drv_can.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * File : drv_can.c
  3. * This file is part of RT-Thread RTOS
  4. * Copyright (c) 2006-2025, RT-Thread Development Team
  5. *
  6. * SPDX-License-Identifier: Apache-2.0
  7. *
  8. * Change Logs:
  9. * Date Author Notes
  10. * 2025-18-03 Dmitriy Chernov first implementation for GD32F4xx
  11. * 2025-09-24 CYFS add support for GD32F5xx
  12. */
  13. #include "drv_can.h"
  14. #include "string.h"
  15. #ifdef BSP_USING_CAN
  16. #define LOG_TAG "can_drv"
  17. #include <drv_log.h>
  18. #if defined(GD32F405) || defined(GD32F407) /* 42MHz(max) */
  19. static const struct gd32_baudrate_tbl can_baudrate_tbl[] =
  20. {
  21. {CAN1MBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 3},
  22. {CAN800kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 5},
  23. {CAN500kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 6},
  24. {CAN250kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 12},
  25. {CAN125kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 24},
  26. {CAN100kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 30},
  27. {CAN50kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 60},
  28. {CAN20kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 150},
  29. {CAN10kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_11TQ, CAN_BT_BS2_2TQ, 300},
  30. };
  31. #elif defined(GD32F425) || defined(GD32F427) || defined(GD32F450) || defined(GD32F527)/* 50MHz(max) */
  32. static const struct gd32_baudrate_tbl can_baudrate_tbl[] =
  33. {
  34. {CAN1MBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 5},
  35. {CAN800kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_12TQ, CAN_BT_BS2_2TQ, 4},
  36. {CAN500kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 10},
  37. {CAN250kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 20},
  38. {CAN125kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 40},
  39. {CAN100kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 50},
  40. {CAN50kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 100},
  41. {CAN20kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 250},
  42. {CAN10kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_8TQ, CAN_BT_BS2_1TQ, 500},
  43. };
  44. #elif defined(GD32F470) /* 60MHz(max) */
  45. static const struct gd32_baudrate_tbl can_baudrate_tbl[] =
  46. {
  47. {CAN1MBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_12TQ, CAN_BT_BS2_2TQ, 4},
  48. {CAN800kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_12TQ, CAN_BT_BS2_2TQ, 5},
  49. {CAN500kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_12TQ, CAN_BT_BS2_2TQ, 8},
  50. {CAN250kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_13TQ, CAN_BT_BS2_2TQ, 15},
  51. {CAN125kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_13TQ, CAN_BT_BS2_2TQ, 30},
  52. {CAN100kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_12TQ, CAN_BT_BS2_2TQ, 40},
  53. {CAN50kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_13TQ, CAN_BT_BS2_2TQ, 75},
  54. {CAN20kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_13TQ, CAN_BT_BS2_2TQ, 200},
  55. {CAN10kBaud, CAN_BT_SJW_1TQ, CAN_BT_BS1_13TQ, CAN_BT_BS2_2TQ, 375},
  56. };
  57. #else
  58. #error "CAN driver not implemented for selected device"
  59. #endif
  60. #ifdef BSP_USING_CAN0
  61. static struct gd32_can_device dev_can0 =
  62. {
  63. .name = "can0",
  64. .can_x = CAN0,
  65. };
  66. #endif
  67. #ifdef BSP_USING_CAN1
  68. static struct gd32_can_device dev_can1 =
  69. {
  70. "can1",
  71. .can_x = CAN1,
  72. };
  73. #endif
  74. static const struct gd32_can gd32_can_gpio[] =
  75. {
  76. #ifdef BSP_USING_CAN0
  77. {
  78. .can_clk = RCU_CAN0,
  79. #if defined SOC_SERIES_GD32F4xx || defined SOC_SERIES_GD32F5xx
  80. .alt_func_num = GPIO_AF_9,
  81. #endif
  82. #if defined BSP_CAN0_TX_PA12
  83. .tx_clk = RCU_GPIOA,
  84. .tx_pin = GET_PIN(A, 12),
  85. #elif defined BSP_CAN0_TX_PB9
  86. .tx_clk = RCU_GPIOB,
  87. .tx_pin = GET_PIN(B, 9),
  88. #elif defined BSP_CAN0_TX_PD1
  89. .tx_clk = RCU_GPIOD,
  90. .tx_pin = GET_PIN(D, 1),
  91. #elif defined BSP_CAN0_TX_PH13
  92. .tx_clk = RCU_GPIOH,
  93. .tx_pin = GET_PIN(H, 13),
  94. #else
  95. #error "Select CAN0 tx pin"
