dfs_elm.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2008-02-22 QiuYi The first version.
  9. * 2011-10-08 Bernard fixed the block size in statfs.
  10. * 2011-11-23 Bernard fixed the rename issue.
  11. * 2012-07-26 aozima implement ff_memalloc and ff_memfree.
  12. * 2012-12-19 Bernard fixed the O_APPEND and lseek issue.
  13. * 2013-03-01 aozima fixed the stat(st_mtime) issue.
  14. * 2014-01-26 Bernard Check the sector size before mount.
  15. * 2017-02-13 Hichard Update Fatfs version to 0.12b, support exFAT.
  16. * 2017-04-11 Bernard fix the st_blksize issue.
  17. * 2017-05-26 Urey fix f_mount error when mount more fats
  18. */
  19. #include <rtthread.h>
  20. #include "ffconf.h"
  21. #include "ff.h"
  22. #include <string.h>
  23. #include <sys/time.h>
  24. /* ELM FatFs provide a DIR struct */
  25. #define HAVE_DIR_STRUCTURE
  26. #include <dfs.h>
  27. #include <dfs_fs.h>
  28. #include <dfs_dentry.h>
  29. #include <dfs_file.h>
  30. #include <dfs_mnt.h>
  31. #ifdef RT_USING_PAGECACHE
  32. #include "dfs_pcache.h"
  33. #endif
  34. static int dfs_elm_free_vnode(struct dfs_vnode *vnode);
  35. static int dfs_elm_truncate(struct dfs_file *file, off_t offset);
  36. #ifdef RT_USING_PAGECACHE
  37. static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page);
  38. static ssize_t dfs_elm_page_write(struct dfs_page *page);
  39. static struct dfs_aspace_ops dfs_elm_aspace_ops =
  40. {
  41. .read = dfs_elm_page_read,
  42. .write = dfs_elm_page_write,
  43. };
  44. #endif
  45. #undef SS
  46. #if FF_MAX_SS == FF_MIN_SS
  47. #define SS(fs) ((UINT)FF_MAX_SS) /* Fixed sector size */
  48. #else
  49. #define SS(fs) ((fs)->ssize) /* Variable sector size */
  50. #endif
  51. static rt_device_t disk[FF_VOLUMES] = {0};
  52. int dfs_elm_unmount(struct dfs_mnt *mnt);
  53. static int elm_result_to_dfs(FRESULT result)
  54. {
  55. int status = RT_EOK;
  56. switch (result)
  57. {
  58. case FR_OK:
  59. break;
  60. case FR_NO_FILE:
  61. case FR_NO_PATH:
  62. case FR_NO_FILESYSTEM:
  63. status = -ENOENT;
  64. break;
  65. case FR_INVALID_NAME:
  66. status = -EINVAL;
  67. break;
  68. case FR_EXIST:
  69. case FR_INVALID_OBJECT:
  70. status = -EEXIST;
  71. break;
  72. case FR_DISK_ERR:
  73. case FR_NOT_READY:
  74. case FR_INT_ERR:
  75. status = -EIO;
  76. break;
  77. case FR_WRITE_PROTECTED:
  78. case FR_DENIED:
  79. status = -EROFS;
  80. break;
  81. case FR_MKFS_ABORTED:
  82. status = -EINVAL;
  83. break;
  84. default:
  85. status = -1;
  86. break;
  87. }
  88. return status;
  89. }
  90. /* results:
  91. * -1, no space to install fatfs driver
  92. * >= 0, there is an space to install fatfs driver
  93. */
  94. static int get_disk(rt_device_t id)
  95. {
  96. int index;
  97. for (index = 0; index < FF_VOLUMES; index ++)
  98. {
  99. if (disk[index] == id)
  100. return index;
  101. }
  102. return -1;
  103. }
  104. static int dfs_elm_mount(struct dfs_mnt *mnt, unsigned long rwflag, const void *data)
  105. {
  106. FATFS *fat;
  107. FRESULT result;
  108. int index;
  109. struct rt_device_blk_geometry geometry;
  110. char logic_nbr[3] = {'0',':', 0};
  111. /* open device, but do not check the status of device */
  112. if (mnt->dev_id == RT_NULL
  113. || rt_device_open(mnt->dev_id, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
  114. {
  115. return -ENODEV;
  116. }
  117. /* get an empty position */
  118. index = get_disk(RT_NULL);
  119. if (index == -1)
  120. {
  121. rt_device_close(mnt->dev_id);
  122. return -ENOENT;
  123. }
  124. logic_nbr[0] = '0' + index;
  125. /* save device */
  126. disk[index] = mnt->dev_id;
  127. /* check sector size */
  128. if (rt_device_control(mnt->dev_id, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry) == RT_EOK)
  129. {
