sysctl_pwr.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775
  1. /* Copyright (c) 2023, Canaan Bright Sight Co., Ltd
  2. *
  3. * Redistribution and use in source and binary forms, with or without
  4. * modification, are permitted provided that the following conditions are met:
  5. * 1. Redistributions of source code must retain the above copyright
  6. * notice, this list of conditions and the following disclaimer.
  7. * 2. Redistributions in binary form must reproduce the above copyright
  8. * notice, this list of conditions and the following disclaimer in the
  9. * documentation and/or other materials provided with the distribution.
  10. *
  11. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
  12. * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  13. * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  14. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  15. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
  16. * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  17. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  18. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  19. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  20. * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  21. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  22. * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  23. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  24. */
  25. #include <rtthread.h>
  26. #include <rthw.h>
  27. #include <stdio.h>
  28. #include "sysctl_pwr.h"
  29. #include "drv_hardlock.h"
  30. #include "ioremap.h"
  31. #include "board.h"
  32. volatile sysctl_pwr_s* sysctl_pwr = (volatile sysctl_pwr_s*)PWR_BASE_ADDR;
  33. /*****************************************************************************************
  34. * SET POWER DOMAIN'S TIME
  35. * powerdomain:power domain
  36. * timtype: idleReq_to_idleAck, idleAck_to_idle.....
  37. * tim_value: ack_to_tim, idle_to_tim......
  38. *****************************************************************************************/
  39. /* ack timeout value, lpi idleReq to idleAck */
  40. bool sysctl_pwr_set_ack_to_tim(volatile uint32_t *reg, uint32_t ack_to_tim)
  41. {
  42. volatile uint32_t *ret = reg;
  43. if((NULL == reg) || (ack_to_tim > 0x1F))
  44. return false;
  45. else
  46. {
  47. *ret &= 0xffffffe0;
  48. *reg = (*ret) | (ack_to_tim << 0);
  49. return true;
  50. }
  51. }
  52. /* idle timeout value, lpi idleAck to idle */
  53. bool sysctl_pwr_set_idle_to_tim(volatile uint32_t *reg, uint32_t idle_to_tim)
  54. {
  55. volatile uint32_t *ret = reg;
  56. if((NULL == reg) || (idle_to_tim > 0x1F))
  57. return false;
  58. else
  59. {
  60. *ret &= 0xffffe0ff;
  61. *reg = (*ret) | (idle_to_tim << 8);
  62. return true;
  63. }
  64. }
  65. /* NOC power controller in idle min time, idle to idelReq(inactive) */
  66. bool sysctl_pwr_set_idle_hd_tim(volatile uint32_t *reg, uint32_t idle_hd_tim)
  67. {
  68. volatile uint32_t *ret = reg;
  69. if((NULL == reg) || (idle_hd_tim > 0x3F))
  70. return false;
  71. else
  72. {
  73. *ret &= 0xffc0ffff;
  74. *reg = (*ret) | (idle_hd_tim << 16);
  75. return true;
  76. }
  77. }
  78. /*
  79. * After turning ISO on/off, you need to wait for a while to ensure that the
  80. * isolation cells in the power domain are actually enabled/disabled.
  81. */
  82. bool sysctl_pwr_set_iso_su_tim(volatile uint32_t *reg, uint32_t iso_su_tim)
  83. {
  84. volatile uint32_t *ret = reg;
  85. if((NULL == reg) || (iso_su_tim > 0xF))
  86. return false;
  87. else
  88. {
  89. *ret &= 0xfffffff0;
  90. *reg = (*ret) | (iso_su_tim << 0);
  91. return true;
  92. }
  93. }
  94. /*
  95. * After powering off a power domain, it takes some time to exit the
  96. * power-off state.
  97. */
  98. bool sysctl_pwr_set_pd_hd_tim(volatile uint32_t *reg, uint32_t pd_hd_tim)
  99. {
  100. volatile uint32_t *ret = reg;
  101. if((NULL == reg) || (pd_hd_tim > 0xFF))
  102. return false;
  103. else
  104. {
  105. *ret &= 0xfffff00f;
  106. *reg = (*ret) | (pd_hd_tim << 4);
  107. return true;
  108. }
  109. }
  110. /*
  111. * After restoring the power supply of a power domain (bringup), you need to
  112. * wait for a period of time to ensure that the power supply of the power domain
  113. * is fully restored.
