. An assertion fault will result if you try.
- */
- case OP_IfZero: { /* jump, in1 */
- pIn1 = &aMem[pOp->p1];
- assert( pIn1->flags&MEM_Int );
- pIn1->u.i += pOp->p3;
- if( pIn1->u.i==0 ){
- pc = pOp->p2 - 1;
- }
- break;
- }
- /* Opcode: AggStep * P2 P3 P4 P5
- **
- ** Execute the step function for an aggregate. The
- ** function has P5 arguments. P4 is a pointer to the FuncDef
- ** structure that specifies the function. Use register
- ** P3 as the accumulator.
- **
- ** The P5 arguments are taken from register P2 and its
- ** successors.
- */
- case OP_AggStep: {
- int n;
- int i;
- Mem *pMem;
- Mem *pRec;
- sqlite3_context ctx;
- sqlite3_value **apVal;
- n = pOp->p5;
- assert( n>=0 );
- pRec = &aMem[pOp->p2];
- apVal = p->apArg;
- assert( apVal || n==0 );
- for(i=0; i<n; i++, pRec++){
- assert( memIsValid(pRec) );
- apVal[i] = pRec;
- memAboutToChange(p, pRec);
- sqlite3VdbeMemStoreType(pRec);
- }
- ctx.pFunc = pOp->p4.pFunc;
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- ctx.pMem = pMem = &aMem[pOp->p3];
- pMem->n++;
- ctx.s.flags = MEM_Null;
- ctx.s.z = 0;
- ctx.s.zMalloc = 0;
- ctx.s.xDel = 0;
- ctx.s.db = db;
- ctx.isError = 0;
- ctx.pColl = 0;
- ctx.skipFlag = 0;
- if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
- assert( pOp>p->aOp );
- assert( pOp[-1].p4type==P4_COLLSEQ );
- assert( pOp[-1].opcode==OP_CollSeq );
- ctx.pColl = pOp[-1].p4.pColl;
- }
- (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
- if( ctx.isError ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
- rc = ctx.isError;
- }
- if( ctx.skipFlag ){
- assert( pOp[-1].opcode==OP_CollSeq );
- i = pOp[-1].p1;
- if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
- }
- sqlite3VdbeMemRelease(&ctx.s);
- break;
- }
- /* Opcode: AggFinal P1 P2 * P4 *
- **
- ** Execute the finalizer function for an aggregate. P1 is
- ** the memory location that is the accumulator for the aggregate.
- **
- ** P2 is the number of arguments that the step function takes and
- ** P4 is a pointer to the FuncDef for this function. The P2
- ** argument is not used by this opcode. It is only there to disambiguate
- ** functions that can take varying numbers of arguments. The
- ** P4 argument is only needed for the degenerate case where
- ** the step function was not previously called.
- */
- case OP_AggFinal: {
- Mem *pMem;
- assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
- pMem = &aMem[pOp->p1];
- assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
- rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
- if( rc ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
- }
- sqlite3VdbeChangeEncoding(pMem, encoding);
- UPDATE_MAX_BLOBSIZE(pMem);
- if( sqlite3VdbeMemTooBig(pMem) ){
- goto too_big;
- }
- break;
- }
- #ifndef SQLITE_OMIT_WAL
- /* Opcode: Checkpoint P1 P2 P3 * *
- **
- ** Checkpoint database P1. This is a no-op if P1 is not currently in
- ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
- ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
- ** SQLITE_BUSY or not, respectively. Write the number of pages in the
- ** WAL after the checkpoint into mem[P3+1] and the number of pages
- ** in the WAL that have been checkpointed after the checkpoint
- ** completes into mem[P3+2]. However on an error, mem[P3+1] and
- ** mem[P3+2] are initialized to -1.
