drv_can.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. /*
  2. * Copyright (C) 2022-2024, Xiaohua Semiconductor Co., Ltd.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2022-04-28 CDT first version
  9. * 2022-06-07 xiaoxiaolisunny add hc32f460 series
  10. * 2022-06-08 CDT fix a bug of RT_CAN_CMD_SET_FILTER
  11. * 2022-06-15 lianghongquan fix bug, CAN_FILTER_COUNT, RT_CAN_CMD_SET_FILTER, interrupt setup and processing.
  12. */
  13. #include "drv_can.h"
  14. #include <drv_config.h>
  15. #include <board_config.h>
  16. #if defined(BSP_USING_CAN)
  17. #define LOG_TAG "drv_can"
  18. #if defined(BSP_USING_CAN1) || defined(BSP_USING_CAN2) || defined(BSP_USING_CAN3)
  19. #if defined(RT_CAN_USING_CANFD) && defined(HC32F460)
  20. #error "Selected mcu does not support canfd!"
  21. #endif
  22. #define TSEG1_MIN_FOR_CAN2_0 (2U)
  23. #define TSEG1_MAX_FOR_CAN2_0 (65U)
  24. #define TSEG2_MIN_FOR_CAN2_0 (1U)
  25. #define TSEG2_MAX_FOR_CAN2_0 (8U)
  26. #if defined(HC32F4A0) || defined(HC32F472) || defined(HC32F4A8)
  27. #define TSJW_MIN_FOR_CAN2_0 (1U)
  28. #define TSJW_MAX_FOR_CAN2_0 (16U)
  29. #elif defined(HC32F460)
  30. #define TSJW_MIN_FOR_CAN2_0 (1U)
  31. #define TSJW_MAX_FOR_CAN2_0 (8U)
  32. #endif
  33. #define NUM_TQ_MIN_FOR_CAN2_0 (8U)
  34. #define NUM_TQ_MAX_FOR_CAN2_0 (TSEG1_MAX_FOR_CAN2_0 + TSEG2_MAX_FOR_CAN2_0)
  35. #define CAN_BIT_TIMING_CAN2_0 (1U << 0)
  36. #define IS_VALID_PRIV_MODE(mode) ((mode == RT_CAN_MODE_PRIV) || (mode == RT_CAN_MODE_NOPRIV))
  37. #define IS_VALID_WORK_MODE(mode) (mode <= RT_CAN_MODE_LOOPBACKANLISTEN)
  38. #define IS_VALID_BAUD_RATE_CAN2_0(baud) (baud == (CAN10kBaud) || baud == (CAN20kBaud) || \
  39. baud == (CAN50kBaud) || baud == (CAN100kBaud) || \
  40. baud == (CAN125kBaud) || baud == (CAN250kBaud) || \
  41. baud == (CAN500kBaud) || baud == (CAN800kBaud) || \
  42. baud == (CAN1MBaud))
  43. #if defined(RT_CAN_USING_CANFD)
  44. #define TSEG1_MIN_FOR_CANFD_ARBITRATION (2U)
  45. #define TSEG1_MAX_FOR_CANFD_ARBITRATION (65U)
  46. #define TSEG2_MIN_FOR_CANFD_ARBITRATION (1U)
  47. #define TSEG2_MAX_FOR_CANFD_ARBITRATION (32U)
  48. #define TSJW_MIN_FOR_CANFD_ARBITRATION (1U)
  49. #define TSJW_MAX_FOR_CANFD_ARBITRATION (16U)
  50. #define TSEG1_MIN_FOR_CANFD_DATA (2U)
  51. #define TSEG1_MAX_FOR_CANFD_DATA (17U)
  52. #define TSEG2_MIN_FOR_CANFD_DATA (1U)
  53. #define TSEG2_MAX_FOR_CANFD_DATA (8U)
  54. #define TSJW_MIN_FOR_CANFD_DATA (1U)
  55. #define TSJW_MAX_FOR_CANFD_DATA (8U)
  56. #define NUM_TQ_MIN_FOR_CANFD_ARBITRATION (8U)
  57. #define NUM_TQ_MAX_FOR_CANFD_ARBITRATION (TSEG1_MAX_FOR_CANFD_ARBITRATION + TSEG2_MAX_FOR_CANFD_ARBITRATION)
  58. #define NUM_TQ_MIN_FOR_CANFD_DATA (8U)
  59. #define NUM_TQ_MAX_FOR_CANFD_DATA (TSEG1_MAX_FOR_CANFD_DATA + TSEG2_MAX_FOR_CANFD_DATA)