  130. if (geometry.bytes_per_sector > FF_MAX_SS)
  131. {
  132. rt_kprintf("The sector size of device is greater than the sector size of FAT.\n");
  133. rt_device_close(mnt->dev_id);
  134. return -EINVAL;
  135. }
  136. }
  137. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  138. if (fat == RT_NULL)
  139. {
  140. disk[index] = RT_NULL;
  141. rt_device_close(mnt->dev_id);
  142. return -ENOMEM;
  143. }
  144. /* mount fatfs, always 0 logic driver */
  145. result = f_mount(fat, (const TCHAR *)logic_nbr, 1);
  146. if (result == FR_OK)
  147. {
  148. char drive[8];
  149. DIR *dir;
  150. rt_snprintf(drive, sizeof(drive), "%d:/", index);
  151. dir = (DIR *)rt_malloc(sizeof(DIR));
  152. if (dir == RT_NULL)
  153. {
  154. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  155. disk[index] = RT_NULL;
  156. rt_free(fat);
  157. rt_device_close(mnt->dev_id);
  158. return -ENOMEM;
  159. }
  160. /* open the root directory to test whether the fatfs is valid */
  161. result = f_opendir(dir, drive);
  162. if (result != FR_OK)
  163. goto __err;
  164. /* mount succeed! */
  165. mnt->data = fat;
  166. rt_free(dir);
  167. return RT_EOK;
  168. }
  169. __err:
  170. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  171. disk[index] = RT_NULL;
  172. rt_free(fat);
  173. rt_device_close(mnt->dev_id);
  174. return elm_result_to_dfs(result);
  175. }
  176. int dfs_elm_unmount(struct dfs_mnt *mnt)
  177. {
  178. FATFS *fat;
  179. FRESULT result;
  180. int index;
  181. char logic_nbr[3] = {'0',':', 0};
  182. fat = (FATFS *)mnt->data;
  183. RT_ASSERT(fat != RT_NULL);
  184. /* find the device index and then umount it */
  185. index = get_disk(mnt->dev_id);
  186. if (index == -1) /* not found */
  187. return -ENOENT;
  188. logic_nbr[0] = '0' + index;
  189. result = f_mount(RT_NULL, logic_nbr, (BYTE)0);
  190. if (result != FR_OK)
  191. return elm_result_to_dfs(result);
  192. mnt->data = RT_NULL;
  193. disk[index] = RT_NULL;
  194. rt_free(fat);
  195. rt_device_close(mnt->dev_id);
  196. return RT_EOK;
  197. }
  198. int dfs_elm_mkfs(rt_device_t dev_id, const char *fs_name)
  199. {
  200. #define FSM_STATUS_INIT 0
  201. #define FSM_STATUS_USE_TEMP_DRIVER 1
  202. FATFS *fat = RT_NULL;
  203. BYTE *work;
  204. int flag;
  205. FRESULT result;
  206. int index;
  207. char logic_nbr[3] = {'0',':', 0};
  208. MKFS_PARM opt;
  209. work = rt_malloc(FF_MAX_SS);
  210. if(RT_NULL == work) {
  211. return -ENOMEM;
  212. }
  213. if (dev_id == RT_NULL)
  214. {
  215. rt_free(work); /* release memory */
  216. return -EINVAL;
  217. }
  218. /* if the device is already mounted, then just do mkfs to the drv,
  219. * while if it is not mounted yet, then find an empty drive to do mkfs
  220. */
  221. flag = FSM_STATUS_INIT;
  222. index = get_disk(dev_id);
  223. if (index == -1)
  224. {
  225. /* not found the device id */
  226. index = get_disk(RT_NULL);
  227. if (index == -1)
  228. {
  229. /* no space to store an temp driver */
  230. rt_kprintf("sorry, there is no space to do mkfs! \n");
  231. rt_free(work); /* release memory */
  232. return -ENOSPC;
  233. }
  234. else
  235. {
  236. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  237. if (fat == RT_NULL)
  238. {
  239. rt_free(work); /* release memory */
  240. return -ENOMEM;
  241. }
  242. flag = FSM_STATUS_USE_TEMP_DRIVER;
  243. disk[index] = dev_id;
  244. /* try to open device */
  245. rt_device_open(dev_id, RT_DEVICE_OFLAG_RDWR);
  246. /* just fill the FatFs[vol] in ff.c, or mkfs will failded!
  247. * consider this condition: you just umount the elm fat,
  248. * then the space in FatFs[index] is released, and now do mkfs
  249. * on the disk, you will get a failure. so we need f_mount here,
  250. * just fill the FatFS[index] in elm fatfs to make mkfs work.