- */
- case OP_Checkpoint: {
- int i; /* Loop counter */
- int aRes[3]; /* Results */
- Mem *pMem; /* Write results here */
- assert( p->readOnly==0 );
- aRes[0] = 0;
- aRes[1] = aRes[2] = -1;
- assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
- || pOp->p2==SQLITE_CHECKPOINT_FULL
- || pOp->p2==SQLITE_CHECKPOINT_RESTART
- );
- rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
- if( rc==SQLITE_BUSY ){
- rc = SQLITE_OK;
- aRes[0] = 1;
- }
- for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
- sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
- }
- break;
- };
- #endif
- #ifndef SQLITE_OMIT_PRAGMA
- /* Opcode: JournalMode P1 P2 P3 * P5
- **
- ** Change the journal mode of database P1 to P3. P3 must be one of the
- ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
- ** modes (delete, truncate, persist, off and memory), this is a simple
- ** operation. No IO is required.
- **
- ** If changing into or out of WAL mode the procedure is more complicated.
- **
- ** Write a string containing the final journal-mode to register P2.
- */
- case OP_JournalMode: { /* out2-prerelease */
- Btree *pBt; /* Btree to change journal mode of */
- Pager *pPager; /* Pager associated with pBt */
- int eNew; /* New journal mode */
- int eOld; /* The old journal mode */
- #ifndef SQLITE_OMIT_WAL
- const char *zFilename; /* Name of database file for pPager */
- #endif
- eNew = pOp->p3;
- assert( eNew==PAGER_JOURNALMODE_DELETE
- || eNew==PAGER_JOURNALMODE_TRUNCATE
- || eNew==PAGER_JOURNALMODE_PERSIST
- || eNew==PAGER_JOURNALMODE_OFF
- || eNew==PAGER_JOURNALMODE_MEMORY
- || eNew==PAGER_JOURNALMODE_WAL
- || eNew==PAGER_JOURNALMODE_QUERY
- );
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( p->readOnly==0 );
- pBt = db->aDb[pOp->p1].pBt;
- pPager = sqlite3BtreePager(pBt);
- eOld = sqlite3PagerGetJournalMode(pPager);
- if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
- if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
- #ifndef SQLITE_OMIT_WAL
- zFilename = sqlite3PagerFilename(pPager, 1);
- /* Do not allow a transition to journal_mode=WAL for a database
- ** in temporary storage or if the VFS does not support shared memory
- */
- if( eNew==PAGER_JOURNALMODE_WAL
- && (sqlite3Strlen30(zFilename)==0 /* Temp file */
- || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
- ){
- eNew = eOld;
- }
- if( (eNew!=eOld)
- && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
- ){
- if( !db->autoCommit || db->nVdbeRead>1 ){
- rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, db,
- "cannot change %s wal mode from within a transaction",
- (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
- );
- break;
- }else{
-
- if( eOld==PAGER_JOURNALMODE_WAL ){
- /* If leaving WAL mode, close the log file. If successful, the call
- ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
- ** file. An EXCLUSIVE lock may still be held on the database file
- ** after a successful return.
- */
- rc = sqlite3PagerCloseWal(pPager);
- if( rc==SQLITE_OK ){
- sqlite3PagerSetJournalMode(pPager, eNew);
- }
- }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
- /* Cannot transition directly from MEMORY to WAL. Use mode OFF
- ** as an intermediate */
- sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
- }
-
- /* Open a transaction on the database file. Regardless of the journal
- ** mode, this transaction always uses a rollback journal.
- */
- assert( sqlite3BtreeIsInTrans(pBt)==0 );
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
- }
- }
- }
- #endif /* ifndef SQLITE_OMIT_WAL */
- if( rc ){
- eNew = eOld;
- }
- eNew = sqlite3PagerSetJournalMode(pPager, eNew);
- pOut = &aMem[pOp->p2];
- pOut->flags = MEM_Str|MEM_Static|MEM_Term;
- pOut->z = (char *)sqlite3JournalModename(eNew);
- pOut->n = sqlite3Strlen30(pOut->z);
- pOut->enc = SQLITE_UTF8;
- sqlite3VdbeChangeEncoding(pOut, encoding);
- break;
- };
- #endif /* SQLITE_OMIT_PRAGMA */
- #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
- /* Opcode: Vacuum * * * * *
- **
- ** Vacuum the entire database. This opcode will cause other virtual
- ** machines to be created and run. It may not be called from within
- ** a transaction.