  114. */
  115. bool sysctl_pwr_set_pwr_su_tim(volatile uint32_t *reg, uint32_t pwr_su_tim)
  116. {
  117. volatile uint32_t *ret = reg;
  118. if((NULL == reg) || (pwr_su_tim > 0xFF))
  119. return false;
  120. else
  121. {
  122. *ret &= 0xfff00fff;
  123. *reg = (*ret) | (pwr_su_tim << 12);
  124. return true;
  125. }
  126. }
  127. /* set cpu1 wait for interrupt time */
  128. bool sysctl_pwr_set_wfi_tim(volatile uint32_t *reg, uint32_t wfi_tim)
  129. {
  130. volatile uint32_t *ret = reg;
  131. if((NULL == reg) || (wfi_tim > 0xFFF))
  132. return false;
  133. else
  134. {
  135. *ret &= 0x000fffff;
  136. *reg = (*ret) | (wfi_tim << 20);
  137. return true;
  138. }
  139. }
  140. bool sysctl_pwr_set_tim(sysctl_pwr_domain_e powerdomain, sysctl_pwr_tim_e timtype, uint32_t tim_value)
  141. {
  142. volatile uint32_t *pwr_reg = NULL;
  143. volatile uint32_t *lpi_reg = NULL;
  144. volatile uint32_t *wfi_reg = NULL;
  145. if((powerdomain >= SYSCTL_PD_MAX) || (timtype >= SYSCTL_PWR_MAX_TIM))
  146. return false;
  147. switch(powerdomain)
  148. {
  149. case SYSCTL_PD_CPU1:
  150. {
  151. pwr_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_pwr_tim;
  152. lpi_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_lpi_tim;
  153. wfi_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_pwr_tim;
  154. break;
  155. }
  156. case SYSCTL_PD_AI:
  157. {
  158. pwr_reg = (volatile uint32_t *)&sysctl_pwr->ai_pwr_tim;
  159. lpi_reg = (volatile uint32_t *)&sysctl_pwr->ai_lpi_tim;
  160. break;
  161. }
  162. case SYSCTL_PD_DISP:
  163. {
  164. pwr_reg = (volatile uint32_t *)&sysctl_pwr->disp_pwr_tim;
  165. lpi_reg = (volatile uint32_t *)&sysctl_pwr->disp_lpi_tim;
  166. break;
  167. }
  168. case SYSCTL_PD_VPU:
  169. {
  170. pwr_reg = (volatile uint32_t *)&sysctl_pwr->vpu_pwr_tim;
  171. lpi_reg = (volatile uint32_t *)&sysctl_pwr->vpu_lpi_tim;
  172. break;
  173. }
  174. case SYSCTL_PD_DPU:
  175. {
  176. pwr_reg = (volatile uint32_t *)&sysctl_pwr->dpu_pwr_tim;
  177. lpi_reg = (volatile uint32_t *)&sysctl_pwr->dpu_lpi_tim;
  178. break;
  179. }
  180. default:
  181. return false;
  182. }
  183. switch(timtype)
  184. {
  185. case SYSCTL_PWR_ACK_TO_TIM:
  186. return sysctl_pwr_set_ack_to_tim(pwr_reg, tim_value);
  187. case SYSCTL_PWR_IDLE_TO_TIM:
  188. return sysctl_pwr_set_idle_to_tim(pwr_reg, tim_value);
  189. case SYSCTL_PWR_IDLE_HD_TIM:
  190. return sysctl_pwr_set_idle_hd_tim(pwr_reg, tim_value);
  191. case SYSCTL_PWR_ISO_SU_TIM:
  192. return sysctl_pwr_set_iso_su_tim(lpi_reg, tim_value);
  193. case SYSCTL_PWR_PD_HD_TIM:
  194. return sysctl_pwr_set_pd_hd_tim(lpi_reg, tim_value);
  195. case SYSCTL_PWR_SU_TIM:
  196. return sysctl_pwr_set_pwr_su_tim(lpi_reg, tim_value);
  197. case SYSCTL_PWR_WFI_TIM:
  198. return sysctl_pwr_set_wfi_tim(wfi_reg,tim_value);
  199. default:
  200. return false;
  201. }
  202. }
  203. /*****************************************************************************************
  204. * GET POWER DOMAIN'S TIME
  205. * powerdomain:power domain
  206. * timtype: idleReq_to_idleAck, idleAck_to_idle.....
