drv_spi.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-05-16 shelton first version
  9. * 2022-11-10 shelton support spi dma
  10. * 2023-01-31 shelton add support f421/f425
  11. * 2023-04-08 shelton add support f423
  12. * 2023-10-18 shelton add support f402/f405
  13. * 2024-04-12 shelton add support a403a and a423
  14. * 2024-08-30 shelton add support m412 and m416
  15. * 2024-12-18 shelton add support f455/f456 and f457
  16. */
  17. #include "drv_common.h"
  18. #include "drv_spi.h"
  19. #include "drv_config.h"
  20. #include <string.h>
  21. #ifdef RT_USING_SPI
  22. #if !defined(BSP_USING_SPI1) && !defined(BSP_USING_SPI2) && \
  23. !defined(BSP_USING_SPI3) && !defined(BSP_USING_SPI4)
  24. #error "Please define at least one BSP_USING_SPIx"
  25. #endif
  26. //#define DRV_DEBUG
  27. #define LOG_TAG "drv.pwm"
  28. #include <drv_log.h>
  29. enum
  30. {
  31. #ifdef BSP_USING_SPI1
  32. SPI1_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI2
  35. SPI2_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI3
  38. SPI3_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI4
  41. SPI4_INDEX,
  42. #endif
  43. };
  44. static struct at32_spi_config spi_config[] = {
  45. #ifdef BSP_USING_SPI1
  46. SPI1_CONFIG,
  47. #endif
  48. #ifdef BSP_USING_SPI2
  49. SPI2_CONFIG,
  50. #endif
  51. #ifdef BSP_USING_SPI3
  52. SPI3_CONFIG,
  53. #endif
  54. #ifdef BSP_USING_SPI4
  55. SPI4_CONFIG,
  56. #endif
  57. };
  58. /* private rt-thread spi ops function */
  59. static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
  60. static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message);
  61. static struct rt_spi_ops at32_spi_ops =
  62. {
  63. configure,
  64. xfer
  65. };
  66. /**
  67. * attach the spi device to spi bus, this function must be used after initialization.
  68. */
  69. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, gpio_type *cs_gpiox, uint16_t cs_gpio_pin)
  70. {
  71. gpio_init_type gpio_init_struct;
  72. RT_ASSERT(bus_name != RT_NULL);
  73. RT_ASSERT(device_name != RT_NULL);
  74. rt_err_t result;
  75. struct rt_spi_device *spi_device;
  76. struct at32_spi_cs *cs_pin;
  77. /* initialize the cs pin & select the slave*/
  78. gpio_default_para_init(&gpio_init_struct);
  79. gpio_init_struct.gpio_pins = cs_gpio_pin;
  80. gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
  81. gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  82. gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  83. gpio_init(cs_gpiox, &gpio_init_struct);
  84. gpio_bits_set(cs_gpiox, cs_gpio_pin);
  85. /* attach the device to spi bus */
  86. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  87. RT_ASSERT(spi_device != RT_NULL);
  88. cs_pin = (struct at32_spi_cs *)rt_malloc(sizeof(struct at32_spi_cs));
  89. RT_ASSERT(cs_pin != RT_NULL);
  90. cs_pin->gpio_x = cs_gpiox;
  91. cs_pin->gpio_pin = cs_gpio_pin;
  92. result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
  93. if (result != RT_EOK)
  94. {
  95. LOG_D("%s attach to %s faild, %d\n", device_name, bus_name, result);
  96. }
  97. RT_ASSERT(result == RT_EOK);
  98. LOG_D("%s attach to %s done", device_name, bus_name);
  99. return result;
  100. }
  101. static rt_err_t configure(struct rt_spi_device* device,
  102. struct rt_spi_configuration* configuration)
  103. {
  104. struct rt_spi_bus * spi_bus = (struct rt_spi_bus *)device->bus;
  105. struct at32_spi *instance = (struct at32_spi *)spi_bus->parent.user_data;
  106. spi_init_type spi_init_struct;
  107. RT_ASSERT(device != RT_NULL);
  108. RT_ASSERT(configuration != RT_NULL);
  109. at32_msp_spi_init(instance->config->spi_x);
  110. /* data_width */
  111. if(configuration->data_width <= 8)
  112. {
  113. spi_init_struct.frame_bit_num = SPI_FRAME_8BIT;
  114. }
  115. else if(configuration->data_width <= 16)
  116. {
  117. spi_init_struct.frame_bit_num = SPI_FRAME_16BIT;
  118. }
  119. else
  120. {
  121. return -RT_EIO;
  122. }
  123. /* baudrate */
  124. {
  125. uint32_t spi_apb_clock;
  126. uint32_t max_hz;