- */
- case OP_Vacuum: {
- assert( p->readOnly==0 );
- rc = sqlite3RunVacuum(&p->zErrMsg, db);
- break;
- }
- #endif
- #if !defined(SQLITE_OMIT_AUTOVACUUM)
- /* Opcode: IncrVacuum P1 P2 * * *
- **
- ** Perform a single step of the incremental vacuum procedure on
- ** the P1 database. If the vacuum has finished, jump to instruction
- ** P2. Otherwise, fall through to the next instruction.
- */
- case OP_IncrVacuum: { /* jump */
- Btree *pBt;
- assert( pOp->p1>=0 && pOp->p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
- assert( p->readOnly==0 );
- pBt = db->aDb[pOp->p1].pBt;
- rc = sqlite3BtreeIncrVacuum(pBt);
- if( rc==SQLITE_DONE ){
- pc = pOp->p2 - 1;
- rc = SQLITE_OK;
- }
- break;
- }
- #endif
- /* Opcode: Expire P1 * * * *
- **
- ** Cause precompiled statements to become expired. An expired statement
- ** fails with an error code of SQLITE_SCHEMA if it is ever executed
- ** (via sqlite3_step()).
- **
- ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
- ** then only the currently executing statement is affected.
- */
- case OP_Expire: {
- if( !pOp->p1 ){
- sqlite3ExpirePreparedStatements(db);
- }else{
- p->expired = 1;
- }
- break;
- }
- #ifndef SQLITE_OMIT_SHARED_CACHE
- /* Opcode: TableLock P1 P2 P3 P4 *
- **
- ** Obtain a lock on a particular table. This instruction is only used when
- ** the shared-cache feature is enabled.
- **
- ** P1 is the index of the database in sqlite3.aDb[] of the database
- ** on which the lock is acquired. A readlock is obtained if P3==0 or
- ** a write lock if P3==1.
- **
- ** P2 contains the root-page of the table to lock.
- **
- ** P4 contains a pointer to the name of the table being locked. This is only
- ** used to generate an error message if the lock cannot be obtained.
- */
- case OP_TableLock: {
- u8 isWriteLock = (u8)pOp->p3;
- if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
- int p1 = pOp->p1;
- assert( p1>=0 && p1<db->nDb );
- assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
- assert( isWriteLock==0 || isWriteLock==1 );
- rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
- if( (rc&0xFF)==SQLITE_LOCKED ){
- const char *z = pOp->p4.z;
- sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
- }
- }
- break;
- }
- #endif /* SQLITE_OMIT_SHARED_CACHE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VBegin * * * P4 *
- **
- ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
- ** xBegin method for that table.
- **
- ** Also, whether or not P4 is set, check that this is not being called from
- ** within a callback to a virtual table xSync() method. If it is, the error
- ** code will be set to SQLITE_LOCKED.
- */
- case OP_VBegin: {
- VTable *pVTab;
- pVTab = pOp->p4.pVtab;
- rc = sqlite3VtabBegin(db, pVTab);
- if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VCreate P1 * * P4 *
- **
- ** P4 is the name of a virtual table in database P1. Call the xCreate method
- ** for that table.
- */
- case OP_VCreate: {
- rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VDestroy P1 * * P4 *
- **
- ** P4 is the name of a virtual table in database P1. Call the xDestroy method
- ** of that table.