  60. #define IS_VALID_BAUD_RATE_CANFD_ARBITRATION(baud) IS_VALID_BAUD_RATE_CAN2_0(baud)
  61. #define IS_VALID_BAUD_RATE_CANFD_DATA(baud) (baud == (CAN10kBaud) || baud == (CAN20kBaud) || \
  62. baud == (CAN50kBaud) || baud == (CAN100kBaud) || \
  63. baud == (CAN125kBaud) || baud == (CAN250kBaud) || \
  64. baud == (CAN500kBaud) || baud == (CAN800kBaud) || \
  65. baud == (CAN1MBaud) || \
  66. baud == (CANFD_DATA_BAUD_2M) || \
  67. baud == (CANFD_DATA_BAUD_4M) || \
  68. baud == (CANFD_DATA_BAUD_5M) || \
  69. baud == (CANFD_DATA_BAUD_8M))
  70. #define IS_CAN_FRAME(frame) ((frame) == CAN_FRAME_CLASSIC || \
  71. (frame) == CAN_FRAME_ISO_FD || \
  72. (frame) == CAN_FRAME_NON_ISO_FD)
  73. #define CAN_BIT_TIMING_CANFD_ARBITRATION (1U << 1)
  74. #define CAN_BIT_TIMING_CANFD_DATA (1U << 2)
  75. #define CAN_BIT_TIMING_TABLE_NUM (3U)
  76. #endif
  77. #define NUM_PRESCALE_MAX (256U)
  78. #if defined(HC32F4A0) || defined(HC32F4A8)
  79. #define CAN_FILTER_COUNT (16U)
  80. #define CAN1_INT_SRC (INT_SRC_CAN1_HOST)
  81. #define CAN2_INT_SRC (INT_SRC_CAN2_HOST)
  82. #elif defined (HC32F460)
  83. #define CAN_FILTER_COUNT (8U)
  84. #define CAN1_INT_SRC (INT_SRC_CAN_INT)
  85. #elif defined (HC32F472)
  86. #define CAN_FILTER_COUNT (16U)
  87. #define CAN1_INT_SRC (INT_SRC_CAN1_HOST)
  88. #define CAN2_INT_SRC (INT_SRC_CAN2_HOST)
  89. #define CAN3_INT_SRC (INT_SRC_CAN3_HOST)
  90. #endif
  91. enum
  92. {
  93. #ifdef BSP_USING_CAN1
  94. CAN1_INDEX,
  95. #endif
  96. #ifdef BSP_USING_CAN2
  97. CAN2_INDEX,
  98. #endif
  99. #ifdef BSP_USING_CAN3
  100. CAN3_INDEX,
  101. #endif
  102. CAN_INDEX_MAX,
  103. };
  104. struct can_baud_rate_tab
  105. {
  106. rt_uint32_t baud_rate;
  107. stc_can_bit_time_config_t ll_sbt;
  108. };
  109. struct canfd_baud_rate_tab
  110. {
  111. rt_uint32_t clk_src;
  112. rt_uint8_t phase;
  113. rt_uint32_t baud;
  114. stc_can_bit_time_config_t ll_bt;
  115. };
  116. typedef struct
  117. {
  118. uint8_t tq_min;
  119. uint8_t tq_max;
  120. uint8_t seg1_min;
  121. uint8_t seg1_max;
  122. uint8_t seg2_min;
  123. uint8_t seg2_max;
  124. uint8_t sjw_min;
  125. uint8_t sjw_max;
  126. uint8_t min_diff_seg1_minus_seg2;
  127. } can_bit_timing_table_t;
  128. #ifndef RT_CAN_USING_CANFD
  129. static const struct can_baud_rate_tab _g_baudrate_tab[] =
  130. {
  131. {CAN1MBaud, CAN_BIT_TIME_CONFIG_1M_BAUD},
  132. {CAN800kBaud, CAN_BIT_TIME_CONFIG_800K_BAUD},
  133. {CAN500kBaud, CAN_BIT_TIME_CONFIG_500K_BAUD},
  134. {CAN250kBaud, CAN_BIT_TIME_CONFIG_250K_BAUD},
  135. {CAN125kBaud, CAN_BIT_TIME_CONFIG_125K_BAUD},
  136. {CAN100kBaud, CAN_BIT_TIME_CONFIG_100K_BAUD},
  137. {CAN50kBaud, CAN_BIT_TIME_CONFIG_50K_BAUD},
  138. {CAN20kBaud, CAN_BIT_TIME_CONFIG_20K_BAUD},
  139. {CAN10kBaud, CAN_BIT_TIME_CONFIG_10K_BAUD},
  140. };
  141. #endif