  251. */
  252. logic_nbr[0] = '0' + index;
  253. f_mount(fat, logic_nbr, (BYTE)index);
  254. }
  255. }
  256. else
  257. {
  258. logic_nbr[0] = '0' + index;
  259. }
  260. /* [IN] Logical drive number */
  261. /* [IN] Format options */
  262. /* [-] Working buffer */
  263. /* [IN] Size of working buffer */
  264. rt_memset(&opt, 0, sizeof(opt));
  265. opt.fmt = FM_ANY|FM_SFD;
  266. result = f_mkfs(logic_nbr, &opt, work, FF_MAX_SS);
  267. rt_free(work); work = RT_NULL;
  268. /* check flag status, we need clear the temp driver stored in disk[] */
  269. if (flag == FSM_STATUS_USE_TEMP_DRIVER)
  270. {
  271. f_mount(RT_NULL, logic_nbr, (BYTE)index);
  272. rt_free(fat);
  273. disk[index] = RT_NULL;
  274. /* close device */
  275. rt_device_close(dev_id);
  276. }
  277. if (result != FR_OK)
  278. {
  279. rt_kprintf("format error, result=%d\n", result);
  280. return elm_result_to_dfs(result);
  281. }
  282. return RT_EOK;
  283. }
  284. int dfs_elm_statfs(struct dfs_mnt *mnt, struct statfs *buf)
  285. {
  286. FATFS *f;
  287. FRESULT res;
  288. char driver[4];
  289. DWORD fre_clust, fre_sect, tot_sect;
  290. RT_ASSERT(mnt != RT_NULL);
  291. RT_ASSERT(buf != RT_NULL);
  292. f = (FATFS *)mnt->data;
  293. rt_snprintf(driver, sizeof(driver), "%d:", f->pdrv);
  294. res = f_getfree(driver, &fre_clust, &f);
  295. if (res)
  296. return elm_result_to_dfs(res);
  297. /* Get total sectors and free sectors */
  298. tot_sect = (f->n_fatent - 2) * f->csize;
  299. fre_sect = fre_clust * f->csize;
  300. buf->f_bfree = fre_sect;
  301. buf->f_blocks = tot_sect;
  302. #if FF_MAX_SS != 512
  303. buf->f_bsize = f->ssize;
  304. #else
  305. buf->f_bsize = 512;
  306. #endif
  307. return 0;
  308. }
  309. int dfs_elm_open(struct dfs_file *file)
  310. {
  311. FIL *fd;
  312. BYTE mode;
  313. FRESULT result;
  314. char *drivers_fn;
  315. #if (FF_VOLUMES > 1)
  316. int vol;
  317. struct dfs_mnt *mnt = file->vnode->mnt;
  318. extern int elm_get_vol(FATFS * fat);
  319. RT_ASSERT(file->vnode->ref_count > 0);
  320. if (file->vnode->data)
  321. {
  322. if (file->vnode->type == FT_DIRECTORY
  323. && !(file->flags & O_DIRECTORY))
  324. {
  325. return -ENOENT;
  326. }
  327. file->fpos = 0;
  328. return 0;
  329. }
  330. if (mnt == NULL)
  331. return -ENOENT;
  332. /* add path for ELM FatFS driver support */
  333. vol = elm_get_vol((FATFS *)mnt->data);
  334. if (vol < 0)
  335. return -ENOENT;
  336. drivers_fn = (char *)rt_malloc(256);
  337. if (drivers_fn == RT_NULL)
  338. return -ENOMEM;
  339. rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->dentry->pathname);
  340. #else
  341. drivers_fn = file->dentry->pathname;
  342. #endif
  343. if (file->flags & O_DIRECTORY)
  344. {
  345. DIR *dir;
  346. if (file->flags & O_CREAT)
  347. {
  348. result = f_mkdir(drivers_fn);
  349. if (result != FR_OK)
  350. {
  351. #if FF_VOLUMES > 1
  352. rt_free(drivers_fn);
  353. #endif
  354. return elm_result_to_dfs(result);
  355. }
  356. }
  357. /* open directory */
  358. dir = (DIR *)rt_malloc(sizeof(DIR));
  359. if (dir == RT_NULL)
  360. {
  361. #if FF_VOLUMES > 1
  362. rt_free(drivers_fn);
  363. #endif
  364. return -ENOMEM;
  365. }
  366. result = f_opendir(dir, drivers_fn);
  367. #if FF_VOLUMES > 1
  368. rt_free(drivers_fn);
  369. #endif
  370. if (result != FR_OK)
  371. {
  372. rt_free(dir);
  373. return elm_result_to_dfs(result);
  374. }
  375. file->vnode->data = dir;
  376. rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
  377. return RT_EOK;
  378. }
  379. else
  380. {
  381. mode = FA_READ;
  382. if (file->flags & O_WRONLY)
  383. mode |= FA_WRITE;
  384. if ((file->flags & O_ACCMODE) & O_RDWR)
  385. mode |= FA_WRITE;
  386. /* Opens the file, if it is existing. If not, a new file is created. */
  387. if (file->flags & O_CREAT)
  388. mode |= FA_OPEN_ALWAYS;
  389. /* Creates a new file. If the file is existing, it is truncated and overwritten. */
  390. if (file->flags & O_TRUNC)