- */
- case OP_VDestroy: {
- p->inVtabMethod = 2;
- rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
- p->inVtabMethod = 0;
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VOpen P1 * * P4 *
- **
- ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
- ** P1 is a cursor number. This opcode opens a cursor to the virtual
- ** table and stores that cursor in P1.
- */
- case OP_VOpen: {
- VdbeCursor *pCur;
- sqlite3_vtab_cursor *pVtabCursor;
- sqlite3_vtab *pVtab;
- sqlite3_module *pModule;
- assert( p->bIsReader );
- pCur = 0;
- pVtabCursor = 0;
- pVtab = pOp->p4.pVtab->pVtab;
- pModule = (sqlite3_module *)pVtab->pModule;
- assert(pVtab && pModule);
- rc = pModule->xOpen(pVtab, &pVtabCursor);
- sqlite3VtabImportErrmsg(p, pVtab);
- if( SQLITE_OK==rc ){
- /* Initialize sqlite3_vtab_cursor base class */
- pVtabCursor->pVtab = pVtab;
- /* Initialize vdbe cursor object */
- pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
- if( pCur ){
- pCur->pVtabCursor = pVtabCursor;
- pCur->pModule = pVtabCursor->pVtab->pModule;
- }else{
- db->mallocFailed = 1;
- pModule->xClose(pVtabCursor);
- }
- }
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VFilter P1 P2 P3 P4 *
- **
- ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
- ** the filtered result set is empty.
- **
- ** P4 is either NULL or a string that was generated by the xBestIndex
- ** method of the module. The interpretation of the P4 string is left
- ** to the module implementation.
- **
- ** This opcode invokes the xFilter method on the virtual table specified
- ** by P1. The integer query plan parameter to xFilter is stored in register
- ** P3. Register P3+1 stores the argc parameter to be passed to the
- ** xFilter method. Registers P3+2..P3+1+argc are the argc
- ** additional parameters which are passed to
- ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
- **
- ** A jump is made to P2 if the result set after filtering would be empty.
- */
- case OP_VFilter: { /* jump */
- int nArg;
- int iQuery;
- const sqlite3_module *pModule;
- Mem *pQuery;
- Mem *pArgc;
- sqlite3_vtab_cursor *pVtabCursor;
- sqlite3_vtab *pVtab;
- VdbeCursor *pCur;
- int res;
- int i;
- Mem **apArg;
- pQuery = &aMem[pOp->p3];
- pArgc = &pQuery[1];
- pCur = p->apCsr[pOp->p1];
- assert( memIsValid(pQuery) );
- REGISTER_TRACE(pOp->p3, pQuery);
- assert( pCur->pVtabCursor );
- pVtabCursor = pCur->pVtabCursor;
- pVtab = pVtabCursor->pVtab;
- pModule = pVtab->pModule;
- /* Grab the index number and argc parameters */
- assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
- nArg = (int)pArgc->u.i;
- iQuery = (int)pQuery->u.i;
- /* Invoke the xFilter method */
- {
- res = 0;
- apArg = p->apArg;
- for(i = 0; i<nArg; i++){
- apArg[i] = &pArgc[i+1];
- sqlite3VdbeMemStoreType(apArg[i]);
- }
- p->inVtabMethod = 1;
- rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
- p->inVtabMethod = 0;
- sqlite3VtabImportErrmsg(p, pVtab);
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pVtabCursor);
- }
- if( res ){
- pc = pOp->p2 - 1;
- }
- }
- pCur->nullRow = 0;
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VColumn P1 P2 P3 * *
- **
- ** Store the value of the P2-th column of
- ** the row of the virtual-table that the
- ** P1 cursor is pointing to into register P3.