  127. crm_clocks_freq_type clocks_struct;
  128. max_hz = configuration->max_hz;
  129. crm_clocks_freq_get(&clocks_struct);
  130. LOG_D("sys freq: %d\n", clocks_struct.sclk_freq);
  131. LOG_D("max freq: %d\n", max_hz);
  132. if (instance->config->spi_x == SPI1)
  133. {
  134. spi_apb_clock = clocks_struct.apb2_freq;
  135. LOG_D("pclk2 freq: %d\n", clocks_struct.apb2_freq);
  136. }
  137. else
  138. {
  139. spi_apb_clock = clocks_struct.apb1_freq;
  140. LOG_D("pclk1 freq: %d\n", clocks_struct.apb1_freq);
  141. }
  142. if(max_hz >= (spi_apb_clock / 2))
  143. {
  144. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_2;
  145. }
  146. else if (max_hz >= (spi_apb_clock / 4))
  147. {
  148. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_4;
  149. }
  150. else if (max_hz >= (spi_apb_clock / 8))
  151. {
  152. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_8;
  153. }
  154. else if (max_hz >= (spi_apb_clock / 16))
  155. {
  156. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_16;
  157. }
  158. else if (max_hz >= (spi_apb_clock / 32))
  159. {
  160. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_32;
  161. }
  162. else if (max_hz >= (spi_apb_clock / 64))
  163. {
  164. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_64;
  165. }
  166. else if (max_hz >= (spi_apb_clock / 128))
  167. {
  168. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_128;
  169. }
  170. else
  171. {
  172. /* min prescaler 256 */
  173. spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_256;
  174. }
  175. } /* baudrate */
  176. switch(configuration->mode & RT_SPI_MODE_3)
  177. {
  178. case RT_SPI_MODE_0:
  179. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  180. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  181. break;
  182. case RT_SPI_MODE_1:
  183. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  184. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
  185. break;
  186. case RT_SPI_MODE_2:
  187. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
  188. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  189. break;
  190. case RT_SPI_MODE_3:
  191. spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
  192. spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
  193. break;
  194. }
  195. /* msb or lsb */
  196. if(configuration->mode & RT_SPI_MSB)
  197. {
  198. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_MSB;
  199. }
  200. else
  201. {
  202. spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_LSB;
  203. }
  204. spi_init_struct.transmission_mode = SPI_TRANSMIT_FULL_DUPLEX;
  205. spi_init_struct.master_slave_mode = SPI_MODE_MASTER;
  206. spi_init_struct.cs_mode_selection = SPI_CS_SOFTWARE_MODE;
  207. /* disable spi to change transfer size */
  208. spi_enable(instance->config->spi_x, FALSE);
  209. /* init spi */
  210. spi_init(instance->config->spi_x, &spi_init_struct);
  211. /* enable spi */
  212. spi_enable(instance->config->spi_x, TRUE);
  213. /* disable spi crc */
  214. spi_crc_enable(instance->config->spi_x, FALSE);
  215. return RT_EOK;
  216. };
  217. static void _spi_dma_receive(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  218. {
  219. dma_channel_type* dma_channel = instance->config->dma_rx->dma_channel;
  220. dma_channel->dtcnt = size;
  221. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  222. dma_channel->maddr = (rt_uint32_t)buffer;
  223. /* enable transmit complete interrupt */
  224. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  225. /* enable dma receive */
  226. spi_i2s_dma_receiver_enable(instance->config->spi_x, TRUE);
  227. /* mark dma flag */
  228. instance->config->dma_rx->dma_done = RT_FALSE;
  229. /* enable dma channel */
  230. dma_channel_enable(dma_channel, TRUE);
  231. }
  232. static void _spi_dma_transmit(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
  233. {
  234. dma_channel_type *dma_channel = instance->config->dma_tx->dma_channel;
  235. dma_channel->dtcnt = size;
  236. dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