  142. typedef struct
  143. {
  144. struct rt_can_device rt_can;
  145. struct can_dev_init_params init;
  146. CM_CAN_TypeDef *instance;
  147. stc_can_init_t ll_init;
  148. } can_device;
  149. #ifdef RT_CAN_USING_CANFD
  150. static const can_bit_timing_table_t _g_can_bit_timing_tbl[CAN_BIT_TIMING_TABLE_NUM] =
  151. {
  152. {
  153. .tq_min = NUM_TQ_MIN_FOR_CAN2_0,
  154. .tq_max = NUM_TQ_MAX_FOR_CAN2_0,
  155. .seg1_min = TSEG1_MIN_FOR_CAN2_0,
  156. .seg1_max = TSEG1_MAX_FOR_CAN2_0,
  157. .seg2_min = TSEG2_MIN_FOR_CAN2_0,
  158. .seg2_max = TSEG2_MAX_FOR_CAN2_0,
  159. .sjw_min = TSJW_MIN_FOR_CAN2_0,
  160. .sjw_max = TSJW_MAX_FOR_CAN2_0,
  161. .min_diff_seg1_minus_seg2 = 2,
  162. },
  163. {
  164. .tq_min = NUM_TQ_MIN_FOR_CANFD_ARBITRATION,
  165. .tq_max = NUM_TQ_MAX_FOR_CANFD_ARBITRATION,
  166. .seg1_min = TSEG1_MIN_FOR_CANFD_ARBITRATION,
  167. .seg1_max = TSEG1_MAX_FOR_CANFD_ARBITRATION,
  168. .seg2_min = TSEG2_MIN_FOR_CANFD_ARBITRATION,
  169. .seg2_max = TSEG2_MAX_FOR_CANFD_ARBITRATION,
  170. .sjw_min = TSJW_MIN_FOR_CANFD_ARBITRATION,
  171. .sjw_max = TSJW_MAX_FOR_CANFD_ARBITRATION,
  172. .min_diff_seg1_minus_seg2 = 2,
  173. },
  174. {
  175. .tq_min = NUM_TQ_MIN_FOR_CANFD_DATA,
  176. .tq_max = NUM_TQ_MAX_FOR_CANFD_DATA,
  177. .seg1_min = TSEG1_MIN_FOR_CANFD_DATA,
  178. .seg1_max = TSEG1_MAX_FOR_CANFD_DATA,
  179. .seg2_min = TSEG2_MIN_FOR_CANFD_DATA,
  180. .seg2_max = TSEG2_MAX_FOR_CANFD_DATA,
  181. .sjw_min = TSJW_MIN_FOR_CANFD_DATA,
  182. .sjw_max = TSJW_MAX_FOR_CANFD_DATA,
  183. .min_diff_seg1_minus_seg2 = 1,
  184. }
  185. };
  186. static const struct canfd_baud_rate_tab _g_baudrate_fd[] =
  187. {
  188. {CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_250K, 1U, 64U, 16U, 16U},
  189. {CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_500K, 1U, 32U, 8U, 8U},
  190. {CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_1M, 1U, 16U, 4U, 4U},
  191. {CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_2M, 1U, 8U, 2U, 2U},
  192. {CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_4M, 1U, 4U, 1U, 1U},
  193. {CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_5M, 1U, 3U, 1U, 1U},
  194. {CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_250K, 2U, 64U, 16U, 16U},
  195. {CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_500K, 1U, 64U, 16U, 16U},
  196. {CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_1M, 2U, 16U, 4U, 4U},
  197. {CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_2M, 1U, 16U, 4U, 4U},
  198. {CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_4M, 1U, 8U, 2U, 2U},
  199. {CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_5M, 1U, 6U, 2U, 2U},
  200. {CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_8M, 1U, 4U, 1U, 1U},
  201. {CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_250K, 4U, 64U, 16U},
