drv_spi.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165
  1. /*
  2. * Copyright (c) 2006-2025 RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef BSP_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. /*#define DRV_DEBUG*/
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. }
  94. else if (cfg->data_width == 16)
  95. {
  96. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  97. }
  98. else
  99. {
  100. return -RT_EIO;
  101. }
  102. if (cfg->mode & RT_SPI_CPHA)
  103. {
  104. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  105. }
  106. else
  107. {
  108. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  109. }
  110. if (cfg->mode & RT_SPI_CPOL)
  111. {
  112. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  113. }
  114. else
  115. {
  116. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  117. }
  118. spi_handle->Init.NSS = SPI_NSS_SOFT;
  119. uint32_t SPI_CLOCK = 0UL;
  120. /* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */
  121. #if defined(APBPERIPH_BASE)
  122. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  123. #elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
  124. /* The SPI clock for H7 cannot be configured with a peripheral bus clock, so it needs to be written separately */
  125. #if defined(SOC_SERIES_STM32H7)
  126. /* When the configuration is generated using CUBEMX, the configuration for the SPI clock is placed in the HAL_SPI_Init function.
  127. Therefore, it is necessary to initialize and configure the SPI clock to automatically configure the frequency division */
  128. HAL_SPI_Init(spi_handle);
  129. SPI_CLOCK = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
  130. #else
  131. if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE)
  132. {
  133. SPI_CLOCK = HAL_RCC_GetPCLK2Freq();
  134. }
  135. else
  136. {
  137. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  138. }
  139. #endif /* SOC_SERIES_STM32H7) */
  140. #endif /* APBPERIPH_BASE */
  141. if (cfg->max_hz >= SPI_CLOCK / 2)
  142. {
  143. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  144. }
  145. else if (cfg->max_hz >= SPI_CLOCK / 4)
  146. {
  147. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  148. }
  149. else if (cfg->max_hz >= SPI_CLOCK / 8)
  150. {
  151. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  152. }
  153. else if (cfg->max_hz >= SPI_CLOCK / 16)
  154. {
  155. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  156. }
  157. else if (cfg->max_hz >= SPI_CLOCK / 32)
  158. {
  159. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  160. }
  161. else if (cfg->max_hz >= SPI_CLOCK / 64)
  162. {
  163. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  164. }
  165. else if (cfg->max_hz >= SPI_CLOCK / 128)
  166. {
  167. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  168. }
  169. else
  170. {
  171. /* min prescaler 256 */
  172. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  173. }
  174. LOG_D("sys freq: %d, pclk freq: %d, SPI limiting freq: %d, SPI usage freq: %d",
  175. #if defined(SOC_SERIES_STM32MP1)
  176. HAL_RCC_GetSystemCoreClockFreq(),
  177. #else
  178. HAL_RCC_GetSysClockFreq(),
  179. #endif
  180. SPI_CLOCK,
  181. cfg->max_hz,
  182. SPI_CLOCK / (rt_size_t)pow(2,(spi_handle->Init.BaudRatePrescaler >> 28) + 1));
  183. if (cfg->mode & RT_SPI_MSB)
  184. {
  185. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  186. }
  187. else
  188. {
  189. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  190. }
  191. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  192. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  193. spi_handle->State = HAL_SPI_STATE_RESET;
  194. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  195. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  196. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  197. spi_handle->Init.Mode = SPI_MODE_MASTER;
  198. spi_handle->Init.NSS = SPI_NSS_SOFT;
  199. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  200. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  201. spi_handle->Init.CRCPolynomial = 7;
  202. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  203. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  204. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  205. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  206. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  207. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  208. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  209. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
  210. #endif
  211. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  212. {
  213. return -RT_EIO;
  214. }
  215. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  216. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  217. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  218. #endif
  219. /* DMA configuration */