  391. mode |= FA_CREATE_ALWAYS;
  392. /* Creates a new file. The function fails if the file is already existing. */
  393. if (file->flags & O_EXCL)
  394. mode |= FA_CREATE_NEW;
  395. /* allocate a fd */
  396. fd = (FIL *)rt_malloc(sizeof(FIL));
  397. if (fd == RT_NULL)
  398. {
  399. #if FF_VOLUMES > 1
  400. rt_free(drivers_fn);
  401. #endif
  402. return -ENOMEM;
  403. }
  404. result = f_open(fd, drivers_fn, mode);
  405. #if FF_VOLUMES > 1
  406. rt_free(drivers_fn);
  407. #endif
  408. if (result == FR_OK)
  409. {
  410. file->fpos = fd->fptr;
  411. file->vnode->size = f_size(fd);
  412. file->vnode->type = FT_REGULAR;
  413. file->vnode->data = fd;
  414. rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
  415. if (file->flags & O_APPEND)
  416. {
  417. /* seek to the end of file */
  418. f_lseek(fd, f_size(fd));
  419. file->fpos = fd->fptr;
  420. }
  421. }
  422. else
  423. {
  424. /* open failed, return */
  425. rt_free(fd);
  426. return elm_result_to_dfs(result);
  427. }
  428. }
  429. return RT_EOK;
  430. }
  431. int dfs_elm_close(struct dfs_file *file)
  432. {
  433. FRESULT result;
  434. RT_ASSERT(file->vnode->ref_count > 0);
  435. if (file->vnode->ref_count > 1)
  436. {
  437. return 0;
  438. }
  439. result = FR_OK;
  440. if (file->vnode->type == FT_DIRECTORY)
  441. {
  442. DIR *dir = RT_NULL;
  443. dir = (DIR *)(file->vnode->data);
  444. RT_ASSERT(dir != RT_NULL);
  445. /* release memory */
  446. rt_free(dir);
  447. }
  448. else if (file->vnode->type == FT_REGULAR)
  449. {
  450. FIL *fd = RT_NULL;
  451. fd = (FIL *)(file->vnode->data);
  452. RT_ASSERT(fd != RT_NULL);
  453. f_close(fd);
  454. /* release memory */
  455. rt_free(fd);
  456. }
  457. file->vnode->data = RT_NULL;
  458. rt_mutex_detach(&file->vnode->lock);
  459. return elm_result_to_dfs(result);
  460. }
  461. int dfs_elm_ioctl(struct dfs_file *file, int cmd, void *args)
  462. {
  463. switch (cmd)
  464. {
  465. case RT_FIOFTRUNCATE:
  466. {
  467. off_t offset = (off_t)(size_t)(args);
  468. return dfs_elm_truncate(file, offset);
  469. }
  470. case F_GETLK:
  471. return 0;
  472. case F_SETLK:
  473. return 0;
  474. }
  475. return -ENOSYS;
  476. }
  477. ssize_t dfs_elm_read(struct dfs_file *file, void *buf, size_t len, off_t *pos)
  478. {
  479. FIL *fd;
  480. FRESULT result = FR_OK;
  481. UINT byte_read;
  482. if (file->vnode->type == FT_DIRECTORY)
  483. {
  484. return -EISDIR;
  485. }
  486. if (file->vnode->size > *pos)
  487. {
  488. fd = (FIL *)(file->vnode->data);
  489. RT_ASSERT(fd != RT_NULL);
  490. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  491. f_lseek(fd, *pos);
  492. result = f_read(fd, buf, len, &byte_read);
  493. /* update position */
  494. *pos = fd->fptr;
  495. rt_mutex_release(&file->vnode->lock);
  496. if (result == FR_OK)
  497. return byte_read;
  498. }
  499. return elm_result_to_dfs(result);
  500. }
  501. ssize_t dfs_elm_write(struct dfs_file *file, const void *buf, size_t len, off_t *pos)
  502. {
  503. FIL *fd;
  504. FRESULT result;
  505. UINT byte_write;
  506. if (file->vnode->type == FT_DIRECTORY)
  507. {
  508. return -EISDIR;
  509. }
  510. fd = (FIL *)(file->vnode->data);
  511. RT_ASSERT(fd != RT_NULL);
  512. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  513. f_lseek(fd, *pos);
  514. result = f_write(fd, buf, len, &byte_write);
  515. /* update position and file size */
  516. *pos = fd->fptr;
  517. file->vnode->size = f_size(fd);
  518. rt_mutex_release(&file->vnode->lock);
  519. if (result == FR_OK)
  520. return byte_write;
  521. return elm_result_to_dfs(result);
  522. }
  523. int dfs_elm_flush(struct dfs_file *file)
  524. {
  525. FIL *fd;
  526. FRESULT result;
  527. fd = (FIL *)(file->vnode->data);
  528. RT_ASSERT(fd != RT_NULL);
  529. result = f_sync(fd);
  530. return elm_result_to_dfs(result);
  531. }
  532. off_t dfs_elm_lseek(struct dfs_file *file, off_t offset, int wherece)
  533. {
  534. FRESULT result = FR_OK;
  535. off_t pos = 0;
