uart_overflow_rxb_txb.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. /*
  2. * Copyright (c) 2006-2025 RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2025-11-13 CYFS Add standardized utest documentation block
  9. */
  10. /**
  11. * Test Case Name: UART RX Buffer Overflow Handling Test
  12. *
  13. * Test Objectives:
  14. * - Validate UART behavior when RX FIFO exceeds configured buffer size under blocking operation
  15. * - Verify APIs: rt_device_find, rt_device_control(RT_DEVICE_CTRL_CONFIG / RT_SERIAL_CTRL_SET_RX_TIMEOUT),
  16. * rt_device_open with RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING,
  17. * rt_device_read, rt_device_write, rt_thread_create/startup
  18. *
  19. * Test Scenarios:
  20. * - **Scenario 1 (Overflow Stress / tc_uart_api):**
  21. * 1. Configure UART buffers and spawn sender thread to push large monotonic sequences while receiver drains in buffer-sized chunks.
  22. * 2. Delay receiver startup to force RX queue saturation, then verify data either restarts from zero (drop strategy) or continues modulo 256.
  23. * 3. Iterate across deterministic and random payload lengths, monitoring flags for misordered data.
  24. *
  25. * Verification Metrics:
  26. * - Receiver reads exactly `RT_SERIAL_TC_RXBUF_SIZE` bytes per chunk.
  27. * - Data pattern matches expected strategy (`RT_SERIAL_BUF_STRATEGY_DROP` or wraparound).
  28. * - `uart_result` remains `RT_TRUE`; `uart_over_flag` set before loop exit.
  29. *
  30. * Dependencies:
  31. * - Requires `RT_UTEST_SERIAL_V2` with loopback wiring and optional DMA ping buffer support.
  32. * - UART driver must implement overflow strategy macros and blocking modes.
  33. * - Adequate heap for large TX/RX buffers and 2 KB thread stacks.
  34. *
  35. * Expected Results:
  36. * - No assertions triggered; logs report pass counts for each length.
  37. * - Utest harness prints `[ PASSED ] [ result ] testcase (components.drivers.serial.v2.uart_overflow_rxb_txb)`.
  38. */
  39. #include <rtthread.h>
  40. #include "utest.h"
  41. #include <rtdevice.h>
  42. #include <stdlib.h>
  43. #ifdef RT_UTEST_SERIAL_V2
  44. static struct rt_serial_device *serial;
  45. static rt_uint8_t uart_over_flag = RT_FALSE;
  46. static rt_bool_t uart_result = RT_TRUE;
  47. static rt_err_t uart_find(void)
  48. {
  49. serial = (struct rt_serial_device *)rt_device_find(RT_SERIAL_TC_DEVICE_NAME);
  50. if (serial == RT_NULL)
  51. {
  52. LOG_E("find %s device failed!\n", RT_SERIAL_TC_DEVICE_NAME);
  53. return -RT_ERROR;
  54. }
  55. return RT_EOK;
  56. }
  57. static void uart_send_entry(void *parameter)
  58. {
  59. rt_uint32_t send_len;
  60. rt_uint8_t *uart_write_buffer = RT_NULL;
  61. rt_uint32_t i = 0;
  62. send_len = *(rt_uint32_t *)parameter;
  63. /* assign send buffer */
  64. uart_write_buffer = (rt_uint8_t *)rt_malloc(send_len);
  65. if (uart_write_buffer == RT_NULL)
  66. {
  67. LOG_E("Without spare memory for uart dma!");
  68. uart_result = RT_FALSE;
  69. return;
  70. }
  71. rt_memset(uart_write_buffer, 0, send_len);
  72. for (i = 0; i < send_len; i++)
  73. {
  74. uart_write_buffer[i] = (rt_uint8_t)i;
  75. }
  76. /* send buffer */
  77. if (rt_device_write(&serial->parent, 0, uart_write_buffer, send_len) != send_len)
  78. {
  79. LOG_E("device write failed\r\n");
  80. }
  81. rt_free(uart_write_buffer);
  82. }
  83. static void uart_rec_entry(void *parameter)
  84. {
  85. rt_uint32_t rev_len;
  86. rt_uint8_t *uart_write_buffer;
  87. rt_int32_t cnt, i;
  88. rev_len = *(rt_uint32_t *)parameter;
  89. uart_write_buffer = (rt_uint8_t *)rt_malloc(rev_len + 1);
  90. while (1)
  91. {
  92. cnt = rt_device_read(&serial->parent, 0, (void *)uart_write_buffer, RT_SERIAL_TC_RXBUF_SIZE);
  93. if (cnt != RT_SERIAL_TC_RXBUF_SIZE)
  94. {
  95. uart_result = RT_FALSE;
  96. rt_free(uart_write_buffer);
  97. return;
  98. }
  99. #ifdef RT_SERIAL_BUF_STRATEGY_DROP
  100. for (i = 0; i < cnt; i++)
  101. {
  102. if (uart_write_buffer[i] != i)
  103. {
  104. LOG_E("Read Different data2 -> former data: %x, current data: %x.", uart_write_buffer[i], i);
  105. uart_result = RT_FALSE;
  106. rt_free(uart_write_buffer);
  107. return;
  108. }
  109. }
  110. #else
  111. for (i = cnt - 1; i >= 0; i--)
  112. {
  113. if (uart_write_buffer[i] != ((rev_len - (cnt - i)) % (UINT8_MAX + 1)))
  114. {