  220. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  221. {
  222. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  223. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  224. /* NVIC configuration for DMA transfer complete interrupt */
  225. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  226. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  227. }
  228. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  229. {
  230. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  231. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  232. /* NVIC configuration for DMA transfer complete interrupt */
  233. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 1, 0);
  234. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  235. }
  236. if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  237. {
  238. HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
  239. HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
  240. }
  241. LOG_D("%s init done", spi_drv->config->bus_name);
  242. return RT_EOK;
  243. }
  244. static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  245. {
  246. #define DMA_TRANS_MIN_LEN 10 /* only buffer length >= DMA_TRANS_MIN_LEN will use DMA mode */
  247. HAL_StatusTypeDef state = HAL_OK;
  248. rt_size_t message_length, already_send_length;
  249. rt_uint16_t send_length;
  250. rt_uint8_t *recv_buf;
  251. const rt_uint8_t *send_buf;
  252. RT_ASSERT(device != RT_NULL);
  253. RT_ASSERT(device->bus != RT_NULL);
  254. RT_ASSERT(message != RT_NULL);
  255. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  256. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  257. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  258. {
  259. if (device->config.mode & RT_SPI_CS_HIGH)
  260. {
  261. rt_pin_write(device->cs_pin, PIN_HIGH);
  262. }
  263. else
  264. {
  265. rt_pin_write(device->cs_pin, PIN_LOW);
  266. }
  267. }
  268. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  269. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  270. spi_drv->config->bus_name,
  271. (uint32_t)message->send_buf,
  272. (uint32_t)message->recv_buf, message->length);
  273. message_length = message->length;
  274. recv_buf = message->recv_buf;
  275. send_buf = message->send_buf;
  276. while (message_length)
  277. {
  278. /* the HAL library use uint16 to save the data length */
  279. if (message_length > 65535)
  280. {
  281. send_length = 65535;
  282. message_length = message_length - 65535;
  283. }
  284. else
  285. {
  286. send_length = message_length;
  287. message_length = 0;
  288. }
  289. /* calculate the start address */
  290. already_send_length = message->length - send_length - message_length;
  291. /* avoid null pointer problems */
  292. if (message->send_buf)
  293. {
  294. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  295. }
  296. if (message->recv_buf)
  297. {
  298. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  299. }
  300. rt_uint32_t* dma_aligned_buffer = RT_NULL;
  301. rt_uint32_t* p_txrx_buffer = RT_NULL;
  302. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  303. {
  304. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  305. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 32) && send_buf != RT_NULL) /* aligned with 32 bytes? */
  306. {
  307. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 32 bytes, no more operations */
  308. }
  309. else
  310. {
  311. /* send_buf doesn't align with 32 bytes, so creat a cache buffer with 32 bytes aligned */
  312. dma_aligned_buffer = (rt_uint32_t *)rt_malloc_align(send_length, 32);
  313. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  314. p_txrx_buffer = dma_aligned_buffer;
  315. }
  316. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_aligned_buffer, send_length);
  317. #else
  318. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 4) && send_buf != RT_NULL) /* aligned with 4 bytes? */
  319. {
  320. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 4 bytes, no more operations */
  321. }
  322. else
  323. {
  324. /* send_buf doesn't align with 4 bytes, so creat a cache buffer with 4 bytes aligned */
  325. dma_aligned_buffer = (rt_uint32_t *)rt_malloc(send_length); /* aligned with RT_ALIGN_SIZE (8 bytes by default) */
  326. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  327. p_txrx_buffer = dma_aligned_buffer;
  328. }
  329. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  330. }
  331. else if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  332. {
  333. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  334. if (RT_IS_ALIGN((rt_uint32_t)recv_buf, 32) && recv_buf != RT_NULL) /* aligned with 32 bytes? */
  335. {
  336. p_txrx_buffer = (rt_uint32_t *)recv_buf; /* recv_buf aligns with 32 bytes, no more operations */
  337. }
  338. else
  339. {
  340. /* recv_buf doesn't align with 32 bytes, so creat a cache buffer with 32 bytes aligned */
  341. dma_aligned_buffer = (rt_uint32_t *)rt_malloc_align(send_length, 32);