  96. #endif
  97. #if defined BSP_CAN0_RX_PA11
  98. .rx_clk = RCU_GPIOA,
  99. .rx_pin = GET_PIN(A, 11),
  100. #elif defined BSP_CAN0_RX_PB8
  101. .rx_clk = RCU_GPIOB,
  102. .rx_pin = GET_PIN(B, 8),
  103. #elif defined BSP_CAN0_RX_PD0
  104. .rx_clk = RCU_GPIOD,
  105. .rx_pin = GET_PIN(D, 0),
  106. #elif defined BSP_CAN0_RX_PI9
  107. .rx_clk = RCU_GPIOI,
  108. .rx_pin = GET_PIN(I, 9),
  109. #else
  110. #error "Select CAN0 rx pin"
  111. #endif
  112. },
  113. #endif
  114. #ifdef BSP_USING_CAN1
  115. {
  116. .can_clk = RCU_CAN1,
  117. #if defined SOC_SERIES_GD32F4xx || defined SOC_SERIES_GD32F5xx
  118. .alt_func_num = GPIO_AF_9,
  119. #endif
  120. #if defined BSP_CAN1_TX_PB6
  121. .tx_clk = RCU_GPIOB,
  122. .tx_pin = GET_PIN(B, 6),
  123. #elif defined BSP_CAN1_TX_PB13
  124. .tx_clk = RCU_GPIOB,
  125. .tx_pin = GET_PIN(B, 13),
  126. #else
  127. #error "Select CAN1 tx pin"
  128. #endif
  129. #if defined BSP_CAN1_RX_PB5
  130. .rx_clk = RCU_GPIOB,
  131. .rx_pin = GET_PIN(B, 5),
  132. #elif defined BSP_CAN1_RX_PB12
  133. .rx_clk = RCU_GPIOB,
  134. .rx_pin = GET_PIN(B, 12),
  135. #else
  136. #error "Select CAN1 rx pin"
  137. #endif
  138. },
  139. #endif
  140. };
  141. static void gd32_can_gpio_init(void)
  142. {
  143. for (rt_uint32_t i = 0; i < sizeof(gd32_can_gpio) / sizeof(gd32_can_gpio[0]); i++)
  144. {
  145. rcu_periph_clock_enable(gd32_can_gpio[i].can_clk);
  146. rcu_periph_clock_enable(gd32_can_gpio[i].tx_clk);
  147. rcu_periph_clock_enable(gd32_can_gpio[i].rx_clk);
  148. #if defined SOC_SERIES_GD32F4xx || defined SOC_SERIES_GD32F5xx
  149. gpio_af_set(PIN_GDPORT(gd32_can_gpio[i].tx_pin), gd32_can_gpio[i].alt_func_num, PIN_GDPIN(gd32_can_gpio[i].tx_pin));
  150. gpio_af_set(PIN_GDPORT(gd32_can_gpio[i].rx_pin), gd32_can_gpio[i].alt_func_num, PIN_GDPIN(gd32_can_gpio[i].rx_pin));
  151. gpio_output_options_set(PIN_GDPORT(gd32_can_gpio[i].tx_pin), GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, PIN_GDPIN(gd32_can_gpio[i].tx_pin));
  152. gpio_output_options_set(PIN_GDPORT(gd32_can_gpio[i].rx_pin), GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, PIN_GDPIN(gd32_can_gpio[i].rx_pin));
  153. gpio_mode_set(PIN_GDPORT(gd32_can_gpio[i].tx_pin), GPIO_MODE_AF, GPIO_PUPD_NONE, PIN_GDPIN(gd32_can_gpio[i].tx_pin));
  154. gpio_mode_set(PIN_GDPORT(gd32_can_gpio[i].rx_pin), GPIO_MODE_AF, GPIO_PUPD_NONE, PIN_GDPIN(gd32_can_gpio[i].rx_pin));
  155. #else
  156. gpio_init(PIN_GDPORT(gd32_can_gpio[i].tx_pin), GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, PIN_GDPIN(gd32_can_gpio[i].tx_pin));
  157. gpio_init(PIN_GDPORT(gd32_can_gpio[i].rx_pin), GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, PIN_GDPIN(gd32_can_gpio[i].rx_pin));
  158. #endif
  159. }
  160. }
  161. static rt_uint32_t get_can_baudrate_index(rt_uint32_t baudrate)
  162. {
  163. rt_uint32_t len = sizeof(can_baudrate_tbl) / sizeof(can_baudrate_tbl[0]);
  164. for (rt_uint32_t index = 0; index < len; index++)
  165. {
  166. if (can_baudrate_tbl[index].baudrate == baudrate)
  167. {
  168. return index;
  169. }
  170. }
  171. return 0; /* default baudrate is CAN1MBaud */
  172. }
  173. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  174. {
  175. can_parameter_struct can_init_struct;
  176. can_struct_para_init(CAN_INIT_STRUCT, &can_init_struct);
  177. RT_ASSERT(can);
  178. RT_ASSERT(cfg);
  179. struct gd32_can_device *can_dev = (struct gd32_can_device *)can->parent.user_data;
  180. RT_ASSERT(can_dev != RT_NULL);
  181. can_deinit(can_dev->can_x);
  182. can_init_struct.time_triggered = DISABLE;
  183. can_init_struct.auto_bus_off_recovery = ENABLE;
  184. can_init_struct.auto_wake_up = ENABLE;
  185. can_init_struct.auto_retrans = DISABLE;
  186. can_init_struct.rec_fifo_overwrite = DISABLE;
  187. can_init_struct.trans_fifo_order = DISABLE;
  188. switch (cfg->mode)
  189. {
  190. case RT_CAN_MODE_NORMAL:
  191. can_init_struct.working_mode = CAN_NORMAL_MODE;
  192. break;
  193. case RT_CAN_MODE_LISTEN:
  194. can_init_struct.working_mode = CAN_SILENT_MODE;
  195. break;
  196. case RT_CAN_MODE_LOOPBACK:
  197. can_init_struct.working_mode = CAN_LOOPBACK_MODE;
  198. break;
  199. case RT_CAN_MODE_LOOPBACKANLISTEN:
  200. can_init_struct.working_mode = CAN_SILENT_LOOPBACK_MODE;