  202. {CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_500K, 2U, 64U, 16U},
  203. {CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_1M, 4U, 16U, 4U, 4U},
  204. {CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_2M, 2U, 16U, 4U, 4U},
  205. {CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_4M, 1U, 16U, 4U, 4U},
  206. {CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_5M, 1U, 12U, 4U, 4U},
  207. {CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_8M, 1U, 8U, 2U, 2U},
  208. };
  209. #endif
  210. static can_device _g_can_dev_array[] =
  211. {
  212. #ifdef BSP_USING_CAN1
  213. {
  214. {0},
  215. CAN1_INIT_PARAMS,
  216. #if defined(HC32F4A0) || defined(HC32F472) || defined(HC32F4A8)
  217. .instance = CM_CAN1,
  218. #elif defined (HC32F460)
  219. .instance = CM_CAN,
  220. #endif
  221. },
  222. #endif
  223. #ifdef BSP_USING_CAN2
  224. {
  225. {0},
  226. CAN2_INIT_PARAMS,
  227. .instance = CM_CAN2,
  228. },
  229. #endif
  230. #ifdef BSP_USING_CAN3
  231. {
  232. {0},
  233. CAN3_INIT_PARAMS,
  234. .instance = CM_CAN3,
  235. },
  236. #endif
  237. };
  238. static void _init_ll_struct_filter(can_device *p_can_dev);
  239. #ifndef RT_CAN_USING_CANFD
  240. static rt_uint32_t _get_can_baud_index(rt_uint32_t baud)
  241. {
  242. rt_uint32_t len, index;
  243. len = sizeof(_g_baudrate_tab) / sizeof(_g_baudrate_tab[0]);
  244. for (index = 0; index < len; index++)
  245. {
  246. if (_g_baudrate_tab[index].baud_rate == baud)
  247. return index;
  248. }
  249. return 0; /* default baud is CAN1MBaud */
  250. }
  251. #endif
  252. static rt_uint32_t _get_can_work_mode(rt_uint32_t mode)
  253. {
  254. rt_uint32_t work_mode;
  255. switch (mode)
  256. {
  257. case RT_CAN_MODE_NORMAL:
  258. work_mode = CAN_WORK_MD_NORMAL;
  259. break;
  260. case RT_CAN_MODE_LISTEN:
  261. work_mode = CAN_WORK_MD_SILENT;
  262. break;
  263. case RT_CAN_MODE_LOOPBACK:
  264. work_mode = CAN_WORK_MD_ELB;
  265. break;
  266. case RT_CAN_MODE_LOOPBACKANLISTEN:
  267. work_mode = CAN_WORK_MD_ELB_SILENT;
  268. break;
  269. default:
  270. work_mode = CAN_WORK_MD_NORMAL;
  271. break;
  272. }
  273. return work_mode;
  274. }
  275. static uint32_t _get_filter_idx(struct rt_can_filter_config *p_filter_in)
  276. {
  277. uint32_t filter_selected = 0;
  278. for (int i = 0; i < p_filter_in->count; i++)
  279. {
  280. if (p_filter_in->items[i].hdr_bank != -1)
  281. {
  282. filter_selected |= 1 << p_filter_in->items[i].hdr_bank;
  283. }
  284. }
  285. for (int i = 0; i < p_filter_in->count; i++)
  286. {
  287. if (p_filter_in->items[i].hdr_bank == -1)
  288. {
  289. for (int j = 0; j < CAN_FILTER_COUNT; j++)
  290. {
  291. if ((filter_selected & 1 << j) == 0)
  292. {
  293. p_filter_in->items[i].hdr_bank = j;