  342. rt_memcpy(dma_aligned_buffer, recv_buf, send_length);
  343. p_txrx_buffer = dma_aligned_buffer;
  344. }
  345. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_aligned_buffer, send_length);
  346. #else
  347. if (RT_IS_ALIGN((rt_uint32_t)recv_buf, 4) && recv_buf != RT_NULL) /* aligned with 4 bytes? */
  348. {
  349. p_txrx_buffer = (rt_uint32_t *)recv_buf; /* recv_buf aligns with 4 bytes, no more operations */
  350. }
  351. else
  352. {
  353. /* recv_buf doesn't align with 4 bytes, so creat a cache buffer with 4 bytes aligned */
  354. dma_aligned_buffer = (rt_uint32_t *)rt_malloc(send_length); /* aligned with RT_ALIGN_SIZE (8 bytes by default) */
  355. rt_memcpy(dma_aligned_buffer, recv_buf, send_length);
  356. p_txrx_buffer = dma_aligned_buffer;
  357. }
  358. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  359. }
  360. /* start once data exchange in DMA mode */
  361. if (message->send_buf && message->recv_buf)
  362. {
  363. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  364. {
  365. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, (uint8_t *)p_txrx_buffer, send_length);
  366. }
  367. else if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  368. {
  369. /* same as Tx ONLY. It will not receive SPI data any more. */
  370. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  371. }
  372. else if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  373. {
  374. state = HAL_ERROR;
  375. LOG_E("It shoule be enabled both BSP_SPIx_TX_USING_DMA and BSP_SPIx_TX_USING_DMA flag, if wants to use SPI DMA Rx singly.");
  376. break;
  377. }
  378. else
  379. {
  380. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  381. }
  382. }
  383. else if (message->send_buf)
  384. {
  385. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  386. {
  387. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  388. }
  389. else
  390. {
  391. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  392. }
  393. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  394. {
  395. /* release the CS by disable SPI when using 3 wires SPI */
  396. __HAL_SPI_DISABLE(spi_handle);
  397. }
  398. }
  399. else if(message->recv_buf)
  400. {
  401. rt_memset((uint8_t *)recv_buf, 0xff, send_length);
  402. if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  403. {
  404. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  405. }
  406. else
  407. {
  408. /* clear the old error flag */
  409. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  410. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  411. }
  412. }
  413. else
  414. {
  415. state = HAL_ERROR;
  416. LOG_E("message->send_buf and message->recv_buf are both NULL!");
  417. }
  418. if (state != HAL_OK)
  419. {
  420. LOG_E("SPI transfer error: %d", state);
  421. message->length = 0;
  422. spi_handle->State = HAL_SPI_STATE_READY;
  423. break;
  424. }
  425. else
  426. {
  427. LOG_D("%s transfer done", spi_drv->config->bus_name);
  428. }
  429. /* For simplicity reasons, this example is just waiting till the end of the
  430. transfer, but application may perform other tasks while transfer operation
  431. is ongoing. */
  432. if ((spi_drv->spi_dma_flag & (SPI_USING_TX_DMA_FLAG | SPI_USING_RX_DMA_FLAG)) && (send_length >= DMA_TRANS_MIN_LEN))
  433. {
  434. /* blocking the thread,and the other tasks can run */
  435. if (rt_completion_wait(&spi_drv->cpt, 1000) != RT_EOK)
  436. {
  437. state = HAL_ERROR;
  438. LOG_E("wait for DMA interrupt overtime!");
  439. break;
  440. }
  441. }
  442. else
  443. {
  444. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  445. }
  446. if(dma_aligned_buffer != RT_NULL) /* re-aligned, so need to copy the data to recv_buf */
  447. {
  448. if(recv_buf != RT_NULL)
  449. {
  450. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  451. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, p_txrx_buffer, send_length);
  452. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  453. rt_memcpy(recv_buf, p_txrx_buffer, send_length);
  454. }
  455. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  456. rt_free_align(dma_aligned_buffer);
  457. #else
  458. rt_free(dma_aligned_buffer);
  459. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  460. }
  461. }
  462. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  463. {
  464. if (device->config.mode & RT_SPI_CS_HIGH)
  465. rt_pin_write(device->cs_pin, PIN_LOW);
  466. else
  467. rt_pin_write(device->cs_pin, PIN_HIGH);
  468. }
  469. if(state != HAL_OK)
  470. {
  471. return -RT_ERROR;
  472. }
  473. return message->length;
  474. }
  475. static rt_err_t spi_configure(struct rt_spi_device *device,
  476. struct rt_spi_configuration *configuration)
  477. {
  478. RT_ASSERT(device != RT_NULL);
  479. RT_ASSERT(configuration != RT_NULL);
  480. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  481. spi_drv->cfg = configuration;