  201. break;
  202. }
  203. rt_uint32_t baudrate_index = get_can_baudrate_index(cfg->baud_rate);
  204. can_init_struct.resync_jump_width = can_baudrate_tbl[baudrate_index].sjw;
  205. can_init_struct.time_segment_1 = can_baudrate_tbl[baudrate_index].tseg1;
  206. can_init_struct.time_segment_2 = can_baudrate_tbl[baudrate_index].tseg2;
  207. can_init_struct.prescaler = can_baudrate_tbl[baudrate_index].prescaler;
  208. if (can_init(can_dev->can_x, &can_init_struct) != SUCCESS)
  209. {
  210. return -RT_ERROR;
  211. }
  212. can_filter_init(&can_dev->filter_config);
  213. return RT_EOK;
  214. }
  215. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  216. {
  217. rt_uint32_t argval;
  218. struct rt_can_filter_config *filter_cfg;
  219. RT_ASSERT(can != RT_NULL);
  220. struct gd32_can_device *can_dev = (struct gd32_can_device *)can->parent.user_data;
  221. RT_ASSERT(can_dev != RT_NULL);
  222. switch (cmd)
  223. {
  224. case RT_DEVICE_CTRL_CLR_INT:
  225. argval = (rt_uint32_t) arg;
  226. if (argval == RT_DEVICE_FLAG_INT_RX)
  227. {
  228. #ifdef CAN0
  229. if (CAN0 == can_dev->can_x)
  230. {
  231. nvic_irq_disable(CAN0_RX0_IRQn);
  232. nvic_irq_disable(CAN0_RX1_IRQn);
  233. }
  234. #endif
  235. #ifdef CAN1
  236. if (CAN1 == can_dev->can_x)
  237. {
  238. nvic_irq_disable(CAN1_RX0_IRQn);
  239. nvic_irq_disable(CAN1_RX1_IRQn);
  240. }
  241. #endif
  242. can_interrupt_disable(can_dev->can_x, CAN_INT_RFNE0);
  243. can_interrupt_disable(can_dev->can_x, CAN_INT_RFF0);
  244. can_interrupt_disable(can_dev->can_x, CAN_INT_RFO0);
  245. can_interrupt_disable(can_dev->can_x, CAN_INT_RFNE1);
  246. can_interrupt_disable(can_dev->can_x, CAN_INT_RFF1);
  247. can_interrupt_disable(can_dev->can_x, CAN_INT_RFO1);
  248. }
  249. else if (argval == RT_DEVICE_FLAG_INT_TX)
  250. {
  251. #ifdef CAN0
  252. if (CAN0 == can_dev->can_x)
  253. {
  254. nvic_irq_disable(CAN0_TX_IRQn);
  255. }
  256. #endif
  257. #ifdef CAN1
  258. if (CAN1 == can_dev->can_x)
  259. {
  260. nvic_irq_disable(CAN1_TX_IRQn);
  261. }
  262. #endif
  263. can_interrupt_disable(can_dev->can_x, CAN_INT_TME);
  264. }
  265. else if (argval == RT_DEVICE_CAN_INT_ERR)
  266. {
  267. #ifdef CAN0
  268. if (CAN0 == can_dev->can_x)
  269. {
  270. nvic_irq_disable(CAN0_EWMC_IRQn);
  271. }
  272. #endif
  273. #ifdef CAN1
  274. if (CAN1 == can_dev->can_x)
  275. {
  276. nvic_irq_disable(CAN1_EWMC_IRQn);
  277. }
  278. #endif
  279. can_interrupt_disable(can_dev->can_x, CAN_INT_WERR);
  280. can_interrupt_disable(can_dev->can_x, CAN_INT_PERR);
  281. can_interrupt_disable(can_dev->can_x, CAN_INT_BO);
  282. can_interrupt_disable(can_dev->can_x, CAN_INT_ERRN);
  283. can_interrupt_disable(can_dev->can_x, CAN_INT_ERR);
  284. }
  285. break;
  286. case RT_DEVICE_CTRL_SET_INT:
  287. argval = (rt_uint32_t) arg;
  288. if (argval == RT_DEVICE_FLAG_INT_RX)
  289. {
  290. can_interrupt_enable(can_dev->can_x, CAN_INT_RFNE0);
  291. can_interrupt_enable(can_dev->can_x, CAN_INT_RFF0);
  292. can_interrupt_enable(can_dev->can_x, CAN_INT_RFO0);
  293. can_interrupt_enable(can_dev->can_x, CAN_INT_RFNE1);
  294. can_interrupt_enable(can_dev->can_x, CAN_INT_RFF1);
  295. can_interrupt_enable(can_dev->can_x, CAN_INT_RFO1);
  296. #ifdef CAN0
  297. if (CAN0 == can_dev->can_x)
  298. {
  299. nvic_irq_enable(CAN0_RX0_IRQn, 1, 0);
  300. nvic_irq_enable(CAN0_RX1_IRQn, 1, 0);
  301. }
  302. #endif
  303. #ifdef CAN1
  304. if (CAN1 == can_dev->can_x)
  305. {
  306. nvic_irq_enable(CAN1_RX0_IRQn, 1, 0);
  307. nvic_irq_enable(CAN1_RX1_IRQn, 1, 0);
  308. }
  309. #endif
  310. }
  311. else if (argval == RT_DEVICE_FLAG_INT_TX)
  312. {
  313. can_interrupt_enable(can_dev->can_x, CAN_INT_TME);
  314. #ifdef CAN0
  315. if (CAN0 == can_dev->can_x)
  316. {
  317. nvic_irq_enable(CAN0_TX_IRQn, 1, 0);
  318. }
  319. #endif
  320. #ifdef CAN1
  321. if (CAN1 == can_dev->can_x)
  322. {
  323. nvic_irq_enable(CAN1_TX_IRQn, 1, 0);
  324. }
  325. #endif
  326. }
  327. else if (argval == RT_DEVICE_CAN_INT_ERR)
  328. {
  329. can_interrupt_enable(can_dev->can_x, CAN_INT_WERR);
  330. can_interrupt_enable(can_dev->can_x, CAN_INT_PERR);
  331. can_interrupt_enable(can_dev->can_x, CAN_INT_BO);