- */
- case OP_VColumn: {
- sqlite3_vtab *pVtab;
- const sqlite3_module *pModule;
- Mem *pDest;
- sqlite3_context sContext;
- VdbeCursor *pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
- pDest = &aMem[pOp->p3];
- memAboutToChange(p, pDest);
- if( pCur->nullRow ){
- sqlite3VdbeMemSetNull(pDest);
- break;
- }
- pVtab = pCur->pVtabCursor->pVtab;
- pModule = pVtab->pModule;
- assert( pModule->xColumn );
- memset(&sContext, 0, sizeof(sContext));
- /* The output cell may already have a buffer allocated. Move
- ** the current contents to sContext.s so in case the user-function
- ** can use the already allocated buffer instead of allocating a
- ** new one.
- */
- sqlite3VdbeMemMove(&sContext.s, pDest);
- MemSetTypeFlag(&sContext.s, MEM_Null);
- rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
- sqlite3VtabImportErrmsg(p, pVtab);
- if( sContext.isError ){
- rc = sContext.isError;
- }
- /* Copy the result of the function to the P3 register. We
- ** do this regardless of whether or not an error occurred to ensure any
- ** dynamic allocation in sContext.s (a Mem struct) is released.
- */
- sqlite3VdbeChangeEncoding(&sContext.s, encoding);
- sqlite3VdbeMemMove(pDest, &sContext.s);
- REGISTER_TRACE(pOp->p3, pDest);
- UPDATE_MAX_BLOBSIZE(pDest);
- if( sqlite3VdbeMemTooBig(pDest) ){
- goto too_big;
- }
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VNext P1 P2 * * *
- **
- ** Advance virtual table P1 to the next row in its result set and
- ** jump to instruction P2. Or, if the virtual table has reached
- ** the end of its result set, then fall through to the next instruction.
- */
- case OP_VNext: { /* jump */
- sqlite3_vtab *pVtab;
- const sqlite3_module *pModule;
- int res;
- VdbeCursor *pCur;
- res = 0;
- pCur = p->apCsr[pOp->p1];
- assert( pCur->pVtabCursor );
- if( pCur->nullRow ){
- break;
- }
- pVtab = pCur->pVtabCursor->pVtab;
- pModule = pVtab->pModule;
- assert( pModule->xNext );
- /* Invoke the xNext() method of the module. There is no way for the
- ** underlying implementation to return an error if one occurs during
- ** xNext(). Instead, if an error occurs, true is returned (indicating that
- ** data is available) and the error code returned when xColumn or
- ** some other method is next invoked on the save virtual table cursor.
- */
- p->inVtabMethod = 1;
- rc = pModule->xNext(pCur->pVtabCursor);
- p->inVtabMethod = 0;
- sqlite3VtabImportErrmsg(p, pVtab);
- if( rc==SQLITE_OK ){
- res = pModule->xEof(pCur->pVtabCursor);
- }
- if( !res ){
- /* If there is data, jump to P2 */
- pc = pOp->p2 - 1;
- }
- goto check_for_interrupt;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VRename P1 * * P4 *
- **
- ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
- ** This opcode invokes the corresponding xRename method. The value
- ** in register P1 is passed as the zName argument to the xRename method.
- */
- case OP_VRename: {
- sqlite3_vtab *pVtab;
- Mem *pName;
- pVtab = pOp->p4.pVtab->pVtab;
- pName = &aMem[pOp->p1];
- assert( pVtab->pModule->xRename );
- assert( memIsValid(pName) );
- assert( p->readOnly==0 );
- REGISTER_TRACE(pOp->p1, pName);
- assert( pName->flags & MEM_Str );
- testcase( pName->enc==SQLITE_UTF8 );
- testcase( pName->enc==SQLITE_UTF16BE );
- testcase( pName->enc==SQLITE_UTF16LE );
- rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
- if( rc==SQLITE_OK ){
- rc = pVtab->pModule->xRename(pVtab, pName->z);
- sqlite3VtabImportErrmsg(p, pVtab);
- p->expired = 0;
- }
- break;
- }
- #endif
- #ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Opcode: VUpdate P1 P2 P3 P4 *
- **
- ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
- ** This opcode invokes the corresponding xUpdate method. P2 values
- ** are contiguous memory cells starting at P3 to pass to the xUpdate
- ** invocation. The value in register (P3+P2-1) corresponds to the
- ** p2th element of the argv array passed to xUpdate.