  237. dma_channel->maddr = (rt_uint32_t)buffer;
  238. /* enable spi error interrupt */
  239. spi_i2s_interrupt_enable(instance->config->spi_x, SPI_I2S_ERROR_INT, TRUE);
  240. /* enable transmit complete interrupt */
  241. dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
  242. /* enable dma transmit */
  243. spi_i2s_dma_transmitter_enable(instance->config->spi_x, TRUE);
  244. /* mark dma flag */
  245. instance->config->dma_tx->dma_done = RT_FALSE;
  246. /* enable dma channel */
  247. dma_channel_enable(dma_channel, TRUE);
  248. }
  249. static void _spi_polling_receive_transmit(struct at32_spi *instance, rt_uint8_t *recv_buf, rt_uint8_t *send_buf, \
  250. rt_uint32_t size, rt_uint8_t data_mode)
  251. {
  252. /* data frame length 8 bit */
  253. if(data_mode <= 8)
  254. {
  255. const rt_uint8_t *send_ptr = send_buf;
  256. rt_uint8_t * recv_ptr = recv_buf;
  257. LOG_D("spi poll transfer start: %d\n", size);
  258. while(size--)
  259. {
  260. rt_uint8_t data = 0xFF;
  261. if(send_ptr != RT_NULL)
  262. {
  263. data = *send_ptr++;
  264. }
  265. /* wait until the transmit buffer is empty */
  266. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  267. /* send the byte */
  268. spi_i2s_data_transmit(instance->config->spi_x, data);
  269. /* wait until a data is received */
  270. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  271. /* get the received data */
  272. data = spi_i2s_data_receive(instance->config->spi_x);
  273. if(recv_ptr != RT_NULL)
  274. {
  275. *recv_ptr++ = data;
  276. }
  277. }
  278. LOG_D("spi poll transfer finsh\n");
  279. }
  280. /* data frame length 16 bit */
  281. else if(data_mode <= 16)
  282. {
  283. const rt_uint16_t * send_ptr = (rt_uint16_t *)send_buf;
  284. rt_uint16_t * recv_ptr = (rt_uint16_t *)recv_buf;
  285. while(size--)
  286. {
  287. rt_uint16_t data = 0xFF;
  288. if(send_ptr != RT_NULL)
  289. {
  290. data = *send_ptr++;
  291. }
  292. /* wait until the transmit buffer is empty */
  293. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
  294. /* send the byte */
  295. spi_i2s_data_transmit(instance->config->spi_x, data);
  296. /* wait until a data is received */
  297. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
  298. /* get the received data */
  299. data = spi_i2s_data_receive(instance->config->spi_x);
  300. if(recv_ptr != RT_NULL)
  301. {
  302. *recv_ptr++ = data;
  303. }
  304. }
  305. }
  306. }
  307. static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
  308. {
  309. struct rt_spi_bus * at32_spi_bus = (struct rt_spi_bus *)device->bus;
  310. struct at32_spi *instance = (struct at32_spi *)at32_spi_bus->parent.user_data;
  311. struct rt_spi_configuration *config = &device->config;
  312. struct at32_spi_cs * at32_spi_cs = device->parent.user_data;
  313. rt_size_t message_length = 0, already_send_length = 0;
  314. rt_uint16_t send_length = 0;
  315. rt_uint8_t *recv_buf;
  316. const rt_uint8_t *send_buf;
  317. RT_ASSERT(device != NULL);
  318. RT_ASSERT(message != NULL);
  319. /* take cs */
  320. if(message->cs_take)
  321. {
  322. gpio_bits_reset(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  323. LOG_D("spi take cs\n");
  324. }
  325. message_length = message->length;
  326. recv_buf = message->recv_buf;
  327. send_buf = message->send_buf;
  328. while (message_length)
  329. {
  330. /* the HAL library use uint16 to save the data length */
  331. if (message_length > 65535)
  332. {
  333. send_length = 65535;
  334. message_length = message_length - 65535;
  335. }
  336. else
  337. {
  338. send_length = message_length;
  339. message_length = 0;
  340. }
  341. /* calculate the start address */
  342. already_send_length = message->length - send_length - message_length;
  343. /* avoid null pointer problems */
  344. if (message->send_buf)
  345. {
  346. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  347. }
  348. if (message->recv_buf)
  349. {
  350. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  351. }