  332. can_interrupt_enable(can_dev->can_x, CAN_INT_ERRN);
  333. can_interrupt_enable(can_dev->can_x, CAN_INT_ERR);
  334. #ifdef CAN0
  335. if (CAN0 == can_dev->can_x)
  336. {
  337. nvic_irq_enable(CAN0_EWMC_IRQn, 1, 0);
  338. }
  339. #endif
  340. #ifdef CAN1
  341. if (CAN1 == can_dev->can_x)
  342. {
  343. nvic_irq_enable(CAN1_EWMC_IRQn, 1, 0);
  344. }
  345. #endif
  346. }
  347. break;
  348. case RT_CAN_CMD_SET_FILTER:
  349. {
  350. rt_uint32_t id_h = 0;
  351. rt_uint32_t id_l = 0;
  352. rt_uint32_t mask_h = 0;
  353. rt_uint32_t mask_l = 0;
  354. rt_uint32_t mask_l_tail = 0; /*CAN_FxR2 bit [2:0]*/
  355. if (RT_NULL == arg)
  356. {
  357. /* default filter config */
  358. can_filter_init(&can_dev->filter_config);
  359. }
  360. else
  361. {
  362. filter_cfg = (struct rt_can_filter_config *)arg;
  363. /* get default filter */
  364. for (int i = 0; i < filter_cfg->count; i++)
  365. {
  366. if (filter_cfg->items[i].hdr_bank == -1)
  367. {
  368. /* use default filter bank settings */
  369. if (rt_strcmp(can_dev->name, "can0") == 0)
  370. {
  371. /* can0 banks 0~13 */
  372. can_dev->filter_config.filter_number = i;
  373. #ifdef RT_CAN_USING_HDR
  374. filter_cfg->items[i].hdr_bank = i;
  375. #endif
  376. }
  377. else if (rt_strcmp(can_dev->name, "can1") == 0)
  378. {
  379. /* can1 banks 14~27 */
  380. can_dev->filter_config.filter_number = i + 14;
  381. #ifdef RT_CAN_USING_HDR
  382. filter_cfg->items[i].hdr_bank = i + 14;
  383. #endif
  384. }
  385. }
  386. else
  387. {
  388. /* use user-defined filter bank settings */
  389. can_dev->filter_config.filter_number = filter_cfg->items[i].hdr_bank;
  390. }
  391. if (filter_cfg->items[i].mode == CAN_FILTERMODE_MASK)
  392. {
  393. mask_l_tail = 0x06;
  394. }
  395. else if (filter_cfg->items[i].mode == CAN_FILTERMODE_LIST)
  396. {
  397. mask_l_tail = (filter_cfg->items[i].ide << 2) |
  398. (filter_cfg->items[i].rtr << 1);
  399. }
  400. if (filter_cfg->items[i].ide == RT_CAN_STDID)
  401. {
  402. id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF;
  403. id_l = ((filter_cfg->items[i].id << 18) |
  404. (filter_cfg->items[i].ide << 2) |
  405. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  406. mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF;
  407. mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF;
  408. }
  409. else if (filter_cfg->items[i].ide == RT_CAN_EXTID)
  410. {
  411. id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF;
  412. id_l = ((filter_cfg->items[i].id << 3) |
  413. (filter_cfg->items[i].ide << 2) |
  414. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  415. mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF;
  416. mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF;
  417. }
  418. can_dev->filter_config.filter_list_high = id_h;
  419. can_dev->filter_config.filter_list_low = id_l;
  420. can_dev->filter_config.filter_mask_high = mask_h;
  421. can_dev->filter_config.filter_mask_low = mask_l;
  422. can_dev->filter_config.filter_mode = filter_cfg->items[i].mode;
  423. can_dev->filter_config.filter_fifo_number = filter_cfg->items[i].rxfifo;/*rxfifo = CAN_RX_FIFO0/CAN_RX_FIFO1*/
  424. /* Filter conf */
  425. can_filter_init(&can_dev->filter_config);
  426. }
  427. }
  428. break;
  429. }
  430. case RT_CAN_CMD_SET_MODE:
  431. argval = (rt_uint32_t) arg;
  432. if (argval != RT_CAN_MODE_NORMAL &&
  433. argval != RT_CAN_MODE_LISTEN &&
  434. argval != RT_CAN_MODE_LOOPBACK &&
  435. argval != RT_CAN_MODE_LOOPBACKANLISTEN)
  436. {
  437. return -RT_ERROR;
  438. }
  439. if (argval != can_dev->device.config.mode)
  440. {
  441. can_dev->device.config.mode = argval;
  442. return _can_config(&can_dev->device, &can_dev->device.config);
  443. }
  444. break;
  445. case RT_CAN_CMD_SET_BAUD:
  446. argval = (rt_uint32_t) arg;
  447. if (argval != CAN1MBaud &&
  448. argval != CAN800kBaud &&
  449. argval != CAN500kBaud &&
  450. argval != CAN250kBaud &&
  451. argval != CAN125kBaud &&
  452. argval != CAN100kBaud &&
  453. argval != CAN50kBaud &&
  454. argval != CAN20kBaud &&
  455. argval != CAN10kBaud)
  456. {
  457. return -RT_ERROR;
  458. }
  459. if (argval != can_dev->device.config.baud_rate)
  460. {
