hal_twi.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210
  1. #include <hal_log.h>
  2. #include <stdlib.h>
  3. #include <hal_clk.h>
  4. #include <hal_reset.h>
  5. #include <hal_gpio.h>
  6. #include <sunxi_hal_twi.h>
  7. #include <hal_dma.h>
  8. #include <hal_cache.h>
  9. #include <sunxi_hal_regulator.h>
  10. #include <interrupt.h>
  11. #ifdef CONFIG_RTTKERNEL
  12. #include <hal_cfg.h>
  13. #include <script.h>
  14. #endif
  15. static const uint32_t hal_twi_address[] =
  16. {
  17. SUNXI_TWI0_PBASE,
  18. SUNXI_TWI1_PBASE,
  19. SUNXI_TWI2_PBASE,
  20. SUNXI_TWI3_PBASE,
  21. #if !(defined(CONFIG_ARCH_SUN8IW20) || defined(CONFIG_SOC_SUN20IW1))
  22. SUNXI_S_TWI0_PBASE,
  23. #endif
  24. };
  25. static const uint32_t hal_twi_irq_num[] =
  26. {
  27. SUNXI_IRQ_TWI0,
  28. SUNXI_IRQ_TWI1,
  29. SUNXI_IRQ_TWI2,
  30. SUNXI_IRQ_TWI3,
  31. #if !(defined(CONFIG_ARCH_SUN8IW20) || defined(CONFIG_SOC_SUN20IW1))
  32. SUNXI_IRQ_S_TWI0,
  33. #endif
  34. };
  35. #if !(defined(CONFIG_ARCH_SUN8IW20) || defined(CONFIG_SOC_SUN20IW1))
  36. static const hal_clk_id_t hal_twi_pclk[] =
  37. {
  38. HAL_CLK_BUS_APB2,
  39. HAL_CLK_BUS_APB2,
  40. HAL_CLK_BUS_APB2,
  41. HAL_CLK_BUS_APB2,
  42. HAL_CLK_BUS_APB2,
  43. };
  44. static const hal_clk_id_t hal_twi_mclk[] =
  45. {
  46. HAL_CLK_PERIPH_TWI0,
  47. HAL_CLK_PERIPH_TWI1,
  48. HAL_CLK_PERIPH_TWI2,
  49. HAL_CLK_PERIPH_TWI3,
  50. HAL_CLK_PERIPH_TWI4,
  51. };
  52. #endif
  53. static const enum REGULATOR_TYPE_ENUM twi_regulator_type = AXP2101_REGULATOR;
  54. static const enum REGULATOR_ID_ENUM twi_regulator_id[] =
  55. {
  56. AXP2101_ID_ALDO2,
  57. AXP2101_ID_ALDO2,
  58. AXP2101_ID_MAX,
  59. AXP2101_ID_MAX,
  60. AXP2101_ID_MAX,
  61. };
  62. static const int twi_vol[] =
  63. {
  64. 3300000,
  65. 3300000,
  66. -1,
  67. -1,
  68. -1,
  69. };
  70. static hal_twi_t hal_twi[TWI_MASTER_MAX];
  71. /* set twi clock
  72. *
  73. * clk_n: clock divider factor n
  74. * clk_m: clock divider factor m
  75. */
  76. static void twi_clk_write_reg(hal_twi_t *twi, unsigned int reg_clk,
  77. unsigned int clk_m, unsigned int clk_n,
  78. unsigned int mask_clk_m, unsigned int mask_clk_n)
  79. {
  80. const unsigned long base_addr = twi->base_addr;
  81. unsigned int reg_val = readl(base_addr + reg_clk);
  82. if (reg_clk == TWI_DRIVER_BUSC)
  83. {
  84. reg_val &= ~(mask_clk_m | mask_clk_n);
  85. reg_val |= ((clk_m | (clk_n << 4)) << 8);
  86. writel(reg_val, base_addr + reg_clk);
  87. }
  88. else
  89. {
  90. reg_val &= ~(mask_clk_m | mask_clk_n);
  91. reg_val |= ((clk_m << 3) | clk_n);
  92. writel(reg_val, base_addr + reg_clk);
  93. }
  94. }
  95. /*
  96. * Fin is APB CLOCK INPUT;
  97. * Fsample = F0 = Fin/2^CLK_N;
  98. * F1 = F0/(CLK_M+1);
  99. * Foscl = F1/10 = Fin/(2^CLK_N * (CLK_M+1)*10);
  100. * Foscl is clock SCL;100KHz or 400KHz
  101. *
  102. * clk_in: apb clk clock
  103. * sclk_req: freqence to set in HZ
  104. */
  105. static int twi_set_clock(hal_twi_t *twi, unsigned int reg_clk,
  106. unsigned int clk_in, unsigned int sclk_req,
  107. unsigned int mask_clk_m, unsigned int mask_clk_n)
  108. {
  109. unsigned int clk_m = 0;
  110. unsigned int clk_n = 0;
  111. unsigned int _2_pow_clk_n = 1;
  112. unsigned int src_clk = clk_in / 10;
  113. unsigned int divider = src_clk / sclk_req; /* 400khz or 100khz */
  114. unsigned int sclk_real = 0; /* the real clock frequency */
  115. if (divider == 0)
  116. {
  117. clk_m = 1;
  118. goto set_clk;
  119. }
  120. /*
  121. * search clk_n and clk_m,from large to small value so
  122. * that can quickly find suitable m & n.
  123. */
  124. while (clk_n < 8) /* 3bits max value is 8 */
  125. {
  126. /* (m+1)*2^n = divider -->m = divider/2^n -1 */
  127. clk_m = (divider / _2_pow_clk_n) - 1;
  128. /* clk_m = (divider >> (_2_pow_clk_n>>1))-1 */
  129. while (clk_m < 16) /* 4bits max value is 16 */
  130. {
  131. /* src_clk/((m+1)*2^n) */
  132. sclk_real = src_clk / (clk_m + 1) / _2_pow_clk_n;
  133. if (sclk_real <= sclk_req)
  134. {
  135. goto set_clk;
  136. }
  137. else
  138. {
  139. clk_m++;
  140. }
  141. }
  142. clk_n++;
  143. _2_pow_clk_n *= 2; /* mutilple by 2 */
  144. }
  145. set_clk:
  146. twi_clk_write_reg(twi, reg_clk, clk_m, clk_n, mask_clk_m, mask_clk_n);
  147. return 0;
  148. }
  149. /*************************************** TWI ENGINE XFER REG CONTROL begin****************************/
  150. /* clear the interrupt flag */
  151. static inline void twi_clear_irq_flag(const unsigned long base_addr)
  152. {
  153. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  154. /* start and stop bit should be 0 */
  155. reg_val |= TWI_CTL_INTFLG;
  156. reg_val &= ~(TWI_CTL_STA | TWI_CTL_STP);
  157. writel(reg_val, base_addr + TWI_CTL_REG);
  158. /* read two more times to make sure that */
  159. /* interrupt flag does really be cleared */
  160. {
  161. unsigned int temp;
  162. temp = readl(base_addr + TWI_CTL_REG);
  163. temp |= readl(base_addr + TWI_CTL_REG);
  164. }
  165. }
  166. /* get data first, then clear flag */
  167. static inline void twi_get_byte(const unsigned long base_addr, unsigned char *buffer)
  168. {
  169. *buffer = (unsigned char)(TWI_DATA_MASK & readl(base_addr + TWI_DATA_REG));
  170. twi_clear_irq_flag(base_addr);
  171. }
  172. /* only get data, we will clear the flag when stop */
  173. static inline void twi_get_last_byte(const unsigned long base_addr, unsigned char *buffer)
  174. {
  175. *buffer = (unsigned char)(TWI_DATA_MASK &
  176. readl(base_addr + TWI_DATA_REG));
  177. }
  178. /* write data and clear irq flag to trigger send flow */
  179. static inline void twi_put_byte(const unsigned long base_addr, const unsigned char *buffer)
  180. {
  181. writel((unsigned int)*buffer, base_addr + TWI_DATA_REG);
  182. twi_clear_irq_flag(base_addr);
  183. }
  184. static inline void twi_enable_irq(const unsigned long base_addr)
  185. {
  186. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  187. /*
  188. * 1 when enable irq for next operation, set intflag to 0 to prevent
  189. * to clear it by a mistake (intflag bit is write-1-to-clear bit)
  190. * 2 Similarly, mask START bit and STOP bit to prevent to set it
  191. * twice by a mistake (START bit and STOP bit are self-clear-to-0 bits)
  192. */
  193. reg_val |= TWI_CTL_INTEN;
  194. reg_val &= ~(TWI_CTL_STA | TWI_CTL_STP | TWI_CTL_INTFLG);
  195. writel(reg_val, base_addr + TWI_CTL_REG);
  196. }
  197. static inline void twi_disable_irq(const unsigned long base_addr)
  198. {
  199. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  200. reg_val &= ~TWI_CTL_INTEN;
  201. reg_val &= ~(TWI_CTL_STA | TWI_CTL_STP | TWI_CTL_INTFLG);
  202. writel(reg_val, base_addr + TWI_CTL_REG);
  203. }
  204. static inline void twi_disable(const unsigned long base_addr, unsigned int reg, unsigned int mask)
  205. {
  206. unsigned int reg_val = readl(base_addr + reg);
  207. reg_val &= ~mask;
  208. writel(reg_val, base_addr + reg);
  209. TWI_INFO("offset: 0x%x value: 0x%lx", reg, readl(base_addr + reg));
  210. }
  211. static inline void twi_enable(const unsigned long base_addr, unsigned int reg, unsigned int mask)
  212. {
  213. unsigned int reg_val = readl(base_addr + reg);
  214. reg_val |= mask;
  215. writel(reg_val, base_addr + reg);
  216. TWI_INFO("offset: 0x%x value: 0x%lx", reg,
  217. readl(base_addr + reg));
  218. }
  219. /* trigger start signal, the start bit will be cleared automatically */
  220. static inline void twi_set_start(const unsigned long base_addr)
  221. {
  222. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  223. reg_val |= TWI_CTL_STA;
  224. reg_val &= ~TWI_CTL_INTFLG;
  225. writel(reg_val, base_addr + TWI_CTL_REG);
  226. }
  227. /* get start bit status, poll if start signal is sent */
  228. static inline unsigned int twi_get_start(const unsigned long base_addr)
  229. {
  230. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  231. reg_val >>= 5;
  232. return reg_val & 1;
  233. }
  234. /* trigger stop signal, the stop bit will be cleared automatically */
  235. static inline void twi_set_stop(const unsigned long base_addr)
  236. {
  237. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  238. reg_val |= TWI_CTL_STP;
  239. reg_val &= ~TWI_CTL_INTFLG;
  240. writel(reg_val, base_addr + TWI_CTL_REG);
  241. }
  242. /* get stop bit status, poll if stop signal is sent */