  352. /* start once data exchange in dma mode */
  353. if (message->send_buf && message->recv_buf)
  354. {
  355. if ((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX) && \
  356. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX))
  357. {
  358. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  359. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  360. /* wait transfer complete */
  361. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  362. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  363. /* clear rx overrun flag */
  364. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  365. spi_enable(instance->config->spi_x, FALSE);
  366. spi_enable(instance->config->spi_x, TRUE);
  367. }
  368. else
  369. {
  370. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)send_buf, send_length, config->data_width);
  371. }
  372. }
  373. else if (message->send_buf)
  374. {
  375. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  376. {
  377. _spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
  378. /* wait transfer complete */
  379. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  380. while(instance->config->dma_tx->dma_done == RT_FALSE);
  381. /* clear rx overrun flag */
  382. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  383. spi_enable(instance->config->spi_x, FALSE);
  384. spi_enable(instance->config->spi_x, TRUE);
  385. }
  386. else
  387. {
  388. _spi_polling_receive_transmit(instance, RT_NULL, (uint8_t *)send_buf, send_length, config->data_width);
  389. }
  390. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  391. {
  392. /* release the cs by disable spi when using 3 wires spi */
  393. spi_enable(instance->config->spi_x, FALSE);
  394. }
  395. }
  396. else
  397. {
  398. memset((void *)recv_buf, 0xff, send_length);
  399. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  400. {
  401. _spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
  402. _spi_dma_transmit(instance, (uint8_t *)recv_buf, send_length);
  403. /* wait transfer complete */
  404. while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
  405. while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
  406. /* clear rx overrun flag */
  407. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  408. spi_enable(instance->config->spi_x, FALSE);
  409. spi_enable(instance->config->spi_x, TRUE);
  410. }
  411. else
  412. {
  413. /* clear the old error flag */
  414. spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
  415. _spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)recv_buf, send_length, config->data_width);
  416. }
  417. }
  418. }
  419. /* release cs */
  420. if(message->cs_release)
  421. {
  422. gpio_bits_set(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
  423. LOG_D("spi release cs\n");
  424. }
  425. return message->length;
  426. }
  427. static void _dma_base_channel_check(struct at32_spi *instance)
  428. {
  429. dma_channel_type *rx_channel = instance->config->dma_rx->dma_channel;
  430. dma_channel_type *tx_channel = instance->config->dma_tx->dma_channel;
  431. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  432. {
  433. instance->config->dma_rx->dma_done = RT_TRUE;
  434. instance->config->dma_rx->dma_x = (dma_type *)((rt_uint32_t)rx_channel & ~0xFF);
  435. instance->config->dma_rx->channel_index = ((((rt_uint32_t)rx_channel & 0xFF) - 8) / 0x14) + 1;
  436. }
  437. if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  438. {
  439. instance->config->dma_tx->dma_done = RT_TRUE;
  440. instance->config->dma_tx->dma_x = (dma_type *)((rt_uint32_t)tx_channel & ~0xFF);
  441. instance->config->dma_tx->channel_index = ((((rt_uint32_t)tx_channel & 0xFF) - 8) / 0x14) + 1;
  442. }
  443. }
  444. static void at32_spi_dma_init(struct at32_spi *instance)
  445. {
  446. dma_init_type dma_init_struct;
  447. /* search dma base and channel index */
  448. _dma_base_channel_check(instance);
  449. /* config dma channel */
  450. dma_default_para_init(&dma_init_struct);
  451. dma_init_struct.peripheral_inc_enable = FALSE;