  461. can_dev->device.config.baud_rate = argval;
  462. return _can_config(&can_dev->device, &can_dev->device.config);
  463. }
  464. break;
  465. case RT_CAN_CMD_SET_PRIV:
  466. argval = (rt_uint32_t) arg;
  467. if (argval != RT_CAN_MODE_PRIV &&
  468. argval != RT_CAN_MODE_NOPRIV)
  469. {
  470. return -RT_ERROR;
  471. }
  472. if (argval != can_dev->device.config.privmode)
  473. {
  474. can_dev->device.config.privmode = argval;
  475. return _can_config(&can_dev->device, &can_dev->device.config);
  476. }
  477. break;
  478. case RT_CAN_CMD_GET_STATUS:
  479. {
  480. rt_uint32_t errtype;
  481. errtype = CAN_STAT(can_dev->can_x);
  482. can_dev->device.status.rcverrcnt = errtype >> 24;
  483. can_dev->device.status.snderrcnt = (errtype >> 16 & 0xFF);
  484. can_dev->device.status.lasterrtype = errtype & 0x70;
  485. can_dev->device.status.errcode = errtype & 0x07;
  486. rt_memcpy(arg, &can_dev->device.status, sizeof(can_dev->device.status));
  487. break;
  488. }
  489. }
  490. return RT_EOK;
  491. }
  492. static rt_ssize_t _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  493. {
  494. RT_ASSERT(can);
  495. can_trasnmit_message_struct transmit_message;
  496. can_struct_para_init(CAN_TX_MESSAGE_STRUCT, &transmit_message);
  497. rt_uint32_t can_x = ((struct gd32_can_device *)can->parent.user_data)->can_x;
  498. struct rt_can_msg *pmsg = (struct rt_can_msg *)buf;
  499. switch (box_num)
  500. {
  501. case CAN_MAILBOX0:
  502. if (!CAN_STAT(can_x) & CAN_TSTAT_TME0)
  503. {
  504. /* Return function status */
  505. return -RT_ERROR;
  506. }
  507. break;
  508. case CAN_MAILBOX1:
  509. if (!CAN_STAT(can_x) & CAN_TSTAT_TME1)
  510. {
  511. /* Return function status */
  512. return -RT_ERROR;
  513. }
  514. break;
  515. case CAN_MAILBOX2:
  516. if (!CAN_STAT(can_x) & CAN_TSTAT_TME2)
  517. {
  518. /* Return function status */
  519. return -RT_ERROR;
  520. }
  521. break;
  522. default:
  523. RT_ASSERT(0);
  524. break;
  525. }
  526. if (RT_CAN_STDID == pmsg->ide)
  527. {
  528. transmit_message.tx_ff = CAN_FF_STANDARD;
  529. transmit_message.tx_sfid = pmsg->id;
  530. }
  531. else
  532. {
  533. transmit_message.tx_ff = CAN_FF_EXTENDED;
  534. transmit_message.tx_efid = pmsg->id;
  535. }
  536. if (RT_CAN_DTR == pmsg->rtr)
  537. {
  538. transmit_message.tx_ft = CAN_FT_DATA;
  539. memcpy(transmit_message.tx_data, pmsg->data, pmsg->len);
  540. }
  541. else
  542. {
  543. transmit_message.tx_ft = CAN_FT_REMOTE;
  544. }
  545. transmit_message.tx_dlen = pmsg->len;
  546. CAN_TMI(can_x, box_num) &= CAN_TMI_TEN;
  547. if (RT_CAN_STDID == pmsg->ide)
  548. {
  549. CAN_TMI(can_x, box_num) |= (uint32_t)(TMI_SFID(transmit_message.tx_sfid) | \
  550. transmit_message.tx_ft);
  551. }
  552. else
  553. {
  554. CAN_TMI(can_x, box_num) |= (uint32_t)(TMI_EFID(transmit_message.tx_efid) | \
  555. transmit_message.tx_ff | \
  556. transmit_message.tx_ft);
  557. }
  558. CAN_TMP(can_x, box_num) &= ~CAN_TMP_DLENC;
  559. CAN_TMP(can_x, box_num) |= transmit_message.tx_dlen;
  560. CAN_TMDATA0(can_x, box_num) = TMDATA0_DB3(transmit_message.tx_data[3]) | \
  561. TMDATA0_DB2(transmit_message.tx_data[2]) | \
  562. TMDATA0_DB1(transmit_message.tx_data[1]) | \
  563. TMDATA0_DB0(transmit_message.tx_data[0]);
  564. CAN_TMDATA1(can_x, box_num) = TMDATA1_DB7(transmit_message.tx_data[7]) | \
  565. TMDATA1_DB6(transmit_message.tx_data[6]) | \
  566. TMDATA1_DB5(transmit_message.tx_data[5]) | \
  567. TMDATA1_DB4(transmit_message.tx_data[4]);
  568. CAN_TMI(can_x, box_num) |= CAN_TMI_TEN;
  569. return RT_EOK;
  570. }
  571. static rt_ssize_t _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  572. {
  573. RT_ASSERT(can);
  574. can_receive_message_struct receive_message;
  575. can_struct_para_init(CAN_RX_MESSAGE_STRUCT, &receive_message);
  576. rt_uint32_t can_x = ((struct gd32_can_device *)can->parent.user_data)->can_x;
  577. struct rt_can_msg *pmsg = (struct rt_can_msg *)buf;
  578. can_message_receive(can_x, fifo, &receive_message);
  579. if (receive_message.rx_ff == CAN_FF_STANDARD)
  580. {
  581. pmsg->ide = RT_CAN_STDID;
  582. pmsg->id = receive_message.rx_sfid;
  583. }
  584. else
  585. {
  586. pmsg->ide = RT_CAN_EXTID;