  294. filter_selected |= 1 << p_filter_in->items[i].hdr_bank;
  295. break;
  296. }
  297. }
  298. }
  299. }
  300. return filter_selected;
  301. }
  302. static uint8_t _get_can_data_bytes_len(uint32_t dlc)
  303. {
  304. uint8_t data_bytes = 0;
  305. dlc &= 0xFU;
  306. if (dlc <= 8U)
  307. {
  308. data_bytes = dlc;
  309. }
  310. #ifdef RT_CAN_USING_CANFD
  311. else
  312. {
  313. #ifdef RT_CAN_USING_CANFD
  314. switch (dlc)
  315. {
  316. case CAN_DLC12:
  317. data_bytes = 12U;
  318. break;
  319. case CAN_DLC16:
  320. data_bytes = 16U;
  321. break;
  322. case CAN_DLC20:
  323. data_bytes = 20U;
  324. break;
  325. case CAN_DLC24:
  326. data_bytes = 24U;
  327. break;
  328. case CAN_DLC32:
  329. data_bytes = 32U;
  330. break;
  331. case CAN_DLC48:
  332. data_bytes = 48U;
  333. break;
  334. case CAN_DLC64:
  335. data_bytes = 64U;
  336. break;
  337. default:
  338. /* Code should never touch here */
  339. break;
  340. }
  341. #endif
  342. }
  343. #endif
  344. return data_bytes;
  345. }
  346. static rt_bool_t _check_filter_params(struct rt_can_filter_config *p_filter_in)
  347. {
  348. RT_ASSERT(p_filter_in != NULL);
  349. RT_ASSERT(p_filter_in->count <= CAN_FILTER_COUNT);
  350. for (int i = 0; i < p_filter_in->count; i++)
  351. {
  352. if (p_filter_in->items[i].hdr_bank != -1 && p_filter_in->items[i].hdr_bank >= CAN_FILTER_COUNT)
  353. {
  354. RT_ASSERT(p_filter_in->items[i].hdr_bank < CAN_FILTER_COUNT);
  355. return RT_FALSE;
  356. }
  357. if (p_filter_in->items[i].mode == 0)
  358. {
  359. RT_ASSERT(p_filter_in->items[i].mode == 1);
  360. return RT_FALSE;
  361. }
  362. if (p_filter_in->items[i].rtr == 1)
  363. {
  364. RT_ASSERT(p_filter_in->items[i].rtr == 0);
  365. return RT_FALSE;
  366. }
  367. }
  368. return RT_TRUE;
  369. }
  370. #ifdef RT_CAN_USING_CANFD
  371. static uint32_t _get_can_clk_src(CM_CAN_TypeDef *CANx)
  372. {
  373. uint32_t can_clk = 0;
  374. switch ((rt_uint32_t)CANx)
  375. {
  376. #ifdef BSP_USING_CAN1
  377. case (rt_uint32_t)CM_CAN1:
  378. can_clk = CAN1_CLOCK_SEL;
  379. break;
  380. #endif
  381. #ifdef BSP_USING_CAN2
  382. case (rt_uint32_t)CM_CAN2:
  383. can_clk = CAN2_CLOCK_SEL;
  384. break;
  385. #endif
  386. #ifdef BSP_USING_CAN3
  387. case (rt_uint32_t)CM_CAN3:
  388. can_clk = CAN3_CLOCK_SEL;
  389. break;
  390. #endif
  391. default:
  392. break;
  393. }
  394. return can_clk;
  395. }
  396. static rt_bool_t _get_can_bit_timing_default(uint32_t can_clk, rt_uint32_t baud, rt_uint32_t option,
  397. stc_can_bit_time_config_t *p_stc_bit_cfg)
  398. {
  399. rt_uint32_t len, index;
  400. rt_bool_t found = RT_FALSE;
  401. len = sizeof(_g_baudrate_fd) / sizeof(_g_baudrate_fd[0]);
  402. for (index = 0; index < len; index++)
  403. {