  452. dma_init_struct.memory_inc_enable = TRUE;
  453. dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
  454. dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
  455. dma_init_struct.priority = DMA_PRIORITY_MEDIUM;
  456. dma_init_struct.loop_mode_enable = FALSE;
  457. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  458. {
  459. crm_periph_clock_enable(instance->config->dma_rx->dma_clock, TRUE);
  460. dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
  461. dma_reset(instance->config->dma_rx->dma_channel);
  462. dma_init(instance->config->dma_rx->dma_channel, &dma_init_struct);
  463. #if defined (SOC_SERIES_AT32F425)
  464. dma_flexible_config(instance->config->dma_rx->dma_x, instance->config->dma_rx->flex_channel, \
  465. (dma_flexible_request_type)instance->config->dma_rx->request_id);
  466. #endif
  467. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
  468. defined (SOC_SERIES_AT32F423) || defined (SOC_SERIES_AT32F402) || \
  469. defined (SOC_SERIES_AT32F405) || defined (SOC_SERIES_AT32A423) || \
  470. defined (SOC_SERIES_AT32M412) || defined (SOC_SERIES_AT32M416) || \
  471. defined (SOC_SERIES_AT32F455) || defined (SOC_SERIES_AT32F456) || \
  472. defined (SOC_SERIES_AT32F457)
  473. dmamux_enable(instance->config->dma_rx->dma_x, TRUE);
  474. dmamux_init(instance->config->dma_rx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_rx->request_id);
  475. #endif
  476. /* dma irq should set in dma rx mode */
  477. nvic_irq_enable(instance->config->dma_rx->dma_irqn, 0, 1);
  478. }
  479. if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  480. {
  481. crm_periph_clock_enable(instance->config->dma_tx->dma_clock, TRUE);
  482. dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
  483. dma_reset(instance->config->dma_tx->dma_channel);
  484. dma_init(instance->config->dma_tx->dma_channel, &dma_init_struct);
  485. #if defined (SOC_SERIES_AT32F425)
  486. dma_flexible_config(instance->config->dma_tx->dma_x, instance->config->dma_tx->flex_channel, \
  487. (dma_flexible_request_type)instance->config->dma_tx->request_id);
  488. #endif
  489. #if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
  490. defined (SOC_SERIES_AT32F423) || defined (SOC_SERIES_AT32F402) || \
  491. defined (SOC_SERIES_AT32F405) || defined (SOC_SERIES_AT32A423) || \
  492. defined (SOC_SERIES_AT32M412) || defined (SOC_SERIES_AT32M416) || \
  493. defined (SOC_SERIES_AT32F455) || defined (SOC_SERIES_AT32F456) || \
  494. defined (SOC_SERIES_AT32F457)
  495. dmamux_enable(instance->config->dma_tx->dma_x, TRUE);
  496. dmamux_init(instance->config->dma_tx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_tx->request_id);
  497. #endif
  498. /* dma irq should set in dma tx mode */
  499. nvic_irq_enable(instance->config->dma_tx->dma_irqn, 0, 1);
  500. }
  501. if((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) || \
  502. (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
  503. {
  504. nvic_irq_enable(instance->config->irqn, 0, 0);
  505. }
  506. }
  507. void spi_dma_isr(struct dma_config *dma_instance)
  508. {
  509. volatile rt_uint32_t reg_sts = 0, index = 0;
  510. reg_sts = dma_instance->dma_x->sts;
  511. index = dma_instance->channel_index;
  512. if ((reg_sts & (DMA_FDT_FLAG << (4 * (index - 1)))) != RESET)
  513. {
  514. /* clear dma flag */
  515. dma_instance->dma_x->clr |= (rt_uint32_t)((DMA_FDT_FLAG << (4 * (index - 1))) | \
  516. (DMA_HDT_FLAG << (4 * (index - 1))));
  517. /* disable interrupt */
  518. dma_interrupt_enable(dma_instance->dma_channel, DMA_FDT_INT, FALSE);
  519. /* disable dma channel */
  520. dma_channel_enable(dma_instance->dma_channel, FALSE);
  521. /* mark done flag */
  522. dma_instance->dma_done = RT_TRUE;
  523. }
  524. }
  525. void spi_isr(spi_type *spi_x)
  526. {
  527. if(spi_i2s_flag_get(spi_x, SPI_I2S_ROERR_FLAG) != RESET)
  528. {
  529. /* clear rx overrun error flag */
  530. spi_i2s_flag_clear(spi_x, SPI_I2S_ROERR_FLAG);
  531. }
  532. if(spi_i2s_flag_get(spi_x, SPI_MMERR_FLAG) != RESET)