  115. LOG_E("Read Different data2 -> former data: %x, current data: %x.", uart_write_buffer[i], ((rev_len - (cnt - i)) % (UINT8_MAX + 1)));
  116. uart_result = RT_FALSE;
  117. rt_free(uart_write_buffer);
  118. return;
  119. }
  120. }
  121. #endif /* RT_SERIAL_BUF_STRATEGY_DROP */
  122. break;
  123. }
  124. rt_free(uart_write_buffer);
  125. uart_over_flag = RT_TRUE;
  126. }
  127. static rt_err_t uart_api(rt_uint32_t length)
  128. {
  129. rt_thread_t thread_send = RT_NULL;
  130. rt_thread_t thread_recv = RT_NULL;
  131. rt_err_t result = RT_EOK;
  132. uart_over_flag = RT_FALSE;
  133. result = uart_find();
  134. if (result != RT_EOK)
  135. {
  136. return -RT_ERROR;
  137. }
  138. /* Reinitialize */
  139. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  140. config.baud_rate = BAUD_RATE_115200;
  141. config.rx_bufsz = RT_SERIAL_TC_RXBUF_SIZE;
  142. config.tx_bufsz = RT_SERIAL_TC_TXBUF_SIZE;
  143. #ifdef RT_SERIAL_USING_DMA
  144. config.dma_ping_bufsz = RT_SERIAL_TC_RXBUF_SIZE / 2;
  145. #endif
  146. rt_device_control(&serial->parent, RT_DEVICE_CTRL_CONFIG, &config);
  147. result = rt_device_open(&serial->parent, RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING);
  148. if (result != RT_EOK)
  149. {
  150. LOG_E("Open uart device failed.");
  151. uart_result = RT_FALSE;
  152. return -RT_ERROR;
  153. }
  154. rt_int32_t timeout = 5000;
  155. rt_device_control(&serial->parent, RT_SERIAL_CTRL_SET_RX_TIMEOUT, (void *)&timeout);
  156. thread_send = rt_thread_create("uart_send", uart_send_entry, &length, 2048, RT_THREAD_PRIORITY_MAX - 4, 10);
  157. thread_recv = rt_thread_create("uart_recv", uart_rec_entry, &length, 2048, RT_THREAD_PRIORITY_MAX - 5, 10);
  158. if ((thread_send != RT_NULL) && (thread_recv != RT_NULL))
  159. {
  160. rt_thread_startup(thread_send);
  161. /* waiting for data transmission to complete*/
  162. rt_thread_mdelay(length * 0.0868 + 10);
  163. rt_thread_startup(thread_recv);
  164. }
  165. else
  166. {
  167. result = -RT_ERROR;
  168. goto __exit;
  169. }
  170. while (1)
  171. {
  172. if (uart_result != RT_TRUE)
  173. {
  174. LOG_E("The test for uart dma is failure.");
  175. result = -RT_ERROR;
  176. goto __exit;
  177. }
  178. if (uart_over_flag == RT_TRUE)
  179. {
  180. goto __exit;
  181. }
  182. /* waiting for test over */
  183. rt_thread_mdelay(5);
  184. }
  185. __exit:
  186. rt_device_close(&serial->parent);
  187. rt_thread_mdelay(5);
  188. return result;
  189. }
  190. static void tc_uart_api(void)
  191. {
  192. rt_uint32_t count = 0;
  193. rt_uint16_t num = 0;
  194. rt_uint32_t i = 0;
  195. for (i = 1; i < 10; i++)
  196. {
  197. if (uart_api(RT_SERIAL_TC_TXBUF_SIZE * i + i % 2) == RT_EOK)
  198. LOG_I("data_lens [%4d], it is correct to read and write data. [%d] count testing.", RT_SERIAL_TC_TXBUF_SIZE * i + i % 2, ++count);
  199. else
  200. {
  201. LOG_E("uart test error");
  202. goto __exit;
  203. }
  204. }
  205. for (i = 1; i < 10; i++)
  206. {
  207. if (uart_api(RT_SERIAL_TC_RXBUF_SIZE * i + i % 2) == RT_EOK)
  208. LOG_I("data_lens [%4d], it is correct to read and write data. [%d] count testing.", RT_SERIAL_TC_RXBUF_SIZE * i + i % 2, ++count);
  209. else
  210. {
  211. LOG_E("uart test error");
  212. goto __exit;
  213. }
  214. }
  215. srand(rt_tick_get());
  216. while (RT_SERIAL_TC_SEND_ITERATIONS - count)
  217. {
  218. num = (rand() % RT_SERIAL_TC_RXBUF_SIZE) + 1;
  219. if (uart_api(num + RT_SERIAL_TC_RXBUF_SIZE) == RT_EOK)
  220. LOG_I("data_lens [%3d], it is correct to read and write data. [%d] count testing.", num, ++count);
  221. else
  222. {
  223. LOG_E("uart test error");
  224. break;
  225. }
  226. }
  227. __exit:
  228. uassert_true(uart_result == RT_TRUE);
  229. }
  230. static rt_err_t utest_tc_init(void)
  231. {
  232. LOG_I("UART TEST: Please connect Tx and Rx directly for self testing.");
  233. return RT_EOK;
  234. }
  235. static rt_err_t utest_tc_cleanup(void)
  236. {
  237. uart_result = RT_TRUE;
  238. uart_over_flag = RT_FALSE;
  239. rt_device_t uart_dev = rt_device_find(RT_SERIAL_TC_DEVICE_NAME);
  240. while (rt_device_close(uart_dev) != -RT_ERROR);
  241. return RT_EOK;
  242. }
  243. static void testcase(void)
  244. {
  245. UTEST_UNIT_RUN(tc_uart_api);
  246. }
  247. UTEST_TC_EXPORT(testcase, "components.drivers.serial.v2.uart_overflow_rxb_txb", utest_tc_init, utest_tc_cleanup, 30);
  248. #endif /* TC_UART_USING_TC */