  536. switch (wherece)
  537. {
  538. case SEEK_SET:
  539. break;
  540. case SEEK_CUR:
  541. offset += file->fpos;
  542. break;
  543. case SEEK_END:
  544. offset += file->vnode->size;
  545. break;
  546. default:
  547. return -EINVAL;
  548. }
  549. if (file->vnode->type == FT_REGULAR)
  550. {
  551. FIL *fd;
  552. /* regular file type */
  553. fd = (FIL *)(file->vnode->data);
  554. RT_ASSERT(fd != RT_NULL);
  555. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  556. result = f_lseek(fd, offset);
  557. pos = fd->fptr;
  558. rt_mutex_release(&file->vnode->lock);
  559. if (result == FR_OK)
  560. {
  561. /* return current position */
  562. return pos;
  563. }
  564. }
  565. else if (file->vnode->type == FT_DIRECTORY)
  566. {
  567. /* which is a directory */
  568. DIR *dir = RT_NULL;
  569. dir = (DIR *)(file->vnode->data);
  570. RT_ASSERT(dir != RT_NULL);
  571. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  572. result = f_seekdir(dir, offset / sizeof(struct dirent));
  573. rt_mutex_release(&file->vnode->lock);
  574. if (result == FR_OK)
  575. {
  576. /* update file position */
  577. return offset;
  578. }
  579. }
  580. return elm_result_to_dfs(result);
  581. }
  582. static int dfs_elm_truncate(struct dfs_file *file, off_t offset)
  583. {
  584. FIL *fd;
  585. FSIZE_t fptr;
  586. FRESULT result = FR_OK;
  587. fd = (FIL *)(file->vnode->data);
  588. RT_ASSERT(fd != RT_NULL);
  589. /* save file read/write point */
  590. fptr = fd->fptr;
  591. if (offset <= fd->obj.objsize)
  592. {
  593. fd->fptr = offset;
  594. result = f_truncate(fd);
  595. }
  596. else
  597. {
  598. result = f_lseek(fd, offset);
  599. }
  600. /* restore file read/write point */
  601. fd->fptr = fptr;
  602. return elm_result_to_dfs(result);
  603. }
  604. int dfs_elm_getdents(struct dfs_file *file, struct dirent *dirp, uint32_t count)
  605. {
  606. DIR *dir;
  607. FILINFO fno;
  608. FRESULT result;
  609. rt_uint32_t index;
  610. struct dirent *d;
  611. dir = (DIR *)(file->vnode->data);
  612. RT_ASSERT(dir != RT_NULL);
  613. /* make integer count */
  614. count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
  615. if (count == 0)
  616. return -EINVAL;
  617. index = 0;
  618. while (1)
  619. {
  620. char *fn;
  621. d = dirp + index;
  622. result = f_readdir(dir, &fno);
  623. if (result != FR_OK || fno.fname[0] == 0)
  624. break;
  625. #if FF_USE_LFN
  626. fn = *fno.fname ? fno.fname : fno.altname;
  627. #else
  628. fn = fno.fname;
  629. #endif
  630. d->d_type = DT_UNKNOWN;
  631. if (fno.fattrib & AM_DIR)
  632. d->d_type = DT_DIR;
  633. else
  634. d->d_type = DT_REG;
  635. d->d_namlen = (rt_uint8_t)rt_strlen(fn);
  636. d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
  637. rt_strncpy(d->d_name, fn, DIRENT_NAME_MAX);
  638. index ++;
  639. if (index * sizeof(struct dirent) >= count)
  640. break;
  641. }
  642. if (index == 0)
  643. return elm_result_to_dfs(result);
  644. file->fpos += index * sizeof(struct dirent);
  645. return index * sizeof(struct dirent);
  646. }
  647. int dfs_elm_unlink(struct dfs_dentry *dentry)
  648. {
  649. FRESULT result;
  650. #if FF_VOLUMES > 1
  651. int vol;
  652. char *drivers_fn;
  653. extern int elm_get_vol(FATFS * fat);
  654. /* add path for ELM FatFS driver support */
  655. vol = elm_get_vol((FATFS *)dentry->mnt->data);
  656. if (vol < 0)
  657. return -ENOENT;
  658. drivers_fn = (char *)rt_malloc(256);
  659. if (drivers_fn == RT_NULL)
  660. return -ENOMEM;
  661. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  662. #else
  663. const char *drivers_fn;
  664. drivers_fn = dentry->pathname;
  665. #endif
  666. result = f_unlink(drivers_fn);
  667. #if FF_VOLUMES > 1
  668. rt_free(drivers_fn);
  669. #endif
  670. return elm_result_to_dfs(result);
  671. }
  672. int dfs_elm_rename(struct dfs_dentry *old_dentry, struct dfs_dentry *new_dentry)
  673. {
  674. FRESULT result;
  675. #if FF_VOLUMES > 1
  676. char *drivers_oldfn;