  404. if ((_g_baudrate_fd[index].clk_src == can_clk) && \
  405. ((_g_baudrate_fd[index].phase & option) == option) \
  406. )
  407. {
  408. if (_g_baudrate_fd[index].baud == baud)
  409. {
  410. found = RT_TRUE;
  411. break;
  412. }
  413. }
  414. }
  415. if (found)
  416. {
  417. rt_memcpy(p_stc_bit_cfg, &_g_baudrate_fd[index].ll_bt, sizeof(stc_can_bit_time_config_t));
  418. }
  419. return found;
  420. }
  421. static inline void _get_can_bit_timing(stc_can_bit_time_config_t *p_ll_time, struct rt_can_bit_timing *p_cfg_time)
  422. {
  423. p_ll_time->u32Prescaler = p_cfg_time->prescaler;
  424. p_ll_time->u32TimeSeg1 = p_cfg_time->num_seg1;
  425. p_ll_time->u32TimeSeg2 = p_cfg_time->num_seg2;
  426. p_ll_time->u32SJW = p_cfg_time->num_sjw;
  427. }
  428. static inline void _get_can_bit_timing_fd(stc_canfd_config_t *p_ll_time, struct rt_can_bit_timing *p_cfg_time)
  429. {
  430. p_ll_time->stcBitCfg.u32Prescaler = p_cfg_time->prescaler;
  431. p_ll_time->stcBitCfg.u32TimeSeg1 = p_cfg_time->num_seg1;
  432. p_ll_time->stcBitCfg.u32TimeSeg2 = p_cfg_time->num_seg2;
  433. p_ll_time->stcBitCfg.u32SJW = p_cfg_time->num_sjw;
  434. p_ll_time->u8SSPOffset = p_cfg_time->num_sspoff;
  435. if (p_cfg_time->num_sspoff)
  436. {
  437. p_ll_time->u8TDC = CAN_FD_TDC_ENABLE;
  438. }
  439. }
  440. static rt_err_t _get_can_closest_prescaler(uint32_t num_tq_mul_prescaler, uint32_t start_prescaler,
  441. uint32_t max_tq, uint32_t min_tq)
  442. {
  443. rt_bool_t has_found = RT_FALSE;
  444. uint32_t prescaler = start_prescaler;
  445. while (!has_found)
  446. {
  447. if ((num_tq_mul_prescaler / prescaler > max_tq) || (num_tq_mul_prescaler % prescaler != 0))
  448. {
  449. ++prescaler;
  450. continue;
  451. }
  452. else
  453. {
  454. has_found = RT_TRUE;
  455. break;
  456. }
  457. }
  458. uint32_t tq = num_tq_mul_prescaler / prescaler;
  459. if (tq * prescaler == num_tq_mul_prescaler)
  460. {
  461. has_found = RT_TRUE;
  462. }
  463. else if (tq < min_tq)
  464. {
  465. has_found = RT_FALSE;
  466. }
  467. return has_found ? prescaler : 0U;
  468. }
  469. static rt_err_t _calc_can_bit_timing(CM_CAN_TypeDef *CANx, int option, uint32_t baudrate,
  470. stc_can_bit_time_config_t *p_stc_bit_cfg)
  471. {
  472. rt_err_t status = -RT_ERROR;
  473. uint32_t can_clk = _get_can_clk_src(CANx);
  474. if (_get_can_bit_timing_default(can_clk, baudrate, option, p_stc_bit_cfg) == RT_TRUE)
  475. {
  476. status = RT_EOK;
  477. return status;
  478. }
  479. do
  480. {
  481. uint8_t idx = 0;
  482. for (int i = 0; i < CAN_BIT_TIMING_TABLE_NUM; i++)
  483. {
  484. if (option & (1 << i))
  485. {
  486. idx = (uint8_t)i;
  487. break;
  488. }
  489. }
  490. if ((idx >= CAN_BIT_TIMING_TABLE_NUM) || (baudrate == 0U) || (p_stc_bit_cfg == NULL))
  491. {
  492. break;
  493. }