  587. pmsg->id = receive_message.rx_efid;
  588. }
  589. if (receive_message.rx_ft == CAN_FT_DATA)
  590. {
  591. pmsg->rtr = RT_CAN_DTR;
  592. memcpy(pmsg->data, receive_message.rx_data, receive_message.rx_dlen);
  593. }
  594. else
  595. {
  596. pmsg->rtr = RT_CAN_RTR;
  597. }
  598. pmsg->rxfifo = fifo;
  599. pmsg->len = receive_message.rx_dlen;
  600. #ifdef CAN1
  601. if (can_x == CAN1)
  602. {
  603. pmsg->hdr_index = receive_message.rx_fi;
  604. }
  605. #endif
  606. #ifdef CAN2
  607. if (can_x == CAN2)
  608. {
  609. pmsg->hdr_index = receive_message.rx_fi;
  610. }
  611. #endif
  612. return RT_EOK;
  613. }
  614. rt_ssize_t _can_get_freebox(rt_uint32_t can_x)
  615. {
  616. rt_uint32_t freebox = 0;
  617. if ((CAN_STAT(can_x) & CAN_TSTAT_TME0) != 0U)
  618. {
  619. freebox++;
  620. }
  621. if ((CAN_STAT(can_x) & CAN_TSTAT_TME1) != 0U)
  622. {
  623. freebox++;
  624. }
  625. if ((CAN_STAT(can_x) & CAN_TSTAT_TME2) != 0U)
  626. {
  627. freebox++;
  628. }
  629. return freebox;
  630. }
  631. rt_ssize_t _can_sendmsg_nonblocking(struct rt_can_device *can, const void *buf)
  632. {
  633. RT_ASSERT(can);
  634. can_trasnmit_message_struct transmit_message;
  635. can_struct_para_init(CAN_TX_MESSAGE_STRUCT, &transmit_message);
  636. rt_uint32_t can_x = ((struct gd32_can_device *)can->parent.user_data)->can_x;
  637. struct rt_can_msg *pmsg = (struct rt_can_msg *)buf;
  638. if(_can_get_freebox(can_x) == 0)
  639. {
  640. return -RT_EBUSY;
  641. }
  642. if (RT_CAN_STDID == pmsg->ide)
  643. {
  644. transmit_message.tx_ff = CAN_FF_STANDARD;
  645. transmit_message.tx_sfid = pmsg->id;
  646. }
  647. else
  648. {
  649. transmit_message.tx_ff = CAN_FF_EXTENDED;
  650. transmit_message.tx_efid = pmsg->id;
  651. }
  652. if (RT_CAN_DTR == pmsg->rtr)
  653. {
  654. transmit_message.tx_ft = CAN_FT_DATA;
  655. memcpy(transmit_message.tx_data, pmsg->data, pmsg->len);
  656. }
  657. else
  658. {
  659. transmit_message.tx_ft = CAN_FT_REMOTE;
  660. }
  661. transmit_message.tx_dlen = pmsg->len;
  662. if(can_message_transmit(can_x, &transmit_message) == CAN_NOMAILBOX)
  663. {
  664. return -RT_ERROR;
  665. }
  666. return RT_EOK;
  667. }
  668. static const struct rt_can_ops _can_ops =
  669. {
  670. _can_config,
  671. _can_control,
  672. _can_sendmsg,
  673. _can_recvmsg,
  674. _can_sendmsg_nonblocking,
  675. };
  676. static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
  677. {
  678. RT_ASSERT(can);
  679. rt_uint32_t can_x = ((struct gd32_can_device *)can->parent.user_data)->can_x;
  680. switch (fifo)
  681. {
  682. case CAN_RX_FIFO0:
  683. /* save to user list */
  684. if (can_receive_message_length_get(can_x, CAN_RX_FIFO0) && can_interrupt_flag_get(can_x, CAN_INT_FLAG_RFL0))
  685. {
  686. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  687. }
  688. /* Check FULL flag for FIFO0 */
  689. if (can_flag_get(can_x, CAN_FLAG_RFF0) && can_interrupt_flag_get(can_x, CAN_INT_FLAG_RFF0))
  690. {
  691. /* Clear FIFO0 FULL Flag */
  692. can_flag_clear(can_x, CAN_INT_FLAG_RFF0);
  693. }
  694. /* Check Overrun flag for FIFO0 */
  695. if (can_flag_get(can_x, CAN_FLAG_RFO0) && can_interrupt_flag_get(can_x, CAN_INT_FLAG_RFO0))
  696. {
  697. /* Clear FIFO0 Overrun Flag */
  698. can_flag_clear(can_x, CAN_INT_FLAG_RFO0);
  699. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  700. }
  701. break;
  702. case CAN_RX_FIFO1:
  703. /* save to user list */
  704. if (can_receive_message_length_get(can_x, CAN_RX_FIFO1) && can_interrupt_flag_get(can_x, CAN_INT_FLAG_RFL1))
  705. {
  706. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  707. }
  708. /* Check FULL flag for FIFO0 */
  709. if (can_flag_get(can_x, CAN_FLAG_RFF1) && can_interrupt_flag_get(can_x, CAN_INT_FLAG_RFF1))
  710. {
  711. /* Clear FIFO0 FULL Flag */
  712. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_RFF1);
  713. }
  714. /* Check Overrun flag for FIFO0 */
  715. if (can_flag_get(can_x, CAN_FLAG_RFO0) && can_interrupt_flag_get(can_x, CAN_INT_FLAG_RFO0))
  716. {
  717. /* Clear FIFO0 Overrun Flag */
  718. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_RFO1);
  719. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  720. }
  721. break;
  722. }