  533. {
  534. /* clear master mode error flag */
  535. spi_i2s_flag_clear(spi_x, SPI_MMERR_FLAG);
  536. }
  537. }
  538. #ifdef BSP_USING_SPI1
  539. void SPI1_IRQHandler(void)
  540. {
  541. /* enter interrupt */
  542. rt_interrupt_enter();
  543. spi_isr(spi_config[SPI1_INDEX].spi_x);
  544. /* leave interrupt */
  545. rt_interrupt_leave();
  546. }
  547. #if defined(BSP_SPI1_RX_USING_DMA)
  548. void SPI1_RX_DMA_IRQHandler(void)
  549. {
  550. /* enter interrupt */
  551. rt_interrupt_enter();
  552. spi_dma_isr(spi_config[SPI1_INDEX].dma_rx);
  553. /* leave interrupt */
  554. rt_interrupt_leave();
  555. }
  556. #endif /* defined(BSP_SPI1_RX_USING_DMA) */
  557. #if defined(BSP_SPI1_TX_USING_DMA)
  558. void SPI1_TX_DMA_IRQHandler(void)
  559. {
  560. /* enter interrupt */
  561. rt_interrupt_enter();
  562. spi_dma_isr(spi_config[SPI1_INDEX].dma_tx);
  563. /* leave interrupt */
  564. rt_interrupt_leave();
  565. }
  566. #endif /* defined(BSP_SPI1_TX_USING_DMA) */
  567. #endif
  568. #ifdef BSP_USING_SPI2
  569. void SPI2_IRQHandler(void)
  570. {
  571. /* enter interrupt */
  572. rt_interrupt_enter();
  573. spi_isr(spi_config[SPI2_INDEX].spi_x);
  574. /* leave interrupt */
  575. rt_interrupt_leave();
  576. }
  577. #if defined(BSP_SPI2_RX_USING_DMA)
  578. void SPI2_RX_DMA_IRQHandler(void)
  579. {
  580. /* enter interrupt */
  581. rt_interrupt_enter();
  582. spi_dma_isr(spi_config[SPI2_INDEX].dma_rx);
  583. /* leave interrupt */
  584. rt_interrupt_leave();
  585. }
  586. #endif /* defined(BSP_SPI2_RX_USING_DMA) */
  587. #if defined(BSP_SPI2_TX_USING_DMA)
  588. void SPI2_TX_DMA_IRQHandler(void)
  589. {
  590. /* enter interrupt */
  591. rt_interrupt_enter();
  592. spi_dma_isr(spi_config[SPI2_INDEX].dma_tx);
  593. /* leave interrupt */
  594. rt_interrupt_leave();
  595. }
  596. #endif /* defined(BSP_SPI2_TX_USING_DMA) */
  597. #endif
  598. #ifdef BSP_USING_SPI3
  599. void SPI3_IRQHandler(void)
  600. {
  601. /* enter interrupt */
  602. rt_interrupt_enter();
  603. spi_isr(spi_config[SPI3_INDEX].spi_x);
  604. /* leave interrupt */
  605. rt_interrupt_leave();
  606. }
  607. #if defined(BSP_SPI3_RX_USING_DMA)
  608. void SPI3_RX_DMA_IRQHandler(void)
  609. {
  610. /* enter interrupt */
  611. rt_interrupt_enter();
  612. spi_dma_isr(spi_config[SPI3_INDEX].dma_rx);
  613. /* leave interrupt */
  614. rt_interrupt_leave();
  615. }
  616. #endif /* defined(BSP_SPI3_RX_USING_DMA) */
  617. #if defined(BSP_SPI3_TX_USING_DMA)
  618. void SPI3_TX_DMA_IRQHandler(void)
  619. {
  620. /* enter interrupt */
  621. rt_interrupt_enter();
  622. spi_dma_isr(spi_config[SPI3_INDEX].dma_tx);
  623. /* leave interrupt */
  624. rt_interrupt_leave();
  625. }
  626. #endif /* defined(BSP_SPI3_TX_USING_DMA) */
  627. #endif
  628. #ifdef BSP_USING_SPI4
  629. void SPI4_IRQHandler(void)
  630. {
  631. /* enter interrupt */
  632. rt_interrupt_enter();
  633. spi_isr(spi_config[SPI4_INDEX].spi_x);
  634. /* leave interrupt */
  635. rt_interrupt_leave();
  636. }
  637. #if defined(BSP_SPI4_RX_USING_DMA)
  638. void SPI4_RX_DMA_IRQHandler(void)
  639. {
  640. /* enter interrupt */
  641. rt_interrupt_enter();
  642. spi_dma_isr(spi_config[SPI4_INDEX].dma_rx);
  643. /* leave interrupt */
  644. rt_interrupt_leave();
  645. }
  646. #endif /* defined(BSP_SPI4_RX_USING_DMA) */
  647. #if defined(BSP_SPI4_TX_USING_DMA)
  648. void SPI4_TX_DMA_IRQHandler(void)
  649. {
  650. /* enter interrupt */
  651. rt_interrupt_enter();
  652. spi_dma_isr(spi_config[SPI4_INDEX].dma_tx);
  653. /* leave interrupt */
  654. rt_interrupt_leave();
  655. }
  656. #endif /* defined(BSP_SPI14_TX_USING_DMA) */
  657. #endif
  658. #if defined (SOC_SERIES_AT32F421)
  659. void SPI1_TX_RX_DMA_IRQHandler(void)
  660. {
  661. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  662. SPI1_TX_DMA_IRQHandler();
  663. #endif
  664. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  665. SPI1_RX_DMA_IRQHandler();
  666. #endif
  667. }
  668. void SPI2_TX_RX_DMA_IRQHandler(void)
  669. {