  243. static inline unsigned int twi_get_stop(const unsigned long base_addr)
  244. {
  245. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  246. reg_val >>= 4;
  247. return reg_val & 1;
  248. }
  249. static inline void twi_disable_ack(const unsigned long base_addr)
  250. {
  251. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  252. reg_val &= ~TWI_CTL_ACK;
  253. reg_val &= ~TWI_CTL_INTFLG;
  254. writel(reg_val, base_addr + TWI_CTL_REG);
  255. }
  256. /* when sending ack or nack, it will send ack automatically */
  257. static inline void twi_enable_ack(const unsigned long base_addr)
  258. {
  259. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  260. reg_val |= TWI_CTL_ACK;
  261. reg_val &= ~TWI_CTL_INTFLG;
  262. writel(reg_val, base_addr + TWI_CTL_REG);
  263. }
  264. /* get the interrupt flag */
  265. static inline unsigned int twi_query_irq_flag(const unsigned long base_addr)
  266. {
  267. unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  268. return (reg_val & TWI_CTL_INTFLG);/* 0x 0000_1000 */
  269. }
  270. /* get interrupt status */
  271. static inline unsigned int twi_query_irq_status(const unsigned long base_addr)
  272. {
  273. unsigned int reg_val = readl(base_addr + TWI_STAT_REG);
  274. return (reg_val & TWI_STAT_MASK);
  275. }
  276. /* Enhanced Feature Register */
  277. static inline void twi_set_efr(const unsigned long base_addr, unsigned int efr)
  278. {
  279. unsigned int reg_val = readl(base_addr + TWI_EFR_REG);
  280. reg_val &= ~TWI_EFR_MASK;
  281. efr &= TWI_EFR_MASK;
  282. reg_val |= efr;
  283. writel(reg_val, base_addr + TWI_EFR_REG);
  284. }
  285. /* function */
  286. static int twi_start(const unsigned long base_addr, int port)
  287. {
  288. unsigned int timeout = 0xff;
  289. twi_set_start(base_addr);
  290. while ((twi_get_start(base_addr) == 1) && (--timeout))
  291. ;
  292. if (timeout == 0)
  293. {
  294. TWI_ERR("[twi%d] START can't sendout!", port);
  295. return SUNXI_TWI_FAIL;
  296. }
  297. return SUNXI_TWI_OK;
  298. }
  299. static int twi_restart(const unsigned long base_addr, int port)
  300. {
  301. unsigned int timeout = 0xff;
  302. twi_set_start(base_addr);
  303. twi_clear_irq_flag(base_addr);
  304. while ((twi_get_start(base_addr) == 1) && (--timeout))
  305. ;
  306. if (timeout == 0)
  307. {
  308. TWI_ERR("[twi%d] Restart can't sendout!", port);
  309. return SUNXI_TWI_FAIL;
  310. }
  311. return SUNXI_TWI_OK;
  312. }
  313. static int twi_stop(const unsigned long base_addr, int port)
  314. {
  315. unsigned int timeout = 0xff;
  316. twi_set_stop(base_addr);
  317. //unsigned int reg_val = readl(base_addr + TWI_CTL_REG);
  318. twi_clear_irq_flag(base_addr);
  319. twi_get_stop(base_addr);/* it must delay 1 nop to check stop bit */
  320. while ((twi_get_stop(base_addr) == 1) && (--timeout))
  321. ;
  322. if (timeout == 0)
  323. {
  324. TWI_ERR("[twi%d] STOP can't sendout!", port);
  325. return SUNXI_TWI_TFAIL;
  326. }
  327. //twi_clear_irq_flag(base_addr);
  328. timeout = 0xff;
  329. while ((readl(base_addr + TWI_STAT_REG) != TWI_STAT_IDLE)
  330. && (--timeout))
  331. ;
  332. if (timeout == 0)
  333. {
  334. TWI_ERR("[twi%d] twi state(0x%0lx) isn't idle(0xf8)",
  335. port, readl(base_addr + TWI_STAT_REG));
  336. return SUNXI_TWI_TFAIL;
  337. }
  338. timeout = 0xff;
  339. while ((readl(base_addr + TWI_LCR_REG) != TWI_LCR_IDLE_STATUS
  340. && readl(base_addr + TWI_LCR_REG) != TWI_LCR_NORM_STATUS)
  341. && (--timeout))
  342. ;
  343. if (timeout == 0)
  344. {
  345. TWI_ERR("[twi%d] twi lcr(0x%0lx) isn't idle(0x3a)",
  346. port, readl(base_addr + TWI_LCR_REG));
  347. return SUNXI_TWI_TFAIL;
  348. }
  349. //twi_clear_irq_flag(base_addr);
  350. TWI_INFO("twi stop end");
  351. return SUNXI_TWI_OK;
  352. }
  353. /* get SDA state */
  354. static unsigned int twi_get_sda(const unsigned long base_addr)
  355. {
  356. unsigned int status = 0;
  357. status = TWI_LCR_SDA_STATE_MASK & readl(base_addr + TWI_LCR_REG);
  358. status >>= 4;
  359. return (status & 0x1);
  360. }
  361. /* set SCL level(high/low), only when SCL enable */
  362. static void twi_set_scl(const unsigned long base_addr, unsigned int hi_lo)
  363. {
  364. unsigned int reg_val = readl(base_addr + TWI_LCR_REG);
  365. reg_val &= ~TWI_LCR_SCL_CTL;
  366. hi_lo &= 0x01;
  367. reg_val |= (hi_lo << 3);
  368. writel(reg_val, base_addr + TWI_LCR_REG);
  369. }
  370. /* enable SDA or SCL */
  371. static void twi_enable_lcr(const unsigned long base_addr, unsigned int sda_scl)
  372. {
  373. unsigned int reg_val = readl(base_addr + TWI_LCR_REG);
  374. sda_scl &= 0x01;
  375. if (sda_scl)
  376. {
  377. reg_val |= TWI_LCR_SCL_EN; /* enable scl line control */
  378. }
  379. else
  380. {
  381. reg_val |= TWI_LCR_SDA_EN; /* enable sda line control */
  382. }
  383. writel(reg_val, base_addr + TWI_LCR_REG);
  384. }
  385. /* disable SDA or SCL */
  386. static void twi_disable_lcr(const unsigned long base_addr, unsigned int sda_scl)
  387. {
  388. unsigned int reg_val = readl(base_addr + TWI_LCR_REG);
  389. sda_scl &= 0x01;
  390. if (sda_scl)
  391. {
  392. reg_val &= ~TWI_LCR_SCL_EN; /* disable scl line control */
  393. }
  394. else
  395. {
  396. reg_val &= ~TWI_LCR_SDA_EN; /* disable sda line control */
  397. }
  398. writel(reg_val, base_addr + TWI_LCR_REG);
  399. }
  400. /* send 9 clock to release sda */
  401. static int twi_send_clk_9pulse(const unsigned long base_addr, int port)
  402. {
  403. int twi_scl = 1;
  404. int low = 0;
  405. int high = 1;
  406. int cycle = 0;
  407. int num = 0;
  408. unsigned char status;
  409. /* enable scl control */
  410. twi_enable_lcr(base_addr, twi_scl);
  411. while (cycle < 9)
  412. {
  413. if (twi_get_sda(base_addr)
  414. && twi_get_sda(base_addr)
  415. && twi_get_sda(base_addr))
  416. {
  417. break;
  418. }
  419. /* twi_scl -> low */
  420. twi_set_scl(base_addr, low);
  421. for (num = 1000; num > 0; num--);
  422. /* twi_scl -> high */
  423. twi_set_scl(base_addr, high);
  424. for (num = 1000; num > 0; num--);
  425. cycle++;
  426. }
  427. if (twi_get_sda(base_addr))
  428. {
  429. twi_disable_lcr(base_addr, twi_scl);
  430. status = SUNXI_TWI_OK;
  431. }
  432. else
  433. {
  434. TWI_ERR("[twi%d] SDA is still Stuck Low, failed.", port);
  435. twi_disable_lcr(base_addr, twi_scl);
  436. status = SUNXI_TWI_FAIL;
  437. }
  438. return status;
  439. }
  440. /*************************************** TWI DRV XFER REG CONTROL begin****************************/
  441. #if 0
  442. /* set twi clock
  443. *
  444. * clk_n: clock divider factor n
  445. * clk_m: clock divider factor m
  446. */
  447. static void twi_clk_write_reg(const uint32_t base_addr, uint32_t sclk_freq,
  448. uint8_t clk_m, uint8_t clk_n)
  449. {
  450. uint32_t reg_val = readl(base_addr + TWI_DRIVER_BUSC);
  451. #if defined(CONFIG_ARCH_SUN50IW10)
  452. uint32_t duty;
  453. #endif
  454. TWI_INFO("reg_clk = 0x%x, clk_m = %u, clk_n = %u,"
  455. "mask_clk_m = %x, mask_clk_n = %x",
  456. reg_clk, clk_m, clk_n, mask_clk_m, mask_clk_n);
  457. reg_val &= ~(TWI_DRV_CLK_M | TWI_DRV_CLK_N);
  458. reg_val |= ((clk_m | (clk_n << 4)) << 8);
  459. #if defined(CONFIG_ARCH_SUN50IW10)
  460. duty = TWI_DRV_CLK_DUTY;
  461. if (sclk_freq > STANDDARD_FREQ)
  462. {
  463. reg_val |= duty;
  464. }
  465. else
  466. {
  467. reg_val &= ~duty;
  468. }
  469. #endif
  470. writel(reg_val, base_addr + TWI_DRIVER_BUSC);
  471. }
  472. /*
  473. * Fin is APB CLOCK INPUT;
  474. * Fsample = F0 = Fin/2^CLK_N;
  475. * F1 = F0/(CLK_M+1);
  476. * Foscl = F1/10 = Fin/(2^CLK_N * (CLK_M+1)*10);
  477. * Foscl is clock SCL;100KHz or 400KHz
  478. *
  479. * clk_in: apb clk clock
  480. * sclk_freq: freqence to set in HZ
  481. */
  482. static int32_t twi_set_clock(twi_port_t twi_port,
  483. uint32_t clk_in, uint32_t sclk_freq)
  484. {
  485. const uint32_t base_addr = g_twi_regbase[twi->port];
  486. uint8_t clk_m = 0, clk_n = 0, _2_pow_clk_n = 1;
  487. uint32_t src_clk = clk_in / 10;
  488. uint32_t divider = src_clk / sclk_freq; /* 400khz or 100khz */
  489. uint32_t sclk_real = 0; /* the real clock frequency */
  490. if (divider == 0)
  491. {
  492. clk_m = 1;
  493. goto set_clk;
  494. }
  495. /*
  496. * search clk_n and clk_m,from large to small value so
  497. * that can quickly find suitable m & n.