  482. rt_kprintf("@spi_configure\n");
  483. return stm32_spi_init(spi_drv, configuration);
  484. }
  485. static const struct rt_spi_ops stm_spi_ops =
  486. {
  487. .configure = spi_configure,
  488. .xfer = spixfer,
  489. };
  490. static int rt_hw_spi_bus_init(void)
  491. {
  492. rt_err_t result;
  493. for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  494. {
  495. spi_bus_obj[i].config = &spi_config[i];
  496. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  497. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  498. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  499. {
  500. /* Configure the DMA handler for Transmission process */
  501. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  502. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  503. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  504. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  505. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  506. #endif
  507. #ifndef SOC_SERIES_STM32U5
  508. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  509. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  510. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  511. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  512. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  513. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  514. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  515. #endif
  516. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  517. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  518. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  519. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  520. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  521. #endif
  522. {
  523. rt_uint32_t tmpreg = 0x00U;
  524. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  525. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  526. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  527. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  528. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  529. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  530. /* Delay after an RCC peripheral clock enabling */
  531. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  532. #elif defined(SOC_SERIES_STM32MP1)
  533. __HAL_RCC_DMAMUX_CLK_ENABLE();
  534. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  535. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  536. #endif
  537. UNUSED(tmpreg); /* To avoid compiler warnings */
  538. }
  539. }
  540. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  541. {
  542. /* Configure the DMA handler for Transmission process */
  543. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  544. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  545. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  546. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  547. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  548. #endif
  549. #ifndef SOC_SERIES_STM32U5
  550. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  551. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  552. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  553. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  554. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  555. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  556. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  557. #endif
  558. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  559. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  560. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  561. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  562. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  563. #endif
  564. {
  565. rt_uint32_t tmpreg = 0x00U;
  566. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  567. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  568. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  569. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  570. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  571. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  572. /* Delay after an RCC peripheral clock enabling */
  573. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  574. #elif defined(SOC_SERIES_STM32MP1)
  575. __HAL_RCC_DMAMUX_CLK_ENABLE();
  576. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  577. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  578. #endif
  579. UNUSED(tmpreg); /* To avoid compiler warnings */
  580. }
  581. }
  582. /* initialize completion object */
  583. rt_completion_init(&spi_bus_obj[i].cpt);
  584. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  585. RT_ASSERT(result == RT_EOK);
  586. LOG_D("%s bus init done", spi_config[i].bus_name);
  587. }
  588. return result;
  589. }
  590. /**
  591. * Attach the spi device to SPI bus, this function must be used after initialization.