  677. const char *drivers_newfn;
  678. int vol;
  679. extern int elm_get_vol(FATFS * fat);
  680. /* add path for ELM FatFS driver support */
  681. vol = elm_get_vol((FATFS *)old_dentry->mnt->data);
  682. if (vol < 0)
  683. return -ENOENT;
  684. drivers_oldfn = (char *)rt_malloc(256);
  685. if (drivers_oldfn == RT_NULL)
  686. return -ENOMEM;
  687. drivers_newfn = new_dentry->pathname;
  688. rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, old_dentry->pathname);
  689. #else
  690. const char *drivers_oldfn, *drivers_newfn;
  691. drivers_oldfn = old_dentry->pathname;
  692. drivers_newfn = new_dentry->pathname;
  693. #endif
  694. result = f_rename(drivers_oldfn, drivers_newfn);
  695. #if FF_VOLUMES > 1
  696. rt_free(drivers_oldfn);
  697. #endif
  698. return elm_result_to_dfs(result);
  699. }
  700. int dfs_elm_stat(struct dfs_dentry *dentry, struct stat *st)
  701. {
  702. FATFS *fat;
  703. FILINFO file_info;
  704. FRESULT result;
  705. fat = (FATFS *)dentry->mnt->data;
  706. #if FF_VOLUMES > 1
  707. int vol;
  708. char *drivers_fn;
  709. extern int elm_get_vol(FATFS * fat);
  710. /* add path for ELM FatFS driver support */
  711. vol = elm_get_vol(fat);
  712. if (vol < 0)
  713. return -ENOENT;
  714. drivers_fn = (char *)rt_malloc(256);
  715. if (drivers_fn == RT_NULL)
  716. return -ENOMEM;
  717. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  718. #else
  719. const char *drivers_fn;
  720. drivers_fn = dentry->pathname;
  721. #endif
  722. result = f_stat(drivers_fn, &file_info);
  723. #if FF_VOLUMES > 1
  724. rt_free(drivers_fn);
  725. #endif
  726. if (result == FR_OK)
  727. {
  728. /* convert to dfs stat structure */
  729. st->st_dev = (dev_t)(size_t)(dentry->mnt->dev_id);
  730. st->st_ino = (ino_t)dfs_dentry_full_path_crc32(dentry);
  731. if (file_info.fattrib & AM_DIR)
  732. {
  733. st->st_mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  734. }
  735. else
  736. {
  737. st->st_mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  738. }
  739. if (file_info.fattrib & AM_RDO)
  740. st->st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH);
  741. if (S_IFDIR & st->st_mode)
  742. {
  743. st->st_size = file_info.fsize;
  744. }
  745. else
  746. {
  747. #ifdef RT_USING_PAGECACHE
  748. st->st_size = (dentry->vnode && dentry->vnode->aspace) ? dentry->vnode->size : file_info.fsize;
  749. #else
  750. st->st_size = file_info.fsize;
  751. #endif
  752. }
  753. st->st_blksize = fat->csize * SS(fat);
  754. if (file_info.fattrib & AM_ARC)
  755. {
  756. st->st_blocks = st->st_size ? ((st->st_size - 1) / SS(fat) / fat->csize + 1) : 0;
  757. st->st_blocks *= (st->st_blksize / 512); // man say st_blocks is number of 512B blocks allocated
  758. }
  759. else
  760. {
  761. st->st_blocks = fat->csize;
  762. }
  763. /* get st_mtime. */
  764. {
  765. struct tm tm_file;
  766. int year, mon, day, hour, min, sec;
  767. WORD tmp;
  768. tmp = file_info.fdate;
  769. day = tmp & 0x1F; /* bit[4:0] Day(1..31) */
  770. tmp >>= 5;
  771. mon = tmp & 0x0F; /* bit[8:5] Month(1..12) */
  772. tmp >>= 4;
  773. year = (tmp & 0x7F) + 1980; /* bit[15:9] Year origin from 1980(0..127) */
  774. tmp = file_info.ftime;
  775. sec = (tmp & 0x1F) * 2; /* bit[4:0] Second/2(0..29) */
  776. tmp >>= 5;
  777. min = tmp & 0x3F; /* bit[10:5] Minute(0..59) */
  778. tmp >>= 6;
  779. hour = tmp & 0x1F; /* bit[15:11] Hour(0..23) */
  780. rt_memset(&tm_file, 0, sizeof(tm_file));
  781. tm_file.tm_year = year - 1900; /* Years since 1900 */
  782. tm_file.tm_mon = mon - 1; /* Months *since* january: 0-11 */
  783. tm_file.tm_mday = day; /* Day of the month: 1-31 */
  784. tm_file.tm_hour = hour; /* Hours since midnight: 0-23 */
  785. tm_file.tm_min = min; /* Minutes: 0-59 */
  786. tm_file.tm_sec = sec; /* Seconds: 0-59 */
  787. st->st_mtime = timegm(&tm_file);
  788. } /* get st_mtime. */
  789. }
  790. return elm_result_to_dfs(result);
  791. }
  792. static struct dfs_vnode *dfs_elm_lookup(struct dfs_dentry *dentry)