  207. * tim_value: ack_to_tim, idle_to_tim......
  208. *****************************************************************************************/
  209. /* ack timeout value, lpi idleReq to idleAck */
  210. bool sysctl_pwr_get_ack_to_tim(volatile uint32_t *reg, uint32_t *ack_to_tim)
  211. {
  212. if((NULL == reg) || (NULL == ack_to_tim))
  213. return false;
  214. *ack_to_tim = ((*reg) >> 0) & 0x1F;
  215. return true;
  216. }
  217. /* idle timeout value, lpi idleAck to idle */
  218. bool sysctl_pwr_get_idle_to_tim(volatile uint32_t *reg, uint32_t *idle_to_tim)
  219. {
  220. if((NULL == reg) || (NULL == idle_to_tim))
  221. return false;
  222. *idle_to_tim = ((*reg) >> 8) & 0x1F;
  223. return true;
  224. }
  225. /* NOC power controller in idle min time, idle to idelReq(inactive) */
  226. bool sysctl_pwr_get_idle_hd_tim(volatile uint32_t *reg, uint32_t *idle_hd_tim)
  227. {
  228. if((NULL == reg) || (NULL == idle_hd_tim))
  229. return false;
  230. *idle_hd_tim = ((*reg) >> 16) & 0x3F;
  231. return true;
  232. }
  233. /*
  234. * After turning ISO on/off, you need to wait for a while to ensure that the
  235. * isolation cells in the power domain are actually enabled/disabled.
  236. */
  237. bool sysctl_pwr_get_iso_su_tim(volatile uint32_t *reg, uint32_t *iso_su_tim)
  238. {
  239. if((NULL == reg) || (NULL == iso_su_tim))
  240. return false;
  241. *iso_su_tim = ((*reg) >> 0) & 0xF;
  242. return true;
  243. }
  244. /*
  245. * After powering off a power domain, it takes some time to exit the power-off
  246. * state.
  247. */
  248. bool sysctl_pwr_get_pd_hd_tim(volatile uint32_t *reg, uint32_t *pd_hd_tim)
  249. {
  250. if((NULL == reg) || (NULL == pd_hd_tim))
  251. return false;
  252. *pd_hd_tim = ((*reg) >> 4) & 0xFF;
  253. return true;
  254. }
  255. /*
  256. * After restoring the power supply of a power domain (bringup), you need to
  257. * wait for a period of time to ensure that the power supply of the power domain
  258. * is fully restored.
  259. */
  260. bool sysctl_pwr_get_pwr_su_tim(volatile uint32_t *reg, uint32_t *pwr_su_tim)
  261. {
  262. if((NULL == reg) || (NULL == pwr_su_tim))
  263. return false;
  264. *pwr_su_tim = ((*reg) >> 12) & 0xFF;
  265. return true;
  266. }
  267. /* cpu1 wait for interrupt time */
  268. bool sysctl_pwr_get_wfi_tim(volatile uint32_t *reg, uint32_t *wfi_tim)
  269. {
  270. if((NULL == reg) || (NULL == wfi_tim))
  271. return false;
  272. *wfi_tim = (*reg >> 20) & 0xFFF;
  273. return true;
  274. }
  275. bool sysctl_pwr_get_tim(sysctl_pwr_domain_e powerdomain, sysctl_pwr_tim_e timtype, uint32_t *tim_value)
  276. {
  277. volatile uint32_t *pwr_reg = NULL;
  278. volatile uint32_t *lpi_reg = NULL;
  279. volatile uint32_t *wfi_reg = NULL;
  280. if((powerdomain >= SYSCTL_PD_MAX) || (timtype >= SYSCTL_PWR_MAX_TIM))
  281. return false;
  282. switch(powerdomain)
  283. {
  284. case SYSCTL_PD_CPU1:
  285. {
  286. pwr_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_pwr_tim;
  287. lpi_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_lpi_tim;
  288. wfi_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_pwr_tim;
  289. break;
  290. }
  291. case SYSCTL_PD_AI:
  292. {
  293. pwr_reg = (volatile uint32_t *)&sysctl_pwr->ai_pwr_tim;