  723. }
  724. static void _can_ewmc_isr(struct rt_can_device *can)
  725. {
  726. RT_ASSERT(can);
  727. rt_uint32_t can_x = ((struct gd32_can_device *)can->parent.user_data)->can_x;
  728. rt_uint32_t errtype = CAN_ERR(can_x);
  729. switch ((errtype & 0x70) >> 4)
  730. {
  731. case RT_CAN_BUS_BIT_PAD_ERR:
  732. can->status.bitpaderrcnt++;
  733. break;
  734. case RT_CAN_BUS_FORMAT_ERR:
  735. can->status.formaterrcnt++;
  736. break;
  737. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  738. can->status.ackerrcnt++;
  739. if (can_interrupt_flag_get(can_x, CAN_INT_FLAG_MTF0))
  740. {
  741. if (!can_flag_get(can_x, CAN_FLAG_MTFNERR0))
  742. {
  743. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  744. }
  745. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_MTF0);
  746. }
  747. else if (can_interrupt_flag_get(can_x, CAN_INT_FLAG_MTF1))
  748. {
  749. if (!can_flag_get(can_x, CAN_FLAG_MTFNERR1))
  750. {
  751. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  752. }
  753. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_MTF1);
  754. }
  755. else if (can_interrupt_flag_get(can_x, CAN_INT_FLAG_MTF2))
  756. {
  757. if (!can_flag_get(can_x, CAN_FLAG_MTFNERR2))
  758. {
  759. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  760. }
  761. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_MTF2);
  762. }
  763. else
  764. {
  765. if (can_interrupt_flag_get(can_x, CAN_FLAG_MTE0))/*IF AutoRetransmission = ENABLE,ACK ERR handler*/
  766. {
  767. CAN_TSTAT(can_x) |= CAN_TSTAT_MST0;/*Abort the send request, trigger the TX interrupt,release completion quantity*/
  768. }
  769. else if (can_interrupt_flag_get(can_x, CAN_FLAG_MTE1))
  770. {
  771. CAN_TSTAT(can_x) |= CAN_TSTAT_MST1;
  772. }
  773. else if (can_interrupt_flag_get(can_x, CAN_FLAG_MTE2))
  774. {
  775. CAN_TSTAT(can_x) |= CAN_TSTAT_MST2;
  776. }
  777. }
  778. break;
  779. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  780. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  781. can->status.biterrcnt++;
  782. break;
  783. case RT_CAN_BUS_CRC_ERR:
  784. can->status.crcerrcnt++;
  785. break;
  786. }
  787. can->status.lasterrtype = errtype & 0x70;
  788. can->status.rcverrcnt = errtype >> 24;
  789. can->status.snderrcnt = (errtype >> 16 & 0xFF);
  790. can->status.errcode = errtype & 0x07;
  791. CAN_STAT(can_x) |= CAN_STAT_ERRIF;
  792. }
  793. static void _can_tx_isr(struct rt_can_device *can)
  794. {
  795. RT_ASSERT(can);
  796. rt_uint32_t can_x = ((struct gd32_can_device *)can->parent.user_data)->can_x;
  797. if (can_interrupt_flag_get(can_x, CAN_INT_FLAG_MTF0))
  798. {
  799. if (can_flag_get(can_x, CAN_FLAG_MTFNERR0))
  800. {
  801. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 0 << 8);
  802. }
  803. else
  804. {
  805. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  806. }
  807. /* Write 0 to Clear transmission status flag RQCPx */
  808. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_MTF0);
  809. }
  810. else if (can_interrupt_flag_get(can_x, CAN_INT_FLAG_MTF1))
  811. {
  812. if (can_flag_get(can_x, CAN_FLAG_MTFNERR1))
  813. {
  814. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 1 << 8);
  815. }
  816. else
  817. {
  818. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  819. }
  820. /* Write 0 to Clear transmission status flag RQCPx */
  821. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_MTF1);
  822. }
  823. else if (can_interrupt_flag_get(can_x, CAN_INT_FLAG_MTF2))
  824. {
  825. if (can_flag_get(can_x, CAN_FLAG_MTFNERR2))
  826. {
  827. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 2 << 8);
  828. }
  829. else
  830. {
  831. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  832. }
  833. /* Write 0 to Clear transmission status flag RQCPx */
  834. can_interrupt_flag_clear(can_x, CAN_INT_FLAG_MTF2);
  835. }
  836. }
  837. #ifdef BSP_USING_CAN0
  838. /**
  839. * @brief This function handles CAN0 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
  840. */
  841. void CAN0_TX_IRQHandler(void)
  842. {
  843. rt_interrupt_enter();
  844. _can_tx_isr(&dev_can0.device);
  845. rt_interrupt_leave();
  846. }
  847. /**
  848. * @brief This function handles CAN0 RX0 interrupts.