  592. */
  593. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_base_t cs_pin)
  594. {
  595. RT_ASSERT(bus_name != RT_NULL);
  596. RT_ASSERT(device_name != RT_NULL);
  597. rt_err_t result;
  598. struct rt_spi_device *spi_device;
  599. /* attach the device to spi bus*/
  600. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  601. RT_ASSERT(spi_device != RT_NULL);
  602. result = rt_spi_bus_attach_device_cspin(spi_device, device_name, bus_name, cs_pin, RT_NULL);
  603. if (result != RT_EOK)
  604. {
  605. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  606. }
  607. RT_ASSERT(result == RT_EOK);
  608. LOG_D("%s attach to %s done", device_name, bus_name);
  609. return result;
  610. }
  611. /**
  612. * Detach the spi device from SPI bus.
  613. *
  614. * @param device_name the name of the spi device to be detached.
  615. */
  616. rt_err_t rt_hw_spi_device_detach(const char *device_name)
  617. {
  618. RT_ASSERT(device_name != RT_NULL);
  619. rt_err_t result;
  620. struct rt_spi_device *spi_device;
  621. rt_device_t device = rt_device_find(device_name);
  622. if (device == RT_NULL)
  623. {
  624. LOG_E("SPI device %s not found.", device_name);
  625. return -RT_ERROR;
  626. }
  627. if (device->type != RT_Device_Class_SPIDevice)
  628. {
  629. LOG_E("%s is not an SPI device.", device_name);
  630. return -RT_ERROR;
  631. }
  632. spi_device = (struct rt_spi_device *)device;
  633. result = rt_spi_bus_detach_device_cspin(spi_device);
  634. if (result != RT_EOK)
  635. {
  636. LOG_E("Failed to detach %s from its bus, error code: %d", device_name, result);
  637. return result;
  638. }
  639. rt_free(spi_device);
  640. LOG_D("SPI device %s has been detached.", device_name);
  641. return RT_EOK;
  642. }
  643. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  644. void SPI1_IRQHandler(void)
  645. {
  646. /* enter interrupt */
  647. rt_interrupt_enter();
  648. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  649. /* leave interrupt */
  650. rt_interrupt_leave();
  651. }
  652. #endif
  653. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  654. /**
  655. * @brief This function handles DMA Rx interrupt request.
  656. * @param None
  657. * @retval None
  658. */
  659. void SPI1_DMA_RX_IRQHandler(void)
  660. {
  661. /* enter interrupt */
  662. rt_interrupt_enter();
  663. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  664. /* leave interrupt */
  665. rt_interrupt_leave();
  666. }
  667. #endif
  668. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  669. /**
  670. * @brief This function handles DMA Tx interrupt request.
  671. * @param None
  672. * @retval None
  673. */
  674. void SPI1_DMA_TX_IRQHandler(void)
  675. {
  676. /* enter interrupt */
  677. rt_interrupt_enter();
  678. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  679. /* leave interrupt */
  680. rt_interrupt_leave();
  681. }
  682. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  683. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  684. void SPI2_IRQHandler(void)
  685. {
  686. /* enter interrupt */
  687. rt_interrupt_enter();
  688. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  689. /* leave interrupt */
  690. rt_interrupt_leave();
  691. }
  692. #endif
  693. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  694. /**
  695. * @brief This function handles DMA Rx interrupt request.
  696. * @param None
  697. * @retval None
  698. */
  699. void SPI2_DMA_RX_IRQHandler(void)
  700. {
  701. /* enter interrupt */
  702. rt_interrupt_enter();
  703. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  704. /* leave interrupt */
  705. rt_interrupt_leave();
  706. }
  707. #endif
  708. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  709. /**
  710. * @brief This function handles DMA Tx interrupt request.
  711. * @param None
  712. * @retval None
  713. */
  714. void SPI2_DMA_TX_IRQHandler(void)
  715. {
  716. /* enter interrupt */
  717. rt_interrupt_enter();
  718. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  719. /* leave interrupt */
  720. rt_interrupt_leave();
  721. }
  722. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  723. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  724. void SPI3_IRQHandler(void)
  725. {
  726. /* enter interrupt */
  727. rt_interrupt_enter();
  728. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  729. /* leave interrupt */
  730. rt_interrupt_leave();
  731. }
  732. #endif
  733. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  734. /**
  735. * @brief This function handles DMA Rx interrupt request.