  494. const can_bit_timing_table_t *tbl = &_g_can_bit_timing_tbl[idx];
  495. if (can_clk / baudrate < tbl->tq_min)
  496. {
  497. break;
  498. }
  499. uint32_t num_tq_mul_prescaler = can_clk / baudrate;
  500. uint32_t start_prescaler = 1U;
  501. uint32_t num_seg1, num_seg2;
  502. rt_bool_t has_found = RT_FALSE;
  503. /* Find out the minimum prescaler */
  504. uint32_t current_prescaler;
  505. while (!has_found)
  506. {
  507. current_prescaler = _get_can_closest_prescaler(num_tq_mul_prescaler, start_prescaler,
  508. tbl->tq_max,
  509. tbl->tq_min);
  510. if ((current_prescaler < start_prescaler) || (current_prescaler > NUM_PRESCALE_MAX))
  511. {
  512. break;
  513. }
  514. uint32_t num_tq = num_tq_mul_prescaler / current_prescaler;
  515. num_seg2 = (num_tq - tbl->min_diff_seg1_minus_seg2) / 2U;
  516. num_seg1 = num_tq - num_seg2;
  517. while (num_seg2 > tbl->seg2_max)
  518. {
  519. num_seg2--;
  520. num_seg1++;
  521. }
  522. /* Recommended sample point is 75% - 80% */
  523. while ((num_seg1 * 1000U) / num_tq < CAN_SAMPLEPOINT_MIN)
  524. {
  525. ++num_seg1;
  526. --num_seg2;
  527. }
  528. if ((num_seg1 * 1000U) / num_tq > CAN_SAMPLEPOINT_MAX)
  529. {
  530. break;
  531. }
  532. if ((num_seg2 >= tbl->seg2_min) && (num_seg1 <= tbl->seg1_max))
  533. {
  534. has_found = RT_TRUE;
  535. }
  536. else
  537. {
  538. start_prescaler = current_prescaler + 1U;
  539. }
  540. }
  541. if (has_found)
  542. {
  543. uint32_t num_sjw = LL_MIN(tbl->sjw_max, num_seg2);
  544. p_stc_bit_cfg->u32TimeSeg1 = num_seg1;
  545. p_stc_bit_cfg->u32TimeSeg2 = num_seg2;
  546. p_stc_bit_cfg->u32SJW = num_sjw;
  547. p_stc_bit_cfg->u32Prescaler = current_prescaler;
  548. status = RT_EOK;
  549. }
  550. }
  551. while (RT_FALSE);
  552. return status;
  553. }
  554. #else
  555. static rt_err_t _config_can20_baud(can_device *p_can_dev, void *arg)
  556. {
  557. rt_uint32_t argval = (rt_uint32_t)arg;
  558. rt_uint32_t baud_index;
  559. rt_err_t rt_ret = RT_EOK;
  560. RT_ASSERT(IS_VALID_BAUD_RATE_CAN2_0(argval));
  561. if (argval == p_can_dev->rt_can.config.baud_rate)
  562. {
  563. return rt_ret;
  564. }
  565. baud_index = _get_can_baud_index(argval);
  566. p_can_dev->ll_init.stcBitCfg = _g_baudrate_tab[baud_index].ll_sbt;
  567. /* init can */
  568. CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  569. p_can_dev->rt_can.config.baud_rate = argval;
  570. return rt_ret;
  571. }
  572. #endif
  573. static rt_err_t _config_can_filter(can_device *p_can_dev, void *arg)
  574. {
  575. struct rt_can_filter_config *p_filter_in = (struct rt_can_filter_config *)arg;
  576. if (_check_filter_params(p_filter_in) == RT_FALSE)
  577. {
  578. return -RT_EINVAL;
  579. }
  580. _init_ll_struct_filter(p_can_dev);
  581. uint32_t filter_select = _get_filter_idx(p_filter_in);