  294. lpi_reg = (volatile uint32_t *)&sysctl_pwr->ai_lpi_tim;
  295. break;
  296. }
  297. case SYSCTL_PD_DISP:
  298. {
  299. pwr_reg = (volatile uint32_t *)&sysctl_pwr->disp_pwr_tim;
  300. lpi_reg = (volatile uint32_t *)&sysctl_pwr->disp_lpi_tim;
  301. break;
  302. }
  303. case SYSCTL_PD_VPU:
  304. {
  305. pwr_reg = (volatile uint32_t *)&sysctl_pwr->vpu_pwr_tim;
  306. lpi_reg = (volatile uint32_t *)&sysctl_pwr->vpu_lpi_tim;
  307. break;
  308. }
  309. case SYSCTL_PD_DPU:
  310. {
  311. pwr_reg = (volatile uint32_t *)&sysctl_pwr->dpu_pwr_tim;
  312. lpi_reg = (volatile uint32_t *)&sysctl_pwr->dpu_lpi_tim;
  313. break;
  314. }
  315. default:
  316. return false;
  317. }
  318. switch(timtype)
  319. {
  320. case SYSCTL_PWR_ACK_TO_TIM:
  321. return sysctl_pwr_get_ack_to_tim(pwr_reg, tim_value);
  322. case SYSCTL_PWR_IDLE_TO_TIM:
  323. return sysctl_pwr_get_idle_to_tim(pwr_reg, tim_value);
  324. case SYSCTL_PWR_IDLE_HD_TIM:
  325. return sysctl_pwr_get_idle_hd_tim(pwr_reg, tim_value);
  326. case SYSCTL_PWR_ISO_SU_TIM:
  327. return sysctl_pwr_get_iso_su_tim(lpi_reg, tim_value);
  328. case SYSCTL_PWR_PD_HD_TIM:
  329. return sysctl_pwr_get_pd_hd_tim(lpi_reg, tim_value);
  330. case SYSCTL_PWR_SU_TIM:
  331. return sysctl_pwr_get_pwr_su_tim(lpi_reg, tim_value);
  332. case SYSCTL_PWR_WFI_TIM:
  333. return sysctl_pwr_get_wfi_tim(wfi_reg,tim_value);
  334. default:
  335. return false;
  336. }
  337. }
  338. /*****************************************************************************************
  339. * CPU1 KEEP RESET IN POWEROFF MODE
  340. * powerdomain: power domain
  341. * enable: poweron, keep reset; poweroff, remove reset
  342. *****************************************************************************************/
  343. /* It will not be powered off when not working and can be in a reset state */
  344. bool sysctl_pwr_set_poweroff_keep_reset(sysctl_pwr_domain_e powerdomain, bool enable)
  345. {
  346. volatile uint32_t ret;
  347. if(SYSCTL_PD_CPU1 == powerdomain)
  348. {
  349. ret = sysctl_pwr->cpu1_pwr_lpi_ctl;
  350. ret &= 0xfff7fff7;
  351. if(true == enable)
  352. {
  353. sysctl_pwr->cpu1_pwr_lpi_ctl = ret | ((1 << 3) | (1 << 19));
  354. }
  355. else
  356. {
  357. sysctl_pwr->cpu1_pwr_lpi_ctl = ret | ((0 << 3) | (1 << 19));
  358. }
  359. return true;
  360. }
  361. else
  362. {
  363. return false;
  364. }
  365. }
  366. bool sysctl_pwr_get_poweroff_keep_reset(sysctl_pwr_domain_e powerdomain, bool *enable)
  367. {
  368. if(SYSCTL_PD_CPU1 == powerdomain)
  369. {
  370. if(sysctl_pwr->cpu1_pwr_lpi_ctl & (1 << 3))
  371. *enable = true;
  372. else
  373. *enable = false;
  374. return true;
  375. }
  376. else
  377. {
  378. return false;
  379. }
  380. }
  381. /*****************************************************************************************
  382. * CPU1 AUTO POWERUP OR POWERDOWN
  383. * powerdomain: power domain
  384. * enable: poweron, enable power control unit auto control mode; poweroff, disable auto
  385. *****************************************************************************************/
  386. /*
  387. * In MAIX3, CPU0 and CPU1 power domains support automatic power on and off
  388. * management.