  736. * @param None
  737. * @retval None
  738. */
  739. void SPI3_DMA_RX_IRQHandler(void)
  740. {
  741. /* enter interrupt */
  742. rt_interrupt_enter();
  743. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  744. /* leave interrupt */
  745. rt_interrupt_leave();
  746. }
  747. #endif
  748. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  749. /**
  750. * @brief This function handles DMA Tx interrupt request.
  751. * @param None
  752. * @retval None
  753. */
  754. void SPI3_DMA_TX_IRQHandler(void)
  755. {
  756. /* enter interrupt */
  757. rt_interrupt_enter();
  758. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  759. /* leave interrupt */
  760. rt_interrupt_leave();
  761. }
  762. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  763. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  764. void SPI4_IRQHandler(void)
  765. {
  766. /* enter interrupt */
  767. rt_interrupt_enter();
  768. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  769. /* leave interrupt */
  770. rt_interrupt_leave();
  771. }
  772. #endif
  773. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  774. /**
  775. * @brief This function handles DMA Rx interrupt request.
  776. * @param None
  777. * @retval None
  778. */
  779. void SPI4_DMA_RX_IRQHandler(void)
  780. {
  781. /* enter interrupt */
  782. rt_interrupt_enter();
  783. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  784. /* leave interrupt */
  785. rt_interrupt_leave();
  786. }
  787. #endif
  788. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  789. /**
  790. * @brief This function handles DMA Tx interrupt request.
  791. * @param None
  792. * @retval None
  793. */
  794. void SPI4_DMA_TX_IRQHandler(void)
  795. {
  796. /* enter interrupt */
  797. rt_interrupt_enter();
  798. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  799. /* leave interrupt */
  800. rt_interrupt_leave();
  801. }
  802. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  803. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  804. void SPI5_IRQHandler(void)
  805. {
  806. /* enter interrupt */
  807. rt_interrupt_enter();
  808. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  809. /* leave interrupt */
  810. rt_interrupt_leave();
  811. }
  812. #endif
  813. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  814. /**
  815. * @brief This function handles DMA Rx interrupt request.
  816. * @param None
  817. * @retval None
  818. */
  819. void SPI5_DMA_RX_IRQHandler(void)
  820. {
  821. /* enter interrupt */
  822. rt_interrupt_enter();
  823. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  824. /* leave interrupt */
  825. rt_interrupt_leave();
  826. }
  827. #endif
  828. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  829. /**
  830. * @brief This function handles DMA Tx interrupt request.
  831. * @param None
  832. * @retval None
  833. */
  834. void SPI5_DMA_TX_IRQHandler(void)
  835. {
  836. /* enter interrupt */
  837. rt_interrupt_enter();
  838. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  839. /* leave interrupt */
  840. rt_interrupt_leave();
  841. }
  842. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  843. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  844. /**
  845. * @brief This function handles DMA Rx interrupt request.
  846. * @param None
  847. * @retval None
  848. */
  849. void SPI6_DMA_RX_IRQHandler(void)
  850. {
  851. /* enter interrupt */
  852. rt_interrupt_enter();
  853. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  854. /* leave interrupt */
  855. rt_interrupt_leave();
  856. }
  857. #endif
  858. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  859. /**
  860. * @brief This function handles DMA Tx interrupt request.