  498. */
  499. while (clk_n < 8) /* 3bits max value is 8 */
  500. {
  501. /* (m+1)*2^n = divider -->m = divider/2^n -1 */
  502. clk_m = (divider / _2_pow_clk_n) - 1;
  503. /* clk_m = (divider >> (_2_pow_clk_n>>1))-1 */
  504. while (clk_m < 16) /* 4bits max value is 16 */
  505. {
  506. /* src_clk/((m+1)*2^n) */
  507. sclk_real = src_clk / (clk_m + 1) / _2_pow_clk_n;
  508. if (sclk_real <= sclk_freq)
  509. {
  510. goto set_clk;
  511. }
  512. else
  513. {
  514. clk_m++;
  515. }
  516. }
  517. clk_n++;
  518. _2_pow_clk_n *= 2; /* mutilple by 2 */
  519. }
  520. set_clk:
  521. twi_clk_write_reg(base_addr, sclk_freq, clk_m, clk_n);
  522. return 0;
  523. }
  524. #endif
  525. static uint32_t twi_drv_query_irq_status(const unsigned long base_addr)
  526. {
  527. uint32_t reg_val = readl(base_addr + TWI_DRIVER_INTC);
  528. return (reg_val & TWI_DRV_STAT_MASK);
  529. }
  530. static void twi_drv_clear_irq_flag(uint32_t pending_bit, const unsigned long base_addr)
  531. {
  532. uint32_t reg_val = readl(base_addr + TWI_DRIVER_INTC);
  533. pending_bit &= TWI_DRV_STAT_MASK;
  534. reg_val |= pending_bit;
  535. writel(reg_val, base_addr + TWI_DRIVER_INTC);
  536. }
  537. static void twi_clear_pending(const unsigned long base_addr)
  538. {
  539. uint32_t reg_val = readl(base_addr + TWI_DRIVER_INTC);
  540. reg_val |= TWI_DRV_STAT_MASK;
  541. writel(reg_val, base_addr + TWI_DRIVER_INTC);
  542. }
  543. /* start TWI transfer */
  544. static void twi_start_xfer(const unsigned long base_addr)
  545. {
  546. uint32_t reg_val = readl(base_addr + TWI_DRIVER_CTRL);
  547. reg_val |= START_TRAN;
  548. writel(reg_val, base_addr + TWI_DRIVER_CTRL);
  549. }
  550. /*
  551. * send DMA RX Req when the data byte number in RECV_FIFO reaches RX_TRIG
  552. * or Read Packet Tansmission completed with RECV_FIFO not empty
  553. */
  554. static void twi_set_rx_trig_level(uint32_t val, const unsigned long base_addr)
  555. {
  556. uint32_t mask = TRIG_MASK;
  557. uint32_t reg_val = readl(base_addr + TWI_DRIVER_DMAC);
  558. val = (val & mask) << 16;
  559. reg_val &= ~(mask << 16);
  560. reg_val |= val;
  561. writel(reg_val, base_addr + TWI_DRIVER_DMAC);
  562. }
  563. /* bytes be send as slave device reg address */
  564. static void twi_set_packet_addr_byte(uint32_t val, const unsigned long base_addr)
  565. {
  566. uint32_t mask = ADDR_BYTE;
  567. uint32_t reg_val = readl(base_addr + TWI_DRIVER_FMT);
  568. reg_val &= ~mask;
  569. val = (val << 16) & mask;
  570. reg_val |= val;
  571. writel(reg_val, base_addr + TWI_DRIVER_FMT);
  572. }
  573. /* bytes be send/received as data */
  574. static void twi_set_packet_data_byte(uint32_t val, const unsigned long base_addr)
  575. {
  576. uint32_t mask = DATA_BYTE;
  577. uint32_t reg_val = readl(base_addr + TWI_DRIVER_FMT);
  578. reg_val &= ~mask;
  579. val &= mask;
  580. reg_val |= val;
  581. writel(reg_val, base_addr + TWI_DRIVER_FMT);
  582. }
  583. #if 0
  584. /* interval between each packet in 32*Fscl cycles */
  585. static void twi_set_packet_interval(uint32_t val, const uint32_t base_addr)
  586. {
  587. uint32_t mask = INTERVAL_MASK;
  588. uint32_t reg_val = readl(base_addr + TWI_DRIVER_CFG);
  589. reg_val &= ~mask;
  590. val <<= 16;
  591. val &= mask;
  592. reg_val |= val;
  593. writel(reg_val, base_addr + TWI_DRIVER_CFG);
  594. }
  595. #endif
  596. /* FIFO data be transmitted as PACKET_CNT packets in current format */
  597. static void twi_set_packet_cnt(uint32_t val, const unsigned long base_addr)
  598. {
  599. uint32_t mask = PACKET_MASK;
  600. uint32_t reg_val = readl(base_addr + TWI_DRIVER_CFG);
  601. reg_val &= ~mask;
  602. val &= mask;
  603. reg_val |= val;
  604. writel(reg_val, base_addr + TWI_DRIVER_CFG);
  605. }
  606. /* do not send slave_id +W */
  607. static void twi_enable_read_tran_mode(const unsigned long base_addr)
  608. {
  609. uint32_t mask = READ_TRAN;
  610. uint32_t reg_val = readl(base_addr + TWI_DRIVER_CTRL);
  611. reg_val |= mask;
  612. writel(reg_val, base_addr + TWI_DRIVER_CTRL);
  613. }
  614. /* send slave_id + W */
  615. static void twi_disable_read_tran_mode(const unsigned long base_addr)
  616. {
  617. uint32_t mask = READ_TRAN;
  618. uint32_t reg_val = readl(base_addr + TWI_DRIVER_CTRL);
  619. reg_val &= ~mask;
  620. writel(reg_val, base_addr + TWI_DRIVER_CTRL);
  621. }
  622. static inline void twi_soft_reset(const unsigned long base_addr, unsigned int reg, unsigned int mask)
  623. {
  624. unsigned int reg_val = readl(base_addr + reg);
  625. reg_val |= mask;
  626. writel(reg_val, base_addr + reg);
  627. }
  628. static void twi_enable_tran_irq(uint32_t bitmap, const unsigned long base_addr)
  629. {
  630. uint32_t reg_val = readl(base_addr + TWI_DRIVER_INTC);
  631. reg_val |= bitmap;
  632. reg_val &= ~TWI_DRV_STAT_MASK;
  633. writel(reg_val, base_addr + TWI_DRIVER_INTC);
  634. }
  635. static void twi_disable_tran_irq(uint32_t bitmap, const unsigned long base_addr)
  636. {
  637. uint32_t reg_val = readl(base_addr + TWI_DRIVER_INTC);
  638. reg_val &= ~bitmap;
  639. reg_val &= ~TWI_DRV_STAT_MASK;
  640. writel(reg_val, base_addr + TWI_DRIVER_INTC);
  641. }
  642. static void twi_enable_dma_irq(uint32_t bitmap, const unsigned long base_addr)
  643. {
  644. uint32_t reg_val = readl(base_addr + TWI_DRIVER_DMAC);
  645. bitmap &= TWI_DRQEN_MASK;
  646. reg_val |= bitmap;
  647. writel(reg_val, base_addr + TWI_DRIVER_DMAC);
  648. }
  649. static void twi_disable_dma_irq(uint32_t bitmap, const unsigned long base_addr)
  650. {
  651. uint32_t reg_val = readl(base_addr + TWI_DRIVER_DMAC);
  652. bitmap &= TWI_DRQEN_MASK;
  653. reg_val &= ~bitmap;
  654. writel(reg_val, base_addr + TWI_DRIVER_DMAC);
  655. }
  656. static void twi_slave_addr(const unsigned long base_addr, twi_msg_t *msgs)
  657. {
  658. uint32_t val = 0, cmd = 0;
  659. /* read, default value is write */
  660. if (msgs->flags & TWI_M_RD)
  661. {
  662. cmd = SLV_RD_CMD;
  663. }
  664. if (msgs->flags & TWI_M_TEN)
  665. {
  666. /* SLV_ID | CMD | SLV_ID_X */
  667. val = ((0x78 | ((msgs->addr >> 8) & 0x03)) << 9) | cmd
  668. | (msgs->addr & 0xff);
  669. }
  670. else
  671. {
  672. val = ((msgs->addr & 0x7f) << 9) | cmd;
  673. }
  674. writel(val, base_addr + TWI_DRIVER_SLV);
  675. }
  676. /* the number of data in SEND_FIFO */
  677. static int32_t twi_query_txfifo(const unsigned long base_addr)
  678. {
  679. uint32_t reg_val;
  680. reg_val = readl(base_addr + TWI_DRIVER_FIFOC) & SEND_FIFO_CONT;
  681. return reg_val;
  682. }
  683. /* the number of data in RECV_FIFO */
  684. static int32_t twi_query_rxfifo(const unsigned long base_addr)
  685. {
  686. uint32_t reg_val;
  687. reg_val = readl(base_addr + TWI_DRIVER_FIFOC) & RECV_FIFO_CONT;
  688. reg_val >>= 16;
  689. return reg_val;
  690. }
  691. static void twi_clear_txfifo(const unsigned long base_addr)
  692. {
  693. uint32_t reg_val;
  694. reg_val = readl(base_addr + TWI_DRIVER_FIFOC);
  695. reg_val |= SEND_FIFO_CLEAR;
  696. writel(reg_val, base_addr + TWI_DRIVER_FIFOC);
  697. }
  698. static void twi_clear_rxfifo(const unsigned long base_addr)
  699. {
  700. uint32_t reg_val;
  701. reg_val = readl(base_addr + TWI_DRIVER_FIFOC);
  702. reg_val |= RECV_FIFO_CLEAR;
  703. writel(reg_val, base_addr + TWI_DRIVER_FIFOC);
  704. }
  705. static int twi_send_msgs(hal_twi_t *twi, twi_msg_t *msgs)
  706. {
  707. uint16_t i;
  708. uint8_t time = 0xff;
  709. TWI_INFO("twi[%d] msgs->len = %d", twi->port, msgs->len);
  710. for (i = 0; i < msgs->len; i++)
  711. {
  712. while ((twi_query_txfifo(twi->base_addr) >= MAX_FIFO) && time--)
  713. ;
  714. if (time)
  715. {
  716. hal_writeb(msgs->buf[i], twi->base_addr + TWI_DRIVER_SENDF);
  717. }
  718. else
  719. {
  720. TWI_ERR("[twi%d] SEND FIFO overflow. timeout", twi->port);
  721. return SUNXI_TWI_FAIL;
  722. }
  723. }
  724. return SUNXI_TWI_OK;
  725. }
  726. static uint32_t twi_recv_msgs(hal_twi_t *twi, twi_msg_t *msgs)
  727. {
  728. uint16_t i;
  729. uint8_t time = 0xff;
  730. TWI_INFO("twi[%d] msgs->len = %d", twi->port, msgs->len);
  731. for (i = 0; i < msgs->len; i++)
  732. {
  733. while (!twi_query_rxfifo(twi->base_addr) && time--)
  734. ;
  735. if (time)
  736. {
  737. msgs->buf[i] = hal_readb(twi->base_addr + TWI_DRIVER_RECVF);
  738. }
  739. else
  740. {
  741. return 0;
  742. }
  743. }
  744. return msgs->len;
  745. }
  746. /************************ TWI DRV XFER REG CONTROL end*************************/