- **
- ** The xUpdate method will do a DELETE or an INSERT or both.
- ** The argv[0] element (which corresponds to memory cell P3)
- ** is the rowid of a row to delete. If argv[0] is NULL then no
- ** deletion occurs. The argv[1] element is the rowid of the new
- ** row. This can be NULL to have the virtual table select the new
- ** rowid for itself. The subsequent elements in the array are
- ** the values of columns in the new row.
- **
- ** If P2==1 then no insert is performed. argv[0] is the rowid of
- ** a row to delete.
- **
- ** P1 is a boolean flag. If it is set to true and the xUpdate call
- ** is successful, then the value returned by sqlite3_last_insert_rowid()
- ** is set to the value of the rowid for the row just inserted.
- */
- case OP_VUpdate: {
- sqlite3_vtab *pVtab;
- sqlite3_module *pModule;
- int nArg;
- int i;
- sqlite_int64 rowid;
- Mem **apArg;
- Mem *pX;
- assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
- || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
- );
- assert( p->readOnly==0 );
- pVtab = pOp->p4.pVtab->pVtab;
- pModule = (sqlite3_module *)pVtab->pModule;
- nArg = pOp->p2;
- assert( pOp->p4type==P4_VTAB );
- if( ALWAYS(pModule->xUpdate) ){
- u8 vtabOnConflict = db->vtabOnConflict;
- apArg = p->apArg;
- pX = &aMem[pOp->p3];
- for(i=0; i<nArg; i++){
- assert( memIsValid(pX) );
- memAboutToChange(p, pX);
- sqlite3VdbeMemStoreType(pX);
- apArg[i] = pX;
- pX++;
- }
- db->vtabOnConflict = pOp->p5;
- rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
- db->vtabOnConflict = vtabOnConflict;
- sqlite3VtabImportErrmsg(p, pVtab);
- if( rc==SQLITE_OK && pOp->p1 ){
- assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
- db->lastRowid = lastRowid = rowid;
- }
- if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
- if( pOp->p5==OE_Ignore ){
- rc = SQLITE_OK;
- }else{
- p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
- }
- }else{
- p->nChange++;
- }
- }
- break;
- }
- #endif /* SQLITE_OMIT_VIRTUALTABLE */
- #ifndef SQLITE_OMIT_PAGER_PRAGMAS
- /* Opcode: Pagecount P1 P2 * * *
- **
- ** Write the current number of pages in database P1 to memory cell P2.
- */
- case OP_Pagecount: { /* out2-prerelease */
- pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
- break;
- }
- #endif
- #ifndef SQLITE_OMIT_PAGER_PRAGMAS
- /* Opcode: MaxPgcnt P1 P2 P3 * *
- **
- ** Try to set the maximum page count for database P1 to the value in P3.
- ** Do not let the maximum page count fall below the current page count and
- ** do not change the maximum page count value if P3==0.
- **
- ** Store the maximum page count after the change in register P2.
- */
- case OP_MaxPgcnt: { /* out2-prerelease */
- unsigned int newMax;
- Btree *pBt;
- pBt = db->aDb[pOp->p1].pBt;
- newMax = 0;
- if( pOp->p3 ){
- newMax = sqlite3BtreeLastPage(pBt);
- if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
- }
- pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
- break;
- }
- #endif
- #ifndef SQLITE_OMIT_TRACE
- /* Opcode: Trace * * * P4 *
- **
- ** If tracing is enabled (by the sqlite3_trace()) interface, then
- ** the UTF-8 string contained in P4 is emitted on the trace callback.