  793. {
  794. struct stat st;
  795. struct dfs_vnode *vnode = RT_NULL;
  796. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  797. {
  798. return NULL;
  799. }
  800. if (dfs_elm_stat(dentry, &st) != 0)
  801. {
  802. return vnode;
  803. }
  804. vnode = dfs_vnode_create();
  805. if (vnode)
  806. {
  807. vnode->mnt = dentry->mnt;
  808. vnode->size = st.st_size;
  809. vnode->data = NULL;
  810. if (S_ISDIR(st.st_mode))
  811. {
  812. vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  813. vnode->type = FT_DIRECTORY;
  814. }
  815. else
  816. {
  817. vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  818. vnode->type = FT_REGULAR;
  819. #ifdef RT_USING_PAGECACHE
  820. vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
  821. #endif
  822. }
  823. }
  824. return vnode;
  825. }
  826. static struct dfs_vnode *dfs_elm_create_vnode(struct dfs_dentry *dentry, int type, mode_t mode)
  827. {
  828. struct dfs_vnode *vnode = RT_NULL;
  829. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  830. {
  831. return NULL;
  832. }
  833. vnode = dfs_vnode_create();
  834. if (vnode)
  835. {
  836. if (type == FT_DIRECTORY)
  837. {
  838. /* fat directory force mode 0555 */
  839. vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  840. vnode->type = FT_DIRECTORY;
  841. }
  842. else
  843. {
  844. /* fat REGULAR file mode force mode 0777 */
  845. vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  846. vnode->type = FT_REGULAR;
  847. #ifdef RT_USING_PAGECACHE
  848. vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
  849. #endif
  850. }
  851. vnode->mnt = dentry->mnt;
  852. vnode->data = NULL;
  853. vnode->size = 0;
  854. }
  855. return vnode;
  856. }
  857. static int dfs_elm_free_vnode(struct dfs_vnode *vnode)
  858. {
  859. /* nothing to be freed */
  860. if (vnode && vnode->ref_count <= 1)
  861. {
  862. vnode->data = NULL;
  863. }
  864. return 0;
  865. }
  866. #ifdef RT_USING_PAGECACHE
  867. static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page)
  868. {
  869. int ret = -EINVAL;
  870. if (page->page)
  871. {
  872. off_t fpos = page->fpos;
  873. ret = dfs_elm_read(file, page->page, page->size, &fpos);
  874. }
  875. return ret;
  876. }
  877. ssize_t dfs_elm_page_write(struct dfs_page *page)
  878. {
  879. FIL *fd;
  880. FRESULT result;
  881. UINT byte_write;
  882. if (page->aspace->vnode->type == FT_DIRECTORY)
  883. {
  884. return -EISDIR;
  885. }
  886. fd = (FIL *)(page->aspace->vnode->data);
  887. RT_ASSERT(fd != RT_NULL);
  888. rt_mutex_take(&page->aspace->vnode->lock, RT_WAITING_FOREVER);
  889. f_lseek(fd, page->fpos);
  890. result = f_write(fd, page->page, page->len, &byte_write);
  891. rt_mutex_release(&page->aspace->vnode->lock);
  892. if (result == FR_OK)
  893. {
  894. return byte_write;
  895. }
  896. return elm_result_to_dfs(result);
  897. }
  898. #endif
  899. static const struct dfs_file_ops dfs_elm_fops =
  900. {
  901. .open = dfs_elm_open,
  902. .close = dfs_elm_close,
  903. .ioctl = dfs_elm_ioctl,
  904. .read = dfs_elm_read,
  905. .write = dfs_elm_write,
  906. .flush = dfs_elm_flush,
  907. .lseek = dfs_elm_lseek,
  908. .truncate = dfs_elm_truncate,
  909. .getdents = dfs_elm_getdents,
  910. };
  911. static const struct dfs_filesystem_ops dfs_elm =
  912. {
  913. "elm",
  914. FS_NEED_DEVICE,
  915. &dfs_elm_fops,
  916. .mount = dfs_elm_mount,
  917. .umount = dfs_elm_unmount,
  918. .mkfs = dfs_elm_mkfs,
  919. .statfs = dfs_elm_statfs,
  920. .unlink = dfs_elm_unlink,
  921. .stat = dfs_elm_stat,
  922. .rename = dfs_elm_rename,
  923. .lookup = dfs_elm_lookup,
  924. .create_vnode = dfs_elm_create_vnode,
  925. .free_vnode = dfs_elm_free_vnode
  926. };
  927. static struct dfs_filesystem_type _elmfs =
  928. {
  929. .fs_ops = &dfs_elm,
  930. };
  931. int elm_init(void)
  932. {
  933. /* register fatfs file system */
  934. dfs_register(&_elmfs);
  935. return 0;
  936. }
  937. INIT_COMPONENT_EXPORT(elm_init);