  747. static void twi_dma_callback(void *para)
  748. {
  749. hal_twi_t *twi = (hal_twi_t *)para;
  750. int hal_sem_ret;
  751. hal_sem_ret = hal_sem_post(twi->dma_complete);
  752. if (hal_sem_ret != 0)
  753. {
  754. TWI_ERR("[twi%d] twi dma driver xfer timeout (dev addr:0x%x)\n", twi->port, twi->msgs->addr);
  755. return;
  756. }
  757. }
  758. static int twi_dma_xfer(hal_twi_t *twi, char *buf, int len, enum dma_transfer_direction dir)
  759. {
  760. struct sunxi_dma_chan *dma_chan = twi->dma_chan;
  761. struct dma_slave_config slave_config;
  762. int hal_sem_ret;
  763. hal_dcache_clean((unsigned long)buf, len);
  764. hal_dma_callback_install(dma_chan, twi_dma_callback, twi);
  765. if (dir == DMA_MEM_TO_DEV)
  766. {
  767. slave_config.direction = DMA_MEM_TO_DEV;
  768. slave_config.src_addr = (unsigned long)buf;
  769. slave_config.dst_addr = twi->base_addr + TWI_DRIVER_SENDF;
  770. slave_config.slave_id = sunxi_slave_id(DRQDST_TWI0_TX + twi->port, DRQSRC_SDRAM);
  771. }
  772. else
  773. {
  774. slave_config.direction = DMA_DEV_TO_MEM;
  775. slave_config.src_addr = twi->base_addr + TWI_DRIVER_RECVF;
  776. slave_config.dst_addr = (unsigned long)buf;
  777. slave_config.slave_id = sunxi_slave_id(DRQDST_SDRAM, DRQSRC_TWI0_RX + twi->port);
  778. }
  779. slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  780. slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  781. slave_config.src_maxburst = DMA_SLAVE_BURST_16;
  782. slave_config.dst_maxburst = DMA_SLAVE_BURST_16;
  783. hal_dma_slave_config(dma_chan, &slave_config);
  784. if (dir == DMA_MEM_TO_DEV)
  785. {
  786. hal_dma_prep_device(dma_chan, slave_config.dst_addr, slave_config.src_addr, len, DMA_MEM_TO_DEV);
  787. }
  788. else
  789. {
  790. hal_dma_prep_device(dma_chan, slave_config.dst_addr, slave_config.src_addr, len, DMA_DEV_TO_MEM);
  791. }
  792. //hal_dma_cyclic_callback_install(dma_chan, twi_dma_callback, twi);
  793. hal_dma_start(dma_chan);
  794. hal_sem_ret = hal_sem_timedwait(twi->dma_complete, twi->timeout * 100);
  795. if (hal_sem_ret != 0)
  796. {
  797. TWI_ERR("[twi%d] twi dma driver xfer timeout (dev addr:0x%x)\n", twi->port, twi->msgs->addr);
  798. return -1;
  799. }
  800. TWI_INFO("[twi%d] twi driver dma xfer success.\n", twi->port);
  801. TWI_ERR("[twi%d] twi driver dma xfer success.\n", twi->port);
  802. return 0;
  803. }
  804. static int twi_write(hal_twi_t *twi, twi_msg_t *msgs)
  805. {
  806. twi->msgs = msgs;
  807. twi_slave_addr(twi->base_addr, msgs);
  808. if (msgs->len == 1)
  809. {
  810. twi_set_packet_addr_byte(0, twi->base_addr);
  811. twi_set_packet_data_byte(msgs->len, twi->base_addr);
  812. }
  813. else
  814. {
  815. twi_set_packet_addr_byte(1, twi->base_addr);
  816. twi_set_packet_data_byte(msgs->len - 1, twi->base_addr);
  817. }
  818. twi_set_packet_cnt(1, twi->base_addr);
  819. twi_clear_pending(twi->base_addr);
  820. twi_enable_tran_irq(TRAN_COM_INT | TRAN_ERR_INT, twi->base_addr);
  821. twi_start_xfer(twi->base_addr);
  822. return twi_send_msgs(twi, msgs);
  823. }
  824. static int32_t twi_dma_write(hal_twi_t *twi, twi_msg_t *msgs)
  825. {
  826. int32_t ret = 0;
  827. const uint32_t base_addr = twi->base_addr;
  828. twi->msgs = msgs;
  829. twi_slave_addr(base_addr, msgs);
  830. twi_set_packet_addr_byte(1, base_addr);
  831. twi_set_packet_data_byte(msgs->len - 1, base_addr);
  832. twi_set_packet_cnt(1, base_addr);
  833. twi_clear_pending(base_addr);
  834. twi_enable_tran_irq(TRAN_COM_INT | TRAN_ERR_INT, base_addr);
  835. twi_enable_dma_irq(DMA_TX, base_addr);
  836. twi_start_xfer(base_addr);
  837. ret = twi_dma_xfer(twi, msgs->buf, msgs->len, DMA_MEM_TO_DEV);
  838. return ret;
  839. }
  840. static int twi_read(hal_twi_t *twi, twi_msg_t *msgs, int32_t num)
  841. {
  842. twi_msg_t *wmsgs = NULL, *rmsgs = NULL;
  843. if (num == 1)
  844. {
  845. wmsgs = NULL;
  846. rmsgs = msgs;
  847. }
  848. else if (num == 2)
  849. {
  850. wmsgs = msgs;
  851. rmsgs = msgs + 1;
  852. }
  853. else
  854. {
  855. TWI_ERR("msg num err");
  856. return -1;
  857. }
  858. TWI_INFO("rmsgs->len : %d", rmsgs->len);
  859. twi->msgs = rmsgs;
  860. twi_slave_addr(twi->base_addr, rmsgs);
  861. twi_set_packet_cnt(1, twi->base_addr);
  862. twi_set_packet_data_byte(rmsgs->len, twi->base_addr);
  863. if (rmsgs->len > MAX_FIFO)
  864. {
  865. twi_set_rx_trig_level(MAX_FIFO, twi->base_addr);
  866. }
  867. else
  868. {
  869. twi_set_rx_trig_level(rmsgs->len, twi->base_addr);
  870. }
  871. if (twi_query_rxfifo(twi->base_addr))
  872. {
  873. twi_clear_rxfifo(twi->base_addr);
  874. }
  875. twi_clear_pending(twi->base_addr);
  876. twi_enable_tran_irq(TRAN_COM_INT | TRAN_ERR_INT, twi->base_addr);
  877. twi_start_xfer(twi->base_addr);
  878. if (wmsgs)
  879. {
  880. return twi_send_msgs(twi, wmsgs);
  881. }
  882. return 0;
  883. }
  884. static int32_t twi_dma_read(hal_twi_t *twi, twi_msg_t *msgs, int32_t num)
  885. {
  886. int32_t ret = 0;
  887. twi_msg_t *wmsgs, *rmsgs;
  888. const uint32_t base_addr = twi->base_addr;
  889. if (num == 1)
  890. {
  891. wmsgs = NULL;
  892. rmsgs = msgs;
  893. }
  894. else if (num == 2)
  895. {
  896. wmsgs = msgs;
  897. rmsgs = msgs + 1;
  898. }
  899. twi->msgs = rmsgs;
  900. twi_slave_addr(base_addr, rmsgs);
  901. twi_set_packet_data_byte(rmsgs->len, base_addr);
  902. twi_set_packet_cnt(1, base_addr);
  903. twi_set_rx_trig_level(MAX_FIFO / 2, base_addr);
  904. if (twi_query_rxfifo(base_addr))
  905. {
  906. twi_clear_rxfifo(base_addr);
  907. }
  908. twi_clear_pending(base_addr);
  909. twi_enable_tran_irq(TRAN_COM_INT | TRAN_ERR_INT, base_addr);
  910. twi_enable_dma_irq(DMA_RX, base_addr);
  911. twi_start_xfer(base_addr);
  912. if (wmsgs)
  913. {
  914. twi_send_msgs(twi, wmsgs);
  915. }
  916. ret = twi_dma_xfer(twi, rmsgs->buf, rmsgs->len, DMA_DEV_TO_MEM);
  917. return ret;
  918. }
  919. /*************************************** TWI DRV XFER REG CONTROL end****************************/
  920. static int hal_twi_drv_complete(hal_twi_t *twi)
  921. {
  922. int hal_sem_ret;
  923. hal_sem_ret = hal_sem_timedwait(twi->hal_sem, twi->timeout * 100);
  924. if (hal_sem_ret < 0)
  925. {
  926. TWI_ERR("[twi%d] twi driver xfer timeout (dev addr:0x%x)", twi->port, twi->msgs->addr);
  927. //dump_reg(twi, 0x200, 0x20);
  928. twi_disable_tran_irq(TRAN_COM_INT | TRAN_ERR_INT
  929. | RX_REQ_INT | TX_REQ_INT, twi->base_addr);
  930. twi_disable_dma_irq(DMA_TX | DMA_RX, twi->base_addr);
  931. return SUNXI_TWI_FAIL;
  932. }
  933. else if (twi->result == RESULT_ERR)
  934. {
  935. TWI_ERR("[twi%d]twi drv xfer incomplete xfer"
  936. "(status: 0x%lx, dev addr: 0x%x)",
  937. twi->port, twi->msgs_idx, twi->msgs->addr);
  938. twi_disable_tran_irq(TRAN_COM_INT | TRAN_ERR_INT
  939. | RX_REQ_INT | TX_REQ_INT, twi->base_addr);
  940. twi_disable_dma_irq(DMA_TX | DMA_RX, twi->base_addr);
  941. return SUNXI_TWI_FAIL;
  942. }
  943. TWI_INFO("twi drv xfer complete");
  944. // twin_lock_irqsave(&twi->lock, flags);
  945. twi->result = RESULT_COMPLETE;
  946. // twin_unlock_irqrestore(&twi->lock, flags);
  947. return SUNXI_TWI_OK;
  948. }
  949. static int hal_twi_engine_complete(hal_twi_t *twi, int code)
  950. {
  951. int ret = SUNXI_TWI_OK;
  952. int hal_sem_ret;
  953. twi->msgs = NULL;
  954. twi->msgs_num = 0;
  955. twi->msgs_ptr = 0;
  956. twi->status = TWI_XFER_IDLE;
  957. /* twi->msgs_idx store the information */
  958. if (code == SUNXI_TWI_FAIL)
  959. {
  960. TWI_ERR("[twi%d] Maybe Logic Error, debug it!", twi->port);
  961. twi->msgs_idx = code;
  962. ret = SUNXI_TWI_FAIL;
  963. twi->result = RESULT_ERR;
  964. }
  965. else if (code != SUNXI_TWI_OK)
  966. {
  967. twi->msgs_idx = code;
  968. ret = SUNXI_TWI_FAIL;
  969. twi->result = RESULT_ERR;
  970. }
  971. hal_sem_ret = hal_sem_post(twi->hal_sem);
  972. if (hal_sem_ret != 0)
  973. {
  974. ret = SUNXI_TWI_FAIL;
  975. TWI_ERR(" evdev give hal_semaphore err");
  976. }
  977. TWI_INFO("code=%d, complete", twi->msgs_idx);
  978. return ret;
  979. }
  980. /*
  981. ****************************************************************************
  982. *
  983. * FunctionName: hal_i2c_addr_byte
  984. *
  985. * Description:
  986. * 7bits addr: 7-1bits addr+0 bit r/w
  987. * 10bits addr: 1111_11xx_xxxx_xxxx-->1111_0xx_rw,xxxx_xxxx
  988. * send the 7 bits addr,or the first part of 10 bits addr
  989. * Parameters:
  990. *
  991. *
  992. * Return value:
  993. * ??