  389. */
  390. bool sysctl_pwr_set_auto_pwr(sysctl_pwr_domain_e powerdomain, bool enable)
  391. {
  392. volatile uint32_t ret;
  393. if(SYSCTL_PD_CPU1 == powerdomain)
  394. {
  395. ret = sysctl_pwr->cpu1_pwr_lpi_ctl;
  396. ret &= 0xfffbfffb;
  397. if(true == enable)
  398. {
  399. sysctl_pwr->cpu1_pwr_lpi_ctl = ret | ((1 << 2) | (1 << 18));
  400. }
  401. else
  402. {
  403. sysctl_pwr->cpu1_pwr_lpi_ctl = ret | ((0 << 2) | (1 << 18));
  404. }
  405. return true;
  406. }
  407. else
  408. {
  409. return false;
  410. }
  411. }
  412. bool sysctl_pwr_get_auto_pwr(sysctl_pwr_domain_e powerdomain, bool *enable)
  413. {
  414. if(SYSCTL_PD_CPU1 == powerdomain)
  415. {
  416. if(sysctl_pwr->cpu1_pwr_lpi_ctl & (1 << 2))
  417. *enable = true;
  418. else
  419. *enable = false;
  420. return true;
  421. }
  422. else
  423. {
  424. return false;
  425. }
  426. }
  427. /*****************************************************************************************
  428. * POWER DOMAIN REPAIR
  429. * powerdomain: power domain
  430. *****************************************************************************************/
  431. /* When powering up, set the power domain to repair */
  432. bool sysctl_pwr_set_repair_enable(sysctl_pwr_domain_e powerdomain)
  433. {
  434. switch(powerdomain)
  435. {
  436. case SYSCTL_PD_AI:
  437. sysctl_pwr->ai_pwr_lpi_ctl |= (1 << 4) | (1 << 20);
  438. return true;
  439. default:
  440. return false;
  441. }
  442. }
  443. bool sysctl_pwr_check_repair_done(sysctl_pwr_domain_e powerdomain)
  444. {
  445. switch(powerdomain)
  446. {
  447. case SYSCTL_PD_AI:
  448. return (sysctl_pwr->repair_status & (1 << 1)) ? true:false;
  449. case SYSCTL_PD_MAX:
  450. return (sysctl_pwr->repair_status & (1 << 2)) ? true:false;
  451. default:
  452. return false;
  453. }
  454. }
  455. /*****************************************************************************************
  456. * NOC POWER CONTROLLER
  457. * powerdomain: power domain
  458. * enable: true, connect noc, exit idle mode; false, disconnect noc, go idle mode.
  459. *****************************************************************************************/
  460. /*
  461. * Set different power domains to disconnect/connect to NOC and enter/leave
  462. * idle state.
  463. */
  464. bool sysctl_pwr_set_lpi(sysctl_pwr_domain_e powerdomain, bool enable)
  465. {
  466. switch(powerdomain)
  467. {
  468. case SYSCTL_PD_CPU1:
  469. {
  470. sysctl_pwr->cpu1_pwr_lpi_ctl |= (true == enable) ? ((1 << 5) | (1 << 21)) : ((1 << 4) | (1 << 20));
  471. /* usleep(500); */
  472. rt_thread_delay(1);
  473. if(true == enable)
  474. return (sysctl_pwr->cpu1_pwr_lpi_state & (1 << 3)) ? true:false;
  475. else
  476. return (sysctl_pwr->cpu1_pwr_lpi_state & (1 << 2)) ? true:false;
  477. }
  478. case SYSCTL_PD_AI:
  479. {
  480. sysctl_pwr->ai_pwr_lpi_ctl |= (true == enable) ? ((1 << 3) | (1 << 19)) : ((1 << 2) | (1 << 18));
  481. /* usleep(500); */
  482. rt_thread_delay(1);
  483. if(true == enable)
  484. return (sysctl_pwr->ai_pwr_lpi_state & (1 << 3)) ? true:false;
  485. else
  486. return (sysctl_pwr->ai_pwr_lpi_state & (1 << 2)) ? true:false;
  487. }
  488. case SYSCTL_PD_DISP:
  489. {
  490. sysctl_pwr->disp_lpi_ctl |= (true == enable) ? ((1 << 3) | (1 << 19)) : ((1 << 2) | (1 << 18));
  491. /* usleep(500); */
  492. rt_thread_delay(1);
  493. if(true == enable)
  494. return (sysctl_pwr->disp_lpi_state & (1 << 3)) ? true:false;
  495. else
  496. return (sysctl_pwr->disp_lpi_state & (1 << 2)) ? true:false;
  497. }
  498. case SYSCTL_PD_VPU:
  499. {
  500. sysctl_pwr->vpu_pwr_lpi_ctl |= (true == enable) ? ((1 << 3) | (1 << 19)) : ((1 << 2) | (1 << 18));
  501. /* usleep(500); */
  502. rt_thread_delay(1);
  503. if(true == enable)
  504. return (sysctl_pwr->vpu_lpi_state & (1 << 3)) ? true:false;
  505. else
  506. return (sysctl_pwr->vpu_lpi_state & (1 << 2)) ? true:false;
  507. }
  508. case SYSCTL_PD_DPU:
  509. {
  510. sysctl_pwr->dpu_pwr_lpi_ctl |= (true == enable) ? ((1 << 3) | (1 << 19)) : ((1 << 2) | (1 << 18));
  511. /* usleep(500); */
  512. rt_thread_delay(1);
  513. if(true == enable)
  514. return (sysctl_pwr->dpu_pwr_lpi_state & (1 << 3)) ? true:false;
  515. else
  516. return (sysctl_pwr->dpu_pwr_lpi_state & (1 << 2)) ? true:false;
  517. }
  518. default:
  519. return false;
  520. }
  521. }
  522. /*****************************************************************************************
  523. * POWER DOMAIN ON OR OFF
  524. * powerdomain: power domain
  525. * enable: true for powerup, false for poweroff.