- */
- case OP_Trace: {
- char *zTrace;
- char *z;
- if( db->xTrace
- && !p->doingRerun
- && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
- ){
- z = sqlite3VdbeExpandSql(p, zTrace);
- db->xTrace(db->pTraceArg, z);
- sqlite3DbFree(db, z);
- }
- #ifdef SQLITE_DEBUG
- if( (db->flags & SQLITE_SqlTrace)!=0
- && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
- ){
- sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
- }
- #endif /* SQLITE_DEBUG */
- break;
- }
- #endif
- /* Opcode: Noop * * * * *
- **
- ** Do nothing. This instruction is often useful as a jump
- ** destination.
- */
- /*
- ** The magic Explain opcode are only inserted when explain==2 (which
- ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
- ** This opcode records information from the optimizer. It is the
- ** the same as a no-op. This opcodesnever appears in a real VM program.
- */
- default: { /* This is really OP_Noop and OP_Explain */
- assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
- break;
- }
- /*****************************************************************************
- ** The cases of the switch statement above this line should all be indented
- ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
- ** readability. From this point on down, the normal indentation rules are
- ** restored.
- *****************************************************************************/
- }
- #ifdef VDBE_PROFILE
- {
- u64 elapsed = sqlite3Hwtime() - start;
- pOp->cycles += elapsed;
- pOp->cnt++;
- #if 0
- fprintf(stdout, "%10llu ", elapsed);
- sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
- #endif
- }
- #endif
- /* The following code adds nothing to the actual functionality
- ** of the program. It is only here for testing and debugging.
- ** On the other hand, it does burn CPU cycles every time through
- ** the evaluator loop. So we can leave it out when NDEBUG is defined.
- */
- #ifndef NDEBUG
- assert( pc>=-1 && pc<p->nOp );
- #ifdef SQLITE_DEBUG
- if( p->trace ){
- if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
- if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
- registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
- }
- if( pOp->opflags & OPFLG_OUT3 ){
- registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
- }
- }
- #endif /* SQLITE_DEBUG */
- #endif /* NDEBUG */
- } /* The end of the for(;;) loop the loops through opcodes */
- /* If we reach this point, it means that execution is finished with
- ** an error of some kind.
- */
- vdbe_error_halt:
- assert( rc );
- p->rc = rc;
- testcase( sqlite3GlobalConfig.xLog!=0 );
- sqlite3_log(rc, "statement aborts at %d: [%s] %s",
- pc, p->zSql, p->zErrMsg);
- sqlite3VdbeHalt(p);
- if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
- rc = SQLITE_ERROR;
- if( resetSchemaOnFault>0 ){
- sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
- }
- /* This is the only way out of this procedure. We have to
- ** release the mutexes on btrees that were acquired at the
- ** top. */
- vdbe_return:
- db->lastRowid = lastRowid;
- testcase( nVmStep>0 );
- p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
- sqlite3VdbeLeave(p);
- return rc;
- /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
- ** is encountered.
- */
- too_big:
- sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
- rc = SQLITE_TOOBIG;
- goto vdbe_error_halt;
- /* Jump to here if a malloc() fails.
- */
- no_mem:
- db->mallocFailed = 1;
- sqlite3SetString(&p->zErrMsg, db, "out of memory");
- rc = SQLITE_NOMEM;
- goto vdbe_error_halt;
- /* Jump to here for any other kind of fatal error. The "rc" variable
- ** should hold the error number.
- */
- abort_due_to_error:
- assert( p->zErrMsg==0 );
- if( db->mallocFailed ) rc = SQLITE_NOMEM;
- if( rc!=SQLITE_IOERR_NOMEM ){
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
- }
- goto vdbe_error_halt;
- /* Jump to here if the sqlite3_interrupt() API sets the interrupt
- ** flag.
- */
- abort_due_to_interrupt:
- assert( db->u1.isInterrupted );
- rc = SQLITE_INTERRUPT;
- p->rc = rc;
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
- goto vdbe_error_halt;
- }
|