  994. * Notes:
  995. *
  996. ****************************************************************************
  997. */
  998. static void hal_twi_addr_byte(hal_twi_t *twi)
  999. {
  1000. unsigned char addr = 0;
  1001. unsigned char tmp = 0;
  1002. if (twi->msgs[twi->msgs_idx].flags & TWI_M_TEN)
  1003. {
  1004. /* 0111_10xx,ten bits address--9:8bits */
  1005. tmp = 0x78 | (((twi->msgs[twi->msgs_idx].addr) >> 8) & 0x03);
  1006. addr = tmp << 1; /*1111_0xx0*/
  1007. /* how about the second part of ten bits addr? */
  1008. /* Answer: deal at twi_core_process() */
  1009. }
  1010. else
  1011. {
  1012. addr = (twi->msgs[twi->msgs_idx].addr & 0x7f) << 1;
  1013. }/* 7-1bits addr, xxxx_xxx0 */
  1014. /* read, default value is write */
  1015. if (twi->msgs[twi->msgs_idx].flags & TWI_M_RD)
  1016. {
  1017. addr |= 1;
  1018. }
  1019. if (twi->msgs[twi->msgs_idx].flags & TWI_M_TEN)
  1020. {
  1021. TWI_INFO("[twi%d] first part of 10bits = 0x%x",
  1022. twi->port, addr);
  1023. }
  1024. else
  1025. {
  1026. TWI_INFO("[twi%d] 7bits+r/w = 0x%x", twi->port, addr);
  1027. }
  1028. /* send 7bits+r/w or the first part of 10bits */
  1029. twi_put_byte(twi->base_addr, &addr);
  1030. }
  1031. static int hal_twi_core_process(hal_twi_t *twi)
  1032. {
  1033. const uint32_t base_addr = twi->base_addr;
  1034. int ret = SUNXI_TWI_OK;
  1035. int err_code = 0;
  1036. unsigned char state = 0;
  1037. unsigned char tmp = 0;
  1038. state = twi_query_irq_status(base_addr);
  1039. //twin_lock_irqsave(&twi->lock, flags);
  1040. TWI_INFO("[twi%d][slave address = (0x%x), state = (0x%x)]",
  1041. twi->port, twi->msgs->addr, state);
  1042. if (twi->msgs == NULL)
  1043. {
  1044. TWI_ERR("[twi%d] twi message is NULL, err_code = 0xfe",
  1045. twi->port);
  1046. err_code = 0xfe;
  1047. goto msg_null;
  1048. }
  1049. switch (state)
  1050. {
  1051. case 0xf8:
  1052. /* On reset or stop the bus is idle, use only at poll method */
  1053. err_code = 0xf8;
  1054. goto err_out;
  1055. case 0x08: /* A START condition has been transmitted */
  1056. case 0x10: /* A repeated start condition has been transmitted */
  1057. hal_twi_addr_byte(twi);/* send slave address */
  1058. break;
  1059. case 0xd8: /* second addr has transmitted, ACK not received! */
  1060. case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
  1061. err_code = 0x20;
  1062. goto err_out;
  1063. case 0x18: /* SLA+W has been transmitted; ACK has been received */
  1064. /* if any, send second part of 10 bits addr */
  1065. if (twi->msgs[twi->msgs_idx].flags & TWI_M_TEN)
  1066. {
  1067. /* the remaining 8 bits of address */
  1068. tmp = twi->msgs[twi->msgs_idx].addr & 0xff;
  1069. twi_put_byte(base_addr, &tmp); /* case 0xd0: */
  1070. break;
  1071. }
  1072. goto send_data;
  1073. /* for 7 bit addr, then directly send data byte--case 0xd0: */
  1074. case 0xd0: /* second addr has transmitted,ACK received! */
  1075. case 0x28: /* Data byte in DATA REG has been transmitted; */
  1076. /* ACK has been received */
  1077. /* after send register address then START send write data */
  1078. send_data:
  1079. if (twi->msgs_ptr < twi->msgs[twi->msgs_idx].len)
  1080. {
  1081. twi_put_byte(base_addr,
  1082. &(twi->msgs[twi->msgs_idx].buf[twi->msgs_ptr]));
  1083. twi->msgs_ptr++;
  1084. break;
  1085. }
  1086. twi->msgs_idx++; /* the other msg */
  1087. twi->msgs_ptr = 0;
  1088. if (twi->msgs_idx == twi->msgs_num)
  1089. {
  1090. err_code = SUNXI_TWI_OK;/* Success,wakeup */
  1091. goto ok_out;
  1092. }
  1093. else if (twi->msgs_idx < twi->msgs_num)
  1094. {
  1095. /* for restart pattern, read spec, two msgs */
  1096. ret = twi_restart(base_addr, twi->port);
  1097. if (ret == SUNXI_TWI_FAIL)
  1098. {
  1099. TWI_ERR("[twi%d] twi restart fail", twi->port);
  1100. err_code = SUNXI_TWI_FAIL;
  1101. goto err_out;/* START can't sendout */
  1102. }
  1103. }
  1104. else
  1105. {
  1106. err_code = SUNXI_TWI_FAIL;
  1107. goto err_out;
  1108. }
  1109. break;
  1110. case 0x30: /* Data byte in TWIDAT has been transmitted; */
  1111. /* NOT ACK has been received */
  1112. err_code = 0x30; /*err,wakeup the thread*/
  1113. goto err_out;
  1114. case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
  1115. err_code = 0x38; /*err,wakeup the thread*/
  1116. goto err_out;
  1117. case 0x40: /* SLA+R has been transmitted; ACK has been received */
  1118. /* with Restart,needn't to send second part of 10 bits addr */
  1119. /* refer-"TWI-SPEC v2.1" */
  1120. /* enable A_ACK need it(receive data len) more than 1. */
  1121. if (twi->msgs[twi->msgs_idx].len > 1)
  1122. {
  1123. /* send register addr complete,then enable the A_ACK */
  1124. /* and get ready for receiving data */
  1125. twi_enable_ack(base_addr);
  1126. twi_clear_irq_flag(base_addr);/* jump to case 0x50 */
  1127. }
  1128. else if (twi->msgs[twi->msgs_idx].len == 1)
  1129. {
  1130. twi_clear_irq_flag(base_addr);/* jump to case 0x58 */
  1131. }
  1132. break;
  1133. case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
  1134. err_code = 0x48; /*err,wakeup the thread*/
  1135. goto err_out;
  1136. case 0x50: /* Data bytes has been received; ACK has been transmitted */
  1137. /* receive first data byte */
  1138. if (twi->msgs_ptr < twi->msgs[twi->msgs_idx].len)
  1139. {
  1140. /* more than 2 bytes, the last byte need not to send ACK */
  1141. if ((twi->msgs_ptr + 2) == twi->msgs[twi->msgs_idx].len)
  1142. /* last byte no ACK */
  1143. {
  1144. twi_disable_ack(base_addr);
  1145. }
  1146. /* get data then clear flag,then next data coming */
  1147. twi_get_byte(base_addr,
  1148. &twi->msgs[twi->msgs_idx].buf[twi->msgs_ptr]);
  1149. twi->msgs_ptr++;
  1150. break;
  1151. }
  1152. /* err process, the last byte should be @case 0x58 */
  1153. err_code = SUNXI_TWI_FAIL;/* err, wakeup */
  1154. goto err_out;
  1155. case 0x58:
  1156. /* Data byte has been received; NOT ACK has been transmitted */
  1157. /* received the last byte */
  1158. if (twi->msgs_ptr == twi->msgs[twi->msgs_idx].len - 1)
  1159. {
  1160. twi_get_last_byte(base_addr,
  1161. &twi->msgs[twi->msgs_idx].buf[twi->msgs_ptr]);
  1162. twi->msgs_idx++;
  1163. twi->msgs_ptr = 0;
  1164. if (twi->msgs_idx == twi->msgs_num)
  1165. {
  1166. /* succeed,wakeup the thread */
  1167. err_code = SUNXI_TWI_OK;
  1168. goto ok_out;
  1169. }
  1170. else if (twi->msgs_idx < twi->msgs_num)
  1171. {
  1172. /* repeat start */
  1173. ret = twi_restart(base_addr, twi->port);
  1174. if (ret == SUNXI_TWI_FAIL) /* START fail */
  1175. {
  1176. TWI_ERR("[twi%d] twi restart fail", twi->port);
  1177. err_code = SUNXI_TWI_FAIL;
  1178. goto err_out;
  1179. }
  1180. break;
  1181. }
  1182. }
  1183. else
  1184. {
  1185. err_code = 0x58;
  1186. goto err_out;
  1187. }
  1188. break;
  1189. case 0x00: /* Bus error during master or slave mode due to illegal level condition */
  1190. err_code = 0xff;
  1191. goto err_out;
  1192. default:
  1193. err_code = state;
  1194. goto err_out;
  1195. }
  1196. //twin_unlock_irqrestore(&twi->lock, flags);
  1197. return ret;
  1198. ok_out:
  1199. err_out:
  1200. if (twi_stop(base_addr, twi->port) == SUNXI_TWI_FAIL)
  1201. {
  1202. TWI_ERR("[twi%d] STOP failed!", twi->port);
  1203. }
  1204. msg_null:
  1205. ret = hal_twi_engine_complete(twi, err_code);/* wake up */
  1206. //twin_unlock_irqrestore(&twi->lock, flags);