  849. */
  850. void CAN0_RX0_IRQHandler(void)
  851. {
  852. rt_interrupt_enter();
  853. _can_rx_isr(&dev_can0.device, CAN_RX_FIFO0);
  854. rt_interrupt_leave();
  855. }
  856. /**
  857. * @brief This function handles CAN0 RX1 interrupts.
  858. */
  859. void CAN0_RX1_IRQHandler(void)
  860. {
  861. rt_interrupt_enter();
  862. _can_rx_isr(&dev_can0.device, CAN_RX_FIFO1);
  863. rt_interrupt_leave();
  864. }
  865. /**
  866. * @brief This function handles CAN0 EWMC interrupts.
  867. */
  868. void CAN0_EWMC_IRQHandler(void)
  869. {
  870. rt_interrupt_enter();
  871. _can_ewmc_isr(&dev_can0.device);
  872. rt_interrupt_leave();
  873. }
  874. #endif /* BSP_USING_CAN0 */
  875. #ifdef BSP_USING_CAN1
  876. /**
  877. * @brief This function handles CAN1 TX interrupts.
  878. */
  879. void CAN1_TX_IRQHandler(void)
  880. {
  881. rt_interrupt_enter();
  882. _can_tx_isr(&dev_can1.device);
  883. rt_interrupt_leave();
  884. }
  885. /**
  886. * @brief This function handles CAN1 RX0 interrupts.
  887. */
  888. void CAN1_RX0_IRQHandler(void)
  889. {
  890. rt_interrupt_enter();
  891. _can_rx_isr(&dev_can1.device, CAN_RX_FIFO0);
  892. rt_interrupt_leave();
  893. }
  894. /**
  895. * @brief This function handles CAN1 RX1 interrupts.
  896. */
  897. void CAN1_RX1_IRQHandler(void)
  898. {
  899. rt_interrupt_enter();
  900. _can_rx_isr(&dev_can1.device, CAN_RX_FIFO1);
  901. rt_interrupt_leave();
  902. }
  903. /**
  904. * @brief This function handles CAN1 EWMC interrupts.
  905. */
  906. void CAN1_EWMC_IRQHandler(void)
  907. {
  908. rt_interrupt_enter();
  909. _can_ewmc_isr(&dev_can1.device);
  910. rt_interrupt_leave();
  911. }
  912. #endif /* BSP_USING_CAN1 */
  913. // void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
  914. // {
  915. // can_interrupt_enable(hcan, CAN_INT_WERR |
  916. // CAN_INT_PERR |
  917. // CAN_INT_BO |
  918. // CAN_INT_ERRN |
  919. // CAN_INT_ERR |
  920. // CAN_INT_RFNE0 |
  921. // CAN_INT_RFO0 |
  922. // CAN_INT_RFF0 |
  923. // CAN_INT_RFNE1 |
  924. // CAN_INT_RFO1 |
  925. // CAN_INT_RFF1 |
  926. // CAN_INT_TME);
  927. // }
  928. int rt_hw_can_init(void)
  929. {
  930. struct can_configure config = CANDEFAULTCONFIG;
  931. config.privmode = RT_CAN_MODE_NOPRIV;
  932. config.ticks = 50;
  933. #ifdef RT_CAN_USING_HDR
  934. config.maxhdr = 14;
  935. #ifdef CAN1
  936. config.maxhdr = 28;
  937. #endif
  938. #endif
  939. gd32_can_gpio_init();
  940. /* config default filter */
  941. can_filter_parameter_struct filter_config = {0};
  942. can_struct_para_init(CAN_FILTER_STRUCT, &filter_config);
  943. filter_config.filter_list_high = 0x0000;
  944. filter_config.filter_list_low = 0x0000;
  945. filter_config.filter_mask_high = 0x0000;
  946. filter_config.filter_mask_low = 0x0000;
  947. filter_config.filter_fifo_number = CAN_FIFO0;
  948. filter_config.filter_number = 0;
  949. filter_config.filter_mode = CAN_FILTERMODE_MASK;
  950. filter_config.filter_bits = CAN_FILTERBITS_32BIT;
  951. filter_config.filter_enable = ENABLE;
  952. #ifdef BSP_USING_CAN0
  953. filter_config.filter_number = 0;
  954. dev_can0.filter_config = filter_config;
  955. dev_can0.device.config = config;
  956. /* register CAN1 device */
  957. rt_hw_can_register(&dev_can0.device,
  958. dev_can0.name,
  959. &_can_ops,
  960. &dev_can0);
  961. #endif /* BSP_USING_CAN0 */
  962. #ifdef BSP_USING_CAN1
  963. filter_config.filter_number = 14;
  964. dev_can1.filter_config = filter_config;
  965. dev_can1.device.config = config;
  966. /* register CAN2 device */
  967. rt_hw_can_register(&dev_can1.device,
  968. dev_can1.name,
  969. &_can_ops,
  970. &dev_can1);
  971. #endif /* BSP_USING_CAN1 */
  972. return 0;
  973. }
  974. INIT_BOARD_EXPORT(rt_hw_can_init);
  975. #endif /* BSP_USING_CAN */
  976. /************************** end of file ******************/