  526. *****************************************************************************************/
  527. bool sysctl_pwr_set_pwr_reg(volatile uint32_t *regctl, volatile uint32_t *regsta, bool enable)
  528. {
  529. /* enable==true, power on; enable==false, power off */
  530. uint32_t mask;
  531. mask = enable ? 0x2 : 0x1;
  532. if (*regsta & mask)
  533. return true;
  534. *regctl = (0x30000 | mask);
  535. for (int i = 0; i < 100; i++)
  536. {
  537. if (*regsta & mask)
  538. return true;
  539. for (int j = 0; j < 5000; j++);
  540. }
  541. return false;
  542. }
  543. bool sysctl_pwr_set_power(sysctl_pwr_domain_e powerdomain, bool enable)
  544. {
  545. volatile uint32_t *pwr_ctl_reg = NULL;
  546. volatile uint32_t *pwr_sta_reg = NULL;
  547. switch(powerdomain)
  548. {
  549. case SYSCTL_PD_CPU1:
  550. {
  551. pwr_ctl_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_pwr_lpi_ctl;
  552. pwr_sta_reg = (volatile uint32_t *)&sysctl_pwr->cpu1_pwr_lpi_state;
  553. break;
  554. }
  555. case SYSCTL_PD_AI:
  556. {
  557. pwr_ctl_reg = (volatile uint32_t *)&sysctl_pwr->ai_pwr_lpi_ctl;
  558. pwr_sta_reg = (volatile uint32_t *)&sysctl_pwr->ai_pwr_lpi_state;
  559. break;
  560. }
  561. case SYSCTL_PD_DISP:
  562. {
  563. pwr_ctl_reg = (volatile uint32_t *)&sysctl_pwr->disp_lpi_ctl;
  564. pwr_sta_reg = (volatile uint32_t *)&sysctl_pwr->disp_lpi_state;
  565. break;
  566. }
  567. case SYSCTL_PD_VPU:
  568. {
  569. pwr_ctl_reg = (volatile uint32_t *)&sysctl_pwr->vpu_pwr_lpi_ctl;
  570. pwr_sta_reg = (volatile uint32_t *)&sysctl_pwr->vpu_lpi_state;
  571. break;
  572. }
  573. case SYSCTL_PD_DPU:
  574. {
  575. pwr_ctl_reg = (volatile uint32_t *)&sysctl_pwr->dpu_pwr_lpi_ctl;
  576. pwr_sta_reg = (volatile uint32_t *)&sysctl_pwr->dpu_pwr_lpi_state;
  577. break;
  578. }
  579. default:
  580. return false;
  581. }
  582. /* repair powerdomain */
  583. /* only powerup need repair */
  584. if(true == enable)
  585. {
  586. (void)sysctl_pwr_set_repair_enable(powerdomain);
  587. }
  588. return sysctl_pwr_set_pwr_reg(pwr_ctl_reg, pwr_sta_reg, enable);
  589. }
  590. bool sysctl_pwr_set_power_multi(sysctl_pwr_domain_e powerdomain, bool enable)
  591. {
  592. bool ret = true;
  593. rt_base_t level;
  594. static uint32_t ref_count[SYSCTL_PD_MAX];
  595. /*
  596. 1. enable step for non-DISP power domains:
  597. a. disable interrupt
  598. b. judge ref_count, if == 0, execute sysctl_pwr_set_pwr_reg
  599. c. ref_count++, limit UINT32_MAX
  600. d. enable interrupt
  601. 2. disable step for non-DISP power domains:
  602. a. disable interrupt
  603. b. judge ref_count, if == 0, go step d
  604. c. ref_count--, judge ref_count, if == 0, execute sysctl_pwr_set_pwr_reg