  1207. return ret;
  1208. }
  1209. static int hal_twi_drv_core_process(hal_twi_t *twi)
  1210. {
  1211. int ret = SUNXI_TWI_OK;
  1212. uint32_t status, code = 0;
  1213. int hal_sem_ret, taskwoken = 0;
  1214. // twin_lock_irqsave(&twi->lock, flags);
  1215. status = twi_drv_query_irq_status(twi->base_addr);
  1216. twi_drv_clear_irq_flag(status, twi->base_addr);
  1217. if (status & TRAN_COM_PD)
  1218. {
  1219. TWI_INFO("twi drv complete");
  1220. twi_disable_tran_irq(TRAN_COM_INT, twi->base_addr);
  1221. twi->result = RESULT_COMPLETE;
  1222. if ((status & RX_REQ_PD) && (twi->msgs->len < DMA_THRESHOLD))
  1223. {
  1224. twi_recv_msgs(twi, twi->msgs);
  1225. }
  1226. goto ok_out;
  1227. }
  1228. if (status & TRAN_ERR_PD)
  1229. {
  1230. TWI_ERR("twi drv error");
  1231. twi_disable_tran_irq(TRAN_ERR_INT, twi->base_addr);
  1232. code = readl(twi->base_addr + TWI_DRIVER_CTRL);
  1233. code = (code & TWI_DRV_STA) >> 16;
  1234. TWI_ERR("err code : %0lx", code);
  1235. switch (code)
  1236. {
  1237. case 0x00:
  1238. TWI_ERR("[twi%d] bus error", twi->port);
  1239. break;
  1240. case 0x01:
  1241. TWI_ERR("[twi%d] Timeout when sending 9th SCL clk", twi->port);
  1242. break;
  1243. case 0x20:
  1244. TWI_ERR("[twi%d] Address + Write bit transmitted,"
  1245. "ACK not received", twi->port);
  1246. break;
  1247. case 0x30:
  1248. TWI_ERR("[twi%d] Data byte transmitted in master mode,"
  1249. "ACK not received", twi->port);
  1250. break;
  1251. case 0x38:
  1252. TWI_ERR("[twi%d] Arbitration lost in address"
  1253. "or data byte", twi->port);
  1254. break;
  1255. case 0x48:
  1256. TWI_ERR("[twi%d] Address + Read bit transmitted,"
  1257. "ACK not received", twi->port);
  1258. break;
  1259. case 0x58:
  1260. TWI_ERR("[twi%d] Data byte received in master mode,"
  1261. "ACK not received", twi->port);
  1262. break;
  1263. default:
  1264. TWI_ERR("[twi%d] unknown error", twi->port);
  1265. break;
  1266. }
  1267. goto err_out;
  1268. }
  1269. err_out:
  1270. twi->msgs_idx = code;
  1271. twi->result = RESULT_ERR;
  1272. TWI_ERR("packet transmission failed , status : 0x%0lx", code);
  1273. ok_out:
  1274. //wake up
  1275. hal_sem_ret = hal_sem_post(twi->hal_sem);
  1276. if (hal_sem_ret != 0)
  1277. {
  1278. ret = SUNXI_TWI_FAIL;
  1279. TWI_ERR(" evdev give hal_semaphore err");
  1280. }
  1281. return ret;
  1282. // twin_unlock_irqrestore(&twi->lock, flags);
  1283. }
  1284. static irqreturn_t hal_twi_handler(int irq, void *dev)
  1285. {
  1286. hal_twi_t *twi = (hal_twi_t *)dev;
  1287. if (twi->twi_drv_used)
  1288. {
  1289. hal_twi_drv_core_process(twi);
  1290. }
  1291. else
  1292. {
  1293. if (!twi_query_irq_flag(twi->base_addr))
  1294. {
  1295. TWI_ERR("unknown interrupt!");
  1296. return 0;
  1297. }
  1298. /* disable irq */
  1299. twi_disable_irq(twi->base_addr);
  1300. /* twi core process */
  1301. hal_twi_core_process(twi);
  1302. /*
  1303. * enable irq only when twi is transferring,
  1304. * otherwise disable irq
  1305. */
  1306. if (twi->status != TWI_XFER_IDLE)
  1307. {
  1308. twi_enable_irq(twi->base_addr);
  1309. }
  1310. }
  1311. return 0;
  1312. }
  1313. /**
  1314. * twi_do_xfer - twi driver transmission control
  1315. */
  1316. static int hal_twi_drv_do_xfer(hal_twi_t *twi, struct twi_msg *msgs, int num)
  1317. {
  1318. // uint64_t flags = 0;
  1319. int ret = -1;
  1320. // twin_lock_irqsave(&twi->lock, flags);
  1321. // twi->result = 0;
  1322. // twin_unlock_irqrestore(&twi->lock, flags);
  1323. twi_clear_pending(twi->base_addr);
  1324. twi_disable_tran_irq(TRAN_COM_INT | TRAN_ERR_INT
  1325. | RX_REQ_INT | TX_REQ_INT, twi->base_addr);
  1326. twi_disable_dma_irq(DMA_TX | DMA_RX, twi->base_addr);
  1327. if (twi_query_txfifo(twi->base_addr))
  1328. {
  1329. twi_clear_txfifo(twi->base_addr);
  1330. }
  1331. if (num == 1)
  1332. {
  1333. if (msgs->flags & TWI_M_RD)
  1334. {
  1335. TWI_INFO("1 msgs read ");
  1336. /* 1 msgs read */
  1337. twi_enable_read_tran_mode(twi->base_addr);
  1338. twi_set_packet_addr_byte(0, twi->base_addr);
  1339. if (twi->dma_chan && (msgs->len >= DMA_THRESHOLD))
  1340. {
  1341. TWI_INFO("twi[%d] master dma read", twi->port);
  1342. ret = twi_dma_read(twi, msgs, num);
  1343. }
  1344. else
  1345. {
  1346. TWI_INFO("twi[%d] master cpu read", twi->port);
  1347. ret = twi_read(twi, msgs, num);
  1348. }
  1349. }
  1350. else
  1351. {
  1352. /* 1 msgs write */
  1353. twi_disable_read_tran_mode(twi->base_addr);
  1354. if (twi->dma_chan && (msgs->len >= DMA_THRESHOLD))
  1355. {
  1356. TWI_INFO("twi[%d] master dma write\n", twi->port);
  1357. ret = twi_dma_write(twi, msgs);
  1358. }
  1359. else
  1360. {
  1361. TWI_INFO("twi[%d] master cpu write\n", twi->port);
  1362. ret = twi_write(twi, msgs);
  1363. }
  1364. }
  1365. }
  1366. else if ((num == 2) && ((msgs + 1)->flags & TWI_M_RD))
  1367. {
  1368. /* 2 msgs read */
  1369. TWI_INFO("2 msgs read");
  1370. twi_disable_read_tran_mode(twi->base_addr);
  1371. twi_set_packet_addr_byte(msgs->len, twi->base_addr);
  1372. if (twi->dma_chan && ((msgs + 1)->len >= DMA_THRESHOLD))
  1373. {
  1374. TWI_INFO("twi[%d] master dma read\n", twi->port);
  1375. ret = twi_dma_read(twi, msgs, num);
  1376. }
  1377. else
  1378. {
  1379. TWI_INFO("twi[%d] master cpu read\n", twi->port);
  1380. ret = twi_read(twi, msgs, num);
  1381. }
  1382. }
  1383. if (ret)
  1384. {
  1385. return ret;
  1386. }
  1387. return hal_twi_drv_complete(twi);
  1388. }
  1389. static int hal_twi_engine_do_xfer(hal_twi_t *twi, twi_msg_t *msgs, int num)
  1390. {
  1391. int ret;
  1392. const uint32_t base_addr = twi->base_addr;
  1393. int hal_sem_ret;
  1394. twi_soft_reset(base_addr, TWI_SRST_REG, TWI_SRST_SRST);
  1395. //udelay(100);
  1396. /* test the bus is free,already protect by the hal_semaphore at DEV layer */
  1397. while (twi_query_irq_status(base_addr) != TWI_STAT_IDLE &&
  1398. twi_query_irq_status(base_addr) != TWI_STAT_BUS_ERR &&
  1399. twi_query_irq_status(base_addr) != TWI_STAT_ARBLOST_SLAR_ACK)
  1400. {
  1401. TWI_ERR("[twi%d] bus is busy, status = %x",
  1402. twi->port, twi_query_irq_status(base_addr));
  1403. if (twi_send_clk_9pulse(base_addr, twi->port) != SUNXI_TWI_OK)
  1404. {
  1405. ret = SUNXI_TWI_RETRY;
  1406. goto out;
  1407. }
  1408. else
  1409. {
  1410. break;
  1411. }
  1412. }
  1413. /* may conflict with xfer_complete */
  1414. //twin_lock_irqsave(&twi->lock, flags);
  1415. twi->msgs = msgs;
  1416. twi->msgs_num = num;
  1417. twi->msgs_ptr = 0;
  1418. twi->msgs_idx = 0;
  1419. twi_enable_irq(base_addr); /* enable irq */
  1420. twi_disable_ack(base_addr); /* disabe ACK */
  1421. /* set the special function register,default:0. */
  1422. twi_set_efr(base_addr, 0);
  1423. //twin_unlock_irqrestore(&twi->lock, flags);
  1424. /* START signal, needn't clear int flag */
  1425. twi->status = TWI_XFER_START;
  1426. ret = twi_start(base_addr, twi->port);
  1427. if (ret == SUNXI_TWI_FAIL)
  1428. {
  1429. TWI_ERR("[twi%d] twi start fail", twi->port);
  1430. twi_soft_reset(base_addr, TWI_SRST_REG, TWI_SRST_SRST);
  1431. twi_disable_irq(base_addr); /* disable irq */
  1432. ret = SUNXI_TWI_RETRY;
  1433. goto out;
  1434. }
  1435. twi->status = TWI_XFER_RUNNING;
  1436. /* sleep and wait,do the transfer at interrupt handler,timeout = 5*HZ */