  938. /*
  939. * RT-Thread Device Interface for ELM FatFs
  940. */
  941. #include "diskio.h"
  942. /* Initialize a Drive */
  943. DSTATUS disk_initialize(BYTE drv)
  944. {
  945. return 0;
  946. }
  947. /* Return Disk Status */
  948. DSTATUS disk_status(BYTE drv)
  949. {
  950. return 0;
  951. }
  952. /* Read Sector(s) */
  953. DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, UINT count)
  954. {
  955. rt_size_t result;
  956. rt_device_t device = disk[drv];
  957. result = rt_device_read(device, sector, buff, count);
  958. if (result == count)
  959. {
  960. return RES_OK;
  961. }
  962. return RES_ERROR;
  963. }
  964. /* Write Sector(s) */
  965. DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, UINT count)
  966. {
  967. rt_size_t result;
  968. rt_device_t device = disk[drv];
  969. result = rt_device_write(device, sector, buff, count);
  970. if (result == count)
  971. {
  972. return RES_OK;
  973. }
  974. return RES_ERROR;
  975. }
  976. /* Miscellaneous Functions */
  977. DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff)
  978. {
  979. rt_device_t device = disk[drv];
  980. if (device == RT_NULL)
  981. return RES_ERROR;
  982. if (ctrl == GET_SECTOR_COUNT)
  983. {
  984. struct rt_device_blk_geometry geometry;
  985. rt_memset(&geometry, 0, sizeof(geometry));
  986. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  987. *(DWORD *)buff = geometry.sector_count;
  988. if (geometry.sector_count == 0)
  989. return RES_ERROR;
  990. }
  991. else if (ctrl == GET_SECTOR_SIZE)
  992. {
  993. struct rt_device_blk_geometry geometry;
  994. rt_memset(&geometry, 0, sizeof(geometry));
  995. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  996. *(WORD *)buff = (WORD)(geometry.bytes_per_sector);
  997. }
  998. else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
  999. {
  1000. struct rt_device_blk_geometry geometry;
  1001. rt_memset(&geometry, 0, sizeof(geometry));
  1002. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  1003. *(DWORD *)buff = geometry.block_size / geometry.bytes_per_sector;
  1004. }
  1005. else if (ctrl == CTRL_SYNC)
  1006. {
  1007. rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL);
  1008. }
  1009. else if (ctrl == CTRL_TRIM)
  1010. {
  1011. rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff);
  1012. }
  1013. return RES_OK;
  1014. }
  1015. DWORD get_fattime(void)
  1016. {
  1017. DWORD fat_time = 0;
  1018. time_t now;
  1019. struct tm tm_now;
  1020. now = time(RT_NULL);
  1021. gmtime_r(&now, &tm_now);
  1022. fat_time = (DWORD)(tm_now.tm_year - 80) << 25 |
  1023. (DWORD)(tm_now.tm_mon + 1) << 21 |
  1024. (DWORD)tm_now.tm_mday << 16 |
  1025. (DWORD)tm_now.tm_hour << 11 |
  1026. (DWORD)tm_now.tm_min << 5 |
  1027. (DWORD)tm_now.tm_sec / 2 ;
  1028. return fat_time;
  1029. }
  1030. #if FF_FS_REENTRANT
  1031. static rt_mutex_t Mutex[FF_VOLUMES + 1];
  1032. int ff_mutex_create (int vol)
  1033. {
  1034. char name[8];
  1035. rt_mutex_t mutex;
  1036. rt_snprintf(name, sizeof(name), "fat%d", vol);
  1037. mutex = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  1038. if (mutex != RT_NULL)
  1039. {
  1040. Mutex[vol] = mutex;
  1041. return RT_TRUE;
  1042. }
  1043. return RT_FALSE;
  1044. }
  1045. void ff_mutex_delete (int vol)
  1046. {
  1047. if (Mutex[vol] != RT_NULL)
  1048. rt_mutex_delete(Mutex[vol]);
  1049. }
  1050. int ff_mutex_take (int vol)
  1051. {
  1052. if (rt_mutex_take(Mutex[vol], FF_FS_TIMEOUT) == RT_EOK)
  1053. return RT_TRUE;
  1054. return RT_FALSE;
  1055. }
  1056. void ff_mutex_give (int vol)
  1057. {
  1058. rt_mutex_release(Mutex[vol]);
  1059. }
  1060. #endif
  1061. /* Memory functions */
  1062. #if FF_USE_LFN == 3
  1063. /* Allocate memory block */
  1064. void *ff_memalloc(UINT size)
  1065. {
  1066. return rt_malloc(size);
  1067. }
  1068. /* Free memory block */
  1069. void ff_memfree(void *mem)
  1070. {
  1071. rt_free(mem);
  1072. }
  1073. #endif /* FF_USE_LFN == 3 */