  861. * @param None
  862. * @retval None
  863. */
  864. void SPI6_DMA_TX_IRQHandler(void)
  865. {
  866. /* enter interrupt */
  867. rt_interrupt_enter();
  868. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  869. /* leave interrupt */
  870. rt_interrupt_leave();
  871. }
  872. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  873. static void stm32_get_dma_info(void)
  874. {
  875. #ifdef BSP_SPI1_RX_USING_DMA
  876. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  877. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  878. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  879. #endif
  880. #ifdef BSP_SPI1_TX_USING_DMA
  881. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  882. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  883. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  884. #endif
  885. #ifdef BSP_SPI2_RX_USING_DMA
  886. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  887. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  888. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  889. #endif
  890. #ifdef BSP_SPI2_TX_USING_DMA
  891. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  892. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  893. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  894. #endif
  895. #ifdef BSP_SPI3_RX_USING_DMA
  896. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  897. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  898. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  899. #endif
  900. #ifdef BSP_SPI3_TX_USING_DMA
  901. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  902. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  903. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  904. #endif
  905. #ifdef BSP_SPI4_RX_USING_DMA
  906. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  907. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  908. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  909. #endif
  910. #ifdef BSP_SPI4_TX_USING_DMA
  911. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  912. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  913. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  914. #endif
  915. #ifdef BSP_SPI5_RX_USING_DMA
  916. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  917. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  918. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  919. #endif
  920. #ifdef BSP_SPI5_TX_USING_DMA
  921. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  922. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  923. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  924. #endif
  925. #ifdef BSP_SPI6_RX_USING_DMA
  926. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  927. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  928. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  929. #endif
  930. #ifdef BSP_SPI6_TX_USING_DMA
  931. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  932. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  933. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  934. #endif
  935. }
  936. void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
  937. {
  938. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  939. rt_completion_done(&spi_drv->cpt);
  940. }
  941. void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
  942. {
  943. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  944. rt_completion_done(&spi_drv->cpt);
  945. }
  946. void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
  947. {
  948. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  949. rt_completion_done(&spi_drv->cpt);
  950. }
  951. #if defined(SOC_SERIES_STM32F0)
  952. void SPI1_DMA_RX_TX_IRQHandler(void)
  953. {
  954. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  955. SPI1_DMA_TX_IRQHandler();
  956. #endif
  957. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  958. SPI1_DMA_RX_IRQHandler();
  959. #endif
  960. }
  961. void SPI2_DMA_RX_TX_IRQHandler(void)
  962. {
  963. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  964. SPI2_DMA_TX_IRQHandler();
  965. #endif
  966. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  967. SPI2_DMA_RX_IRQHandler();
  968. #endif
  969. }
  970. #elif defined(SOC_SERIES_STM32G0)
  971. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  972. void SPI1_DMA_RX_TX_IRQHandler(void)
  973. {
  974. #if defined(BSP_SPI1_TX_USING_DMA)
  975. SPI1_DMA_TX_IRQHandler();
  976. #endif
  977. #if defined(BSP_SPI1_RX_USING_DMA)
  978. SPI1_DMA_RX_IRQHandler();
  979. #endif
  980. }
  981. #endif /* defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) */
  982. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  983. void SPI2_DMA_RX_TX_IRQHandler(void)
  984. {
  985. #if defined(BSP_SPI2_TX_USING_DMA)
  986. SPI2_DMA_TX_IRQHandler();
  987. #endif
  988. #if defined(BSP_SPI2_RX_USING_DMA)
  989. SPI2_DMA_RX_IRQHandler();
  990. #endif
  991. }
  992. #endif /* defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) */
  993. #if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined(STM32G0C1xx)
  994. #if defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3)
  995. void SPI2_3_IRQHandler(void)
  996. {
  997. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  998. SPI2_IRQHandler();
  999. #endif
  1000. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  1001. SPI3_IRQHandler();
  1002. #endif
  1003. }
  1004. #endif /* defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) */
  1005. #endif /* defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined(STM32G0C1xx) */
  1006. #endif /* defined(SOC_SERIES_STM32F0) */
  1007. int rt_hw_spi_init(void)
  1008. {
  1009. stm32_get_dma_info();
  1010. return rt_hw_spi_bus_init();
  1011. }
  1012. INIT_BOARD_EXPORT(rt_hw_spi_init);
  1013. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  1014. #endif /* BSP_USING_SPI */