  1437. hal_sem_ret = hal_sem_timedwait(twi->hal_sem, twi->timeout * 100);
  1438. /* return code,if(msgs_idx == num) succeed */
  1439. ret = twi->msgs_idx;
  1440. if (hal_sem_ret != 0)
  1441. {
  1442. TWI_ERR("[twi%d] xfer timeout (dev addr:0x%x)",
  1443. twi->port, msgs->addr);
  1444. //twin_lock_irqsave(&twi->lock, flags);
  1445. twi->msgs = NULL;
  1446. //twin_unlock_irqrestore(&twi->lock, flags);
  1447. ret = SUNXI_TWI_FAIL;
  1448. }
  1449. else if (ret != num)
  1450. {
  1451. TWI_ERR("[twi%d] incomplete xfer (status: 0x%x, dev addr: 0x%x)",
  1452. twi->port, ret, msgs->addr);
  1453. ret = SUNXI_TWI_FAIL;
  1454. }
  1455. TWI_INFO("hal_twi_engine_do_xfer end");
  1456. out:
  1457. return ret;
  1458. }
  1459. twi_status_t hal_twi_xfer(twi_port_t port, twi_msg_t *msgs, int32_t num)
  1460. {
  1461. hal_twi_t *twi = &hal_twi[port];
  1462. int ret;
  1463. if ((msgs == NULL) || (num <= 0))
  1464. {
  1465. TWI_ERR("[twi%d] invalid argument", port);
  1466. return TWI_STATUS_INVALID_PARAMETER;
  1467. }
  1468. if (twi->twi_drv_used)
  1469. {
  1470. TWI_INFO("[twi%d] twi driver xfer", twi->port);
  1471. ret = hal_twi_drv_do_xfer(twi, msgs, num);
  1472. if (ret < 0)
  1473. {
  1474. return TWI_STATUS_ERROR;
  1475. }
  1476. }
  1477. else
  1478. {
  1479. TWI_INFO("[twi%d] twi engine xfer", twi->port);
  1480. ret = hal_twi_engine_do_xfer(twi, msgs, num);
  1481. if (ret < 0)
  1482. {
  1483. return TWI_STATUS_ERROR;
  1484. }
  1485. }
  1486. return ret == num ? TWI_STATUS_OK : TWI_STATUS_ERROR;
  1487. }
  1488. static twi_status_t hal_twi_sys_pinctrl_init(hal_twi_t *twi)
  1489. {
  1490. #ifdef CONFIG_RTTKERNEL
  1491. user_gpio_set_t gpio_cfg[2] = {0};
  1492. int count, i;
  1493. char twi_name[16];
  1494. int ret = TWI_STATUS_OK;
  1495. sprintf(twi_name, "twi%d", twi->port);
  1496. count = Hal_Cfg_GetGPIOSecKeyCount(twi_name);
  1497. if (!count)
  1498. {
  1499. TWI_ERR("[twi%d] not support in sys_config\n", twi->port);
  1500. return TWI_STATUS_ERROR;
  1501. }
  1502. Hal_Cfg_GetGPIOSecData(twi_name, gpio_cfg, count);
  1503. for (i = 0; i < count; i++) {
  1504. twi->pin[i] = (gpio_cfg[i].port - 1) * 32 + gpio_cfg[i].port_num;
  1505. twi->pinmux = gpio_cfg[i].mul_sel;
  1506. ret = hal_gpio_pinmux_set_function(twi->pin[i], twi->pinmux);
  1507. if (ret){
  1508. TWI_ERR("[twi%d] PIN%u set function failed! return %d\n",
  1509. twi->port, twi->pin[i], ret);
  1510. return TWI_STATUS_ERROR;
  1511. }
  1512. ret = hal_gpio_set_driving_level(twi->pin[i], gpio_cfg[i].drv_level);
  1513. if (ret) {
  1514. TWI_ERR("[twi%d] PIN%u set driving level failed! return %d\n",
  1515. twi->port, gpio_cfg[i].drv_level, ret);
  1516. return TWI_STATUS_ERROR;
  1517. }
  1518. if (gpio_cfg[i].pull)
  1519. if (hal_gpio_set_pull(twi->pin[i], gpio_cfg[i].pull))
  1520. return TWI_STATUS_ERROR;
  1521. }
  1522. return TWI_STATUS_OK;
  1523. #endif
  1524. TWI_ERR("twi[%d] not support sys_config format \n", twi->port);
  1525. return TWI_STATUS_ERROR;
  1526. }
  1527. static twi_status_t hal_twi_pinctrl_init(hal_twi_t *twi)
  1528. {
  1529. uint8_t i;
  1530. switch (twi->port)
  1531. {
  1532. case TWI_MASTER_0:
  1533. twi->pin[0] = TWI0_SCK;
  1534. twi->pin[1] = TWI0_SDA;
  1535. twi->pinmux = TWI0_PIN_MUXSEL;
  1536. break;
  1537. case TWI_MASTER_1:
  1538. twi->pin[0] = TWI1_SCK;
  1539. twi->pin[1] = TWI1_SDA;
  1540. twi->pinmux = TWI1_PIN_MUXSEL;
  1541. break;
  1542. case TWI_MASTER_2:
  1543. twi->pin[0] = TWI2_SCK;
  1544. twi->pin[1] = TWI2_SDA;
  1545. twi->pinmux = TWI2_PIN_MUXSEL;
  1546. break;
  1547. case TWI_MASTER_3:
  1548. twi->pin[0] = TWI3_SCK;
  1549. twi->pin[1] = TWI3_SDA;
  1550. twi->pinmux = TWI3_PIN_MUXSEL;
  1551. break;
  1552. case S_TWI_MASTER_0:
  1553. #if !(defined(CONFIG_ARCH_SUN8IW20) || defined(CONFIG_SOC_SUN20IW1))
  1554. twi->pin[0] = S_TWI0_SCK;
  1555. twi->pin[1] = S_TWI0_SDA;
  1556. twi->pinmux = S_TWI0_PIN_MUXSEL;
  1557. #endif
  1558. break;
  1559. }
  1560. for (i = 0; i < TWI_PIN_NUM; i++)
  1561. {
  1562. if (hal_gpio_pinmux_set_function(twi->pin[i], twi->pinmux))
  1563. {
  1564. TWI_ERR("[twi%d] PIN set function failed!", twi->port);
  1565. return TWI_STATUS_ERROR;
  1566. }
  1567. if (hal_gpio_set_driving_level(twi->pin[i], TWI_DRIVE_STATE))
  1568. {
  1569. TWI_ERR("[twi%d] PIN set driving failed!", twi->port);
  1570. return TWI_STATUS_ERROR;
  1571. }
  1572. if (hal_gpio_set_pull(twi->pin[i], TWI_PULL_STATE))
  1573. {
  1574. TWI_ERR("[twi%d] PIN set driving failed!", twi->port);
  1575. return TWI_STATUS_ERROR;
  1576. }
  1577. }
  1578. return TWI_STATUS_OK;
  1579. }
  1580. static twi_status_t hal_twi_pinctrl_exit(hal_twi_t *twi)
  1581. {
  1582. uint8_t i;
  1583. for (i = 0; i < TWI_PIN_NUM; i++)
  1584. {
  1585. if (hal_gpio_pinmux_set_function(twi->pin[i], TWI_DISABLE_PIN_MUXSEL))
  1586. {
  1587. TWI_ERR("[twi%d] PIN exit function failed!", twi->port);
  1588. return TWI_STATUS_ERROR;
  1589. }
  1590. }
  1591. return TWI_STATUS_OK;
  1592. }
  1593. static twi_status_t hal_twi_regulator_init(hal_twi_t *twi)
  1594. {
  1595. enum REGULATOR_TYPE_ENUM regulator_type = twi_regulator_type;
  1596. enum REGULATOR_ID_ENUM regulator_id = twi_regulator_id[twi->port];
  1597. int tar_vol = twi_vol[twi->port];
  1598. int ret;
  1599. /*
  1600. if (regulator_id == AXP2101_ID_MAX)
  1601. {
  1602. TWI_INFO("[twi%d] needn't to set regulator", twi->port);
  1603. return TWI_STATUS_OK;
  1604. }
  1605. hal_regulator_get(REGULATOR_GET(regulator_type, regulator_id), &twi->regulator);
  1606. ret = hal_regulator_set_voltage(&twi->regulator, tar_vol);
  1607. if (ret)
  1608. {
  1609. TWI_ERR("twi%d set voltage failed", twi->port);
  1610. return TWI_STATUS_ERROR;
  1611. }
  1612. ret = hal_regulator_enable(&twi->regulator);
  1613. if (ret)
  1614. {
  1615. TWI_ERR("twi%d enabled regulator failed", twi->port);
  1616. return TWI_STATUS_ERROR;
  1617. }
  1618. */
  1619. return TWI_STATUS_OK;
  1620. }
  1621. static twi_status_t hal_twi_regulator_exit(hal_twi_t *twi)
  1622. {
  1623. int ret;
  1624. enum REGULATOR_ID_ENUM regulator_id = twi_regulator_id[twi->port];
  1625. if (regulator_id == AXP2101_ID_MAX)
  1626. {
  1627. TWI_INFO("[twi%d] needn't to exit regulator", twi->port);
  1628. return TWI_STATUS_OK;
  1629. }
  1630. ret = hal_regulator_disable(&twi->regulator);
  1631. if (ret)
  1632. {
  1633. TWI_ERR("twi%d disable regulator failed\n", twi->port);
  1634. return TWI_STATUS_ERROR;
  1635. }
  1636. return TWI_STATUS_OK;
  1637. }
  1638. static twi_status_t hal_twi_clk_init(hal_twi_t *twi)
  1639. {
  1640. unsigned long rate;
  1641. /*
  1642. if (hal_clk_set_parent(twi->mclk, twi->pclk)) {
  1643. TWI_ERR("[twi%d] clk set parent failed!",twi->port);
  1644. return TWI_STATUS_ERROR;
  1645. }
  1646. */
  1647. #if !(defined(CONFIG_ARCH_SUN8IW20) || defined(CONFIG_SOC_SUN20IW1))
  1648. rate = hal_clk_get_rate(twi->pclk);
  1649. if (hal_clock_enable(twi->mclk))
  1650. {
  1651. TWI_ERR("[twi%d] clk enable mclk failed!", twi->port);
  1652. return TWI_STATUS_ERROR;
  1653. }
  1654. #else
  1655. rate =24000000;
  1656. hal_clk_type_t clk_type = HAL_SUNXI_CCU;
  1657. hal_clk_id_t twi_clk_id;
  1658. hal_clk_t clk;
  1659. hal_reset_type_t reset_type = HAL_SUNXI_RESET;
  1660. hal_reset_id_t twi_reset_id;
  1661. struct reset_control *reset;
  1662. switch (twi->port)
  1663. {
  1664. case 0:
  1665. twi_clk_id = SUNXI_CLK_TWI(0);
  1666. twi_reset_id = SUNXI_CLK_RST_TWI(0);
  1667. break;
  1668. case 1:
  1669. twi_clk_id = SUNXI_CLK_TWI(1);
  1670. twi_reset_id = SUNXI_CLK_RST_TWI(1);
  1671. break;
  1672. case 2:
  1673. twi_clk_id = SUNXI_CLK_TWI(2);
  1674. twi_reset_id = SUNXI_CLK_RST_TWI(2);
  1675. break;
  1676. case 3:
  1677. twi_clk_id = SUNXI_CLK_TWI(3);
  1678. twi_reset_id = SUNXI_CLK_RST_TWI(3);
  1679. break;
  1680. default:
  1681. TWI_ERR("twi%d is invalid\n", twi->port);
  1682. return TWI_STATUS_ERROR;
  1683. }
  1684. reset = hal_reset_control_get(reset_type, twi_reset_id);
  1685. if (!reset)
  1686. {
  1687. TWI_ERR("twi reset control get error");
  1688. return TWI_STATUS_ERROR;
  1689. }
  1690. hal_reset_control_deassert(reset);
  1691. hal_reset_control_put(reset);
  1692. clk = hal_clock_get(clk_type, twi_clk_id);
  1693. if (!clk)
  1694. {
  1695. TWI_ERR("twi clock get error ");
  1696. return TWI_STATUS_ERROR;
  1697. }
  1698. hal_clock_enable(clk);
  1699. #endif
  1700. if (twi->twi_drv_used)
  1701. {
  1702. twi_set_clock(twi, TWI_DRIVER_BUSC, 24000000, twi->freq,
  1703. TWI_DRV_CLK_M, TWI_DRV_CLK_N);
  1704. twi_enable(twi->base_addr, TWI_DRIVER_CTRL, TWI_DRV_EN);
  1705. }
  1706. else
  1707. {
  1708. twi_set_clock(twi, TWI_CLK_REG, rate, twi->freq,
  1709. TWI_CLK_DIV_M, TWI_CLK_DIV_N);
  1710. twi_enable(twi->base_addr, TWI_CTL_REG, TWI_CTL_BUSEN);
  1711. }
  1712. return TWI_STATUS_OK;
  1713. }
  1714. static void hal_twi_clk_exit(hal_twi_t *twi)
  1715. {
  1716. /* disable twi bus */
  1717. twi_disable(twi->base_addr, TWI_DRIVER_CTRL, TWI_DRV_EN);
  1718. //hal_clock_disable(twi->mclk);
  1719. }
  1720. twi_status_t hal_twi_init(twi_port_t port)
  1721. {
  1722. int ret;
  1723. unsigned long rate;
  1724. hal_twi_t *twi = &hal_twi[port];
  1725. if (twi->already_init) //if twi has been inited, return ok
  1726. {
  1727. return TWI_STATUS_OK;
  1728. }
  1729. twi->port = port;
  1730. twi->base_addr = hal_twi_address[twi->port];
  1731. twi->irqnum = hal_twi_irq_num[twi->port];
  1732. #if !(defined(CONFIG_ARCH_SUN8IW20) || defined(CONFIG_SOC_SUN20IW1))
  1733. twi->pclk = hal_twi_pclk[port];
  1734. twi->mclk = hal_twi_mclk[port];
  1735. #endif
  1736. twi->freq = TWI_FREQUENCY_400K;
  1737. #if 1
  1738. twi->twi_drv_used = ENGINE_XFER;
  1739. #else
  1740. twi->twi_drv_used = TWI_DRV_XFER;
  1741. #endif
  1742. twi->status = TWI_XFER_IDLE;
  1743. twi->timeout = 5;
  1744. twi->flags = 0;
  1745. twi->hal_sem = hal_sem_create(0);
  1746. if (twi->hal_sem == NULL)
  1747. {
  1748. TWI_ERR("[twi%d] creating hal semaphore failed.", port);
  1749. goto errsem;
  1750. }
  1751. if (twi->twi_drv_used)
  1752. {
  1753. twi->dma_complete = hal_sem_create(0);
  1754. if (twi->dma_complete == NULL)
  1755. {
  1756. TWI_ERR("[twi%d] creating dma semaphore failed.\n", port);
  1757. goto errsem_dma;
  1758. }
  1759. }
  1760. #if !(defined(CONFIG_ARCH_SUN8IW18P1) || defined(CONFIG_SOC_SUN20IW1))
  1761. if (hal_twi_regulator_init(twi))
  1762. {
  1763. TWI_ERR("[twi%d] regulator init error", port);
  1764. goto errregu;
  1765. }
  1766. #endif
  1767. if (hal_twi_clk_init(twi))
  1768. {
  1769. TWI_ERR("[twi%d] clk init error", port);
  1770. goto errclk;
  1771. }
  1772. if (hal_twi_sys_pinctrl_init(twi)) {
  1773. if (hal_twi_pinctrl_init(twi)) {
  1774. TWI_ERR("[twi%d] pinctrl init error", port);
  1775. goto errpin;
  1776. }
  1777. }
  1778. if (request_irq(twi->irqnum, hal_twi_handler, 0, "twi-ctl", twi) < 0)
  1779. {
  1780. TWI_ERR("[twi%d] request irq error", twi->port);
  1781. goto errirq;
  1782. }
  1783. enable_irq(twi->irqnum);
  1784. if (twi->twi_drv_used)
  1785. {
  1786. hal_dma_chan_request(&twi->dma_chan);
  1787. }
  1788. twi->already_init++;
  1789. return TWI_STATUS_OK;
  1790. errirq:
  1791. free_irq(twi->irqnum, twi);
  1792. errpin:
  1793. hal_twi_pinctrl_exit(twi);
  1794. errclk:
  1795. hal_twi_clk_exit(twi);
  1796. #if !(defined(CONFIG_ARCH_SUN8IW18P1) || defined(CONFIG_SOC_SUN20IW1))
  1797. errregu:
  1798. hal_twi_regulator_exit(twi);
  1799. #endif
  1800. errsem_dma:
  1801. if (twi->twi_drv_used)
  1802. {
  1803. hal_sem_delete(twi->dma_complete);
  1804. }
  1805. errsem:
  1806. hal_sem_delete(twi->hal_sem);
  1807. return TWI_STATUS_ERROR;
  1808. }
  1809. twi_status_t hal_twi_uninit(twi_port_t port)
  1810. {
  1811. hal_twi_t *twi = &hal_twi[port];
  1812. if (twi->already_init > 0)
  1813. {
  1814. twi->already_init--;
  1815. if (twi->already_init == 0)
  1816. {
  1817. disable_irq(twi->irqnum);
  1818. free_irq(twi->irqnum, twi);
  1819. hal_twi_pinctrl_exit(twi);
  1820. if (twi->twi_drv_used)
  1821. {
  1822. hal_dma_chan_free(twi->dma_chan);
  1823. }
  1824. hal_twi_clk_exit(twi);
  1825. #if !defined(CONFIG_ARCH_SUN8IW18P1)
  1826. hal_twi_regulator_exit(twi);
  1827. #endif
  1828. hal_sem_delete(twi->hal_sem);
  1829. }
  1830. }
  1831. return TWI_STATUS_OK;
  1832. }
  1833. twi_status_t hal_twi_write(twi_port_t port, unsigned long pos, const void *buf, uint32_t size)
  1834. {
  1835. twi_msg_t msg;
  1836. uint8_t num = 1, i = 0;
  1837. uint8_t *msg_buf;
  1838. uint8_t *buf1 = (uint8_t *)buf;
  1839. hal_twi_t *twi = &hal_twi[port];
  1840. msg_buf = (uint8_t *)malloc(sizeof(uint8_t) * (size + 1));
  1841. if (!msg_buf)
  1842. {
  1843. return TWI_STATUS_ERROR;
  1844. }
  1845. memset(msg_buf, 0x00, sizeof(uint8_t) * (size + 1));
  1846. msg_buf[0] = (int8_t)pos;
  1847. for (i = 0; i < size; i++)
  1848. {
  1849. msg_buf[i + 1] = buf1[i];
  1850. }
  1851. msg.addr = twi->slave_addr;
  1852. msg.flags = twi->flags & TWI_M_TEN;
  1853. msg.flags &= ~(TWI_M_RD);
  1854. msg.len = (size + 1);
  1855. msg.buf = msg_buf;
  1856. return hal_twi_xfer(port, &msg, num);
  1857. }
  1858. twi_status_t hal_twi_read(twi_port_t port, unsigned long pos, void *buf, uint32_t size)
  1859. {
  1860. twi_msg_t msg[2];
  1861. uint8_t num = 2, index = 0;
  1862. hal_twi_t *twi = &hal_twi[port];
  1863. index = (uint8_t)pos;
  1864. msg[0].addr = twi->slave_addr;
  1865. msg[0].flags = twi->flags & TWI_M_TEN;
  1866. msg[0].flags &= ~(TWI_M_RD);
  1867. msg[0].len = 1;
  1868. msg[0].buf = &index;
  1869. msg[1].addr = twi->slave_addr;
  1870. msg[1].flags = twi->flags & TWI_M_TEN;
  1871. msg[1].flags |= TWI_M_RD;
  1872. msg[1].len = size;
  1873. msg[1].buf = buf;
  1874. return hal_twi_xfer(port, msg, num);
  1875. }
  1876. twi_status_t hal_twi_control(twi_port_t port, hal_twi_transfer_cmd_t cmd, void *args)
  1877. {
  1878. hal_twi_t *twi = &hal_twi[port];
  1879. twi_msg_t *msg;
  1880. uint16_t *arg;
  1881. switch (cmd)
  1882. {
  1883. case I2C_SLAVE:
  1884. case I2C_SLAVE_FORCE:
  1885. arg = (uint16_t *)args;
  1886. if (*arg > 0x7ff)
  1887. {
  1888. return TWI_STATUS_INVALID_PARAMETER;
  1889. }
  1890. else if (twi->status != TWI_XFER_IDLE)
  1891. {
  1892. return TWI_STATUS_ERROR_BUSY;
  1893. }
  1894. twi->slave_addr = *arg;
  1895. return TWI_STATUS_OK;
  1896. case I2C_TENBIT:
  1897. arg = (uint16_t *)args;
  1898. if (*arg)
  1899. {
  1900. twi->flags |= TWI_M_TEN;
  1901. }
  1902. else
  1903. {
  1904. twi->flags &= ~TWI_M_TEN;
  1905. }
  1906. return TWI_STATUS_OK;
  1907. case I2C_RDWR:
  1908. msg = (twi_msg_t *)args;
  1909. return hal_twi_xfer(port, msg, 1);
  1910. default:
  1911. return TWI_STATUS_INVALID_PARAMETER;
  1912. }
  1913. }