  670. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  671. SPI2_TX_DMA_IRQHandler();
  672. #endif
  673. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  674. SPI2_RX_DMA_IRQHandler();
  675. #endif
  676. }
  677. #endif
  678. #if defined (SOC_SERIES_AT32F425)
  679. void SPI1_TX_RX_DMA_IRQHandler(void)
  680. {
  681. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  682. SPI1_TX_DMA_IRQHandler();
  683. #endif
  684. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  685. SPI1_RX_DMA_IRQHandler();
  686. #endif
  687. }
  688. void SPI3_2_TX_RX_DMA_IRQHandler(void)
  689. {
  690. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  691. SPI2_TX_DMA_IRQHandler();
  692. #endif
  693. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  694. SPI2_RX_DMA_IRQHandler();
  695. #endif
  696. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  697. SPI3_TX_DMA_IRQHandler();
  698. #endif
  699. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  700. SPI3_RX_DMA_IRQHandler();
  701. #endif
  702. }
  703. #endif
  704. static struct at32_spi spis[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  705. static void at32_spi_get_dma_config(void)
  706. {
  707. #ifdef BSP_USING_SPI1
  708. spi_config[SPI1_INDEX].spi_dma_flag = 0;
  709. #ifdef BSP_SPI1_RX_USING_DMA
  710. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  711. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  712. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  713. #endif
  714. #ifdef BSP_SPI1_TX_USING_DMA
  715. spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  716. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  717. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  718. #endif
  719. #endif
  720. #ifdef BSP_USING_SPI2
  721. spi_config[SPI2_INDEX].spi_dma_flag = 0;
  722. #ifdef BSP_SPI2_RX_USING_DMA
  723. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  724. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  725. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  726. #endif
  727. #ifdef BSP_SPI2_TX_USING_DMA
  728. spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  729. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  730. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  731. #endif
  732. #endif
  733. #ifdef BSP_USING_SPI3
  734. spi_config[SPI3_INDEX].spi_dma_flag = 0;
  735. #ifdef BSP_SPI3_RX_USING_DMA
  736. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  737. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  738. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  739. #endif
  740. #ifdef BSP_SPI3_TX_USING_DMA
  741. spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  742. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  743. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  744. #endif
  745. #endif
  746. #ifdef BSP_USING_SPI4
  747. spi_config[SPI4_INDEX].spi_dma_flag = 0;
  748. #ifdef BSP_SPI4_RX_USING_DMA
  749. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  750. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  751. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  752. #endif
  753. #ifdef BSP_SPI4_TX_USING_DMA
  754. spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  755. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  756. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  757. #endif
  758. #endif
  759. }
  760. int rt_hw_spi_init(void)
  761. {
  762. int i;
  763. rt_err_t result;
  764. rt_size_t obj_num = sizeof(spi_config) / sizeof(spi_config[0]);
  765. at32_spi_get_dma_config();
  766. for (i = 0; i < obj_num; i++)
  767. {
  768. spis[i].config = &spi_config[i];
  769. spis[i].spi_bus.parent.user_data = (void *)&spis[i];
  770. if(spis[i].config->spi_dma_flag & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
  771. {
  772. at32_spi_dma_init(&spis[i]);
  773. }
  774. result = rt_spi_bus_register(&(spis[i].spi_bus), spis[i].config->spi_name, &at32_spi_ops);
  775. }
  776. return result;
  777. }
  778. INIT_BOARD_EXPORT(rt_hw_spi_init);
  779. #endif