  605. d. enable interrupt
  606. 3. enable step for DISP power domains:
  607. a. disable interrupt
  608. b. judge ref_count, if == 0, execute
  609. b.1 get HARDLOCK_DISP
  610. b.2 get HARDLOCK_DISP_CPU1
  611. b.3 execute sysctl_pwr_set_pwr_reg
  612. b.4 put HARDLOCK_DISP
  613. c. ref_count++, limit UINT32_MAX
  614. d. enable interrupt
  615. 4. disable step for DISP power domains:
  616. a. disable interrupt
  617. b. judge ref_count, if == 0, go step e
  618. c. ref_count--, judge ref_count, if == 0, execute
  619. c.1 get HARDLOCK_DISP
  620. c.2 qeury HARDLOCK_DISP_CPU0, if no get, go step c.4
  621. c.3 put HARDLOCK_DISP_CPU0, execute sysctl_pwr_set_pwr_reg
  622. c.4 put HARDLOCK_DISP_CPU1
  623. c.5 put HARDLOCK_DISP
  624. d. enable interrupt
  625. */
  626. level = rt_hw_interrupt_disable();
  627. if (enable == true)
  628. {
  629. if (ref_count[powerdomain] == 0)
  630. {
  631. if (powerdomain == SYSCTL_PD_DISP)
  632. {
  633. while (kd_hardlock_lock(HARDLOCK_DISP));
  634. kd_hardlock_lock(HARDLOCK_DISP_CPU1);
  635. ret = sysctl_pwr_set_power(powerdomain, enable);
  636. kd_hardlock_unlock(HARDLOCK_DISP);
  637. } else {
  638. ret = sysctl_pwr_set_power(powerdomain, enable);
  639. }
  640. }
  641. ref_count[powerdomain]++;
  642. if (ref_count[powerdomain] == UINT32_MAX)
  643. rt_kprintf("error: enable too many times\n");
  644. } else if (ref_count[powerdomain])
  645. {
  646. ref_count[powerdomain]--;
  647. if (ref_count[powerdomain] == 0)
  648. {
  649. if (powerdomain == SYSCTL_PD_DISP)
  650. {
  651. while (kd_hardlock_lock(HARDLOCK_DISP));
  652. if (kd_hardlock_lock(HARDLOCK_DISP_CPU0) == 0)
  653. {
  654. kd_hardlock_unlock(HARDLOCK_DISP_CPU0);
  655. ret = sysctl_pwr_set_power(powerdomain, enable);
  656. }
  657. kd_hardlock_unlock(HARDLOCK_DISP_CPU1);
  658. kd_hardlock_unlock(HARDLOCK_DISP);
  659. } else {
  660. ret = sysctl_pwr_set_power(powerdomain, enable);
  661. }
  662. }
  663. }
  664. rt_hw_interrupt_enable(level);
  665. return ret;
  666. }
  667. /* Power Domain Power-up */
  668. bool sysctl_pwr_up(sysctl_pwr_domain_e powerdomain)
  669. {
  670. return sysctl_pwr_set_power_multi(powerdomain, true);
  671. }
  672. /* Power off a power domain */
  673. bool sysctl_pwr_off(sysctl_pwr_domain_e powerdomain)
  674. {
  675. return sysctl_pwr_set_power_multi(powerdomain, false);
  676. }
  677. int rt_hw_sysctl_pwr_init(void)
  678. {
  679. sysctl_pwr = rt_ioremap((void*)PWR_BASE_ADDR, PWR_IO_SIZE);
  680. if(!sysctl_pwr)
  681. {
  682. rt_kprintf("sysctl_pwr ioremap error\n");
  683. return -1;
  684. }
  685. return 0;
  686. }
  687. INIT_BOARD_EXPORT(rt_hw_sysctl_pwr_init);