  582. p_can_dev->ll_init.u16FilterSelect = filter_select;
  583. for (int i = 0; i < p_filter_in->count; i++)
  584. {
  585. p_can_dev->ll_init.pstcFilter[i].u32ID = p_filter_in->items[i].id & 0x1FFFFFFF;
  586. /* rt-thread CAN mask, 1 mean filer, 0 mean ignore. *
  587. * HDSC HC32 CAN mask, 0 mean filer, 1 mean ignore. */
  588. p_can_dev->ll_init.pstcFilter[i].u32IDMask = (~p_filter_in->items[i].mask) & 0x1FFFFFFF;
  589. switch (p_filter_in->items[i].ide)
  590. {
  591. case (RT_CAN_STDID):
  592. p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD;
  593. break;
  594. case (RT_CAN_EXTID):
  595. p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_EXT;
  596. break;
  597. default:
  598. p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD_EXT;
  599. break;
  600. }
  601. }
  602. (void)CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  603. return RT_EOK;
  604. }
  605. static rt_err_t _config_can_work_mode(can_device *p_can_dev, void *arg)
  606. {
  607. rt_err_t rt_ret = RT_EOK;
  608. rt_uint32_t argval = (rt_uint32_t) arg;
  609. if (argval == p_can_dev->rt_can.config.mode)
  610. {
  611. return rt_ret;
  612. }
  613. RT_ASSERT(IS_VALID_WORK_MODE(argval));
  614. p_can_dev->ll_init.u8WorkMode = _get_can_work_mode(argval);
  615. CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  616. p_can_dev->rt_can.config.mode = argval;
  617. return rt_ret;
  618. }
  619. static rt_err_t _config_can_priv_mode(can_device *p_can_dev, void *arg)
  620. {
  621. rt_err_t rt_ret = RT_EOK;
  622. rt_uint32_t argval = (rt_uint32_t) arg;
  623. RT_ASSERT(IS_VALID_PRIV_MODE(argval));
  624. p_can_dev->rt_can.config.privmode = argval;
  625. return rt_ret;
  626. }
  627. static void _config_can_int(can_device *p_can_dev, int cmd, void *arg)
  628. {
  629. en_functional_state_t stat = ENABLE;
  630. rt_uint32_t flag = (rt_uint32_t)arg;
  631. if (cmd == RT_DEVICE_CTRL_CLR_INT)
  632. {
  633. if (flag == RT_DEVICE_CAN_INT_ERR)
  634. {
  635. RT_ASSERT(p_can_dev->init.single_trans_mode == RT_FALSE);
  636. }
  637. stat = DISABLE;
  638. }
  639. switch (flag)
  640. {
  641. case RT_DEVICE_FLAG_INT_RX:
  642. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX, stat);
  643. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_WARN, stat);
  644. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_FULL, stat);
  645. CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_OVERRUN, stat);
  646. break;
  647. case RT_DEVICE_FLAG_INT_TX:
  648. CAN_IntCmd(p_can_dev->instance, CAN_INT_STB_TX, stat);
  649. CAN_IntCmd(p_can_dev->instance, CAN_INT_PTB_TX, stat);
  650. break;
  651. case RT_DEVICE_CAN_INT_ERR:
  652. CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_INT, stat);
  653. CAN_IntCmd(p_can_dev->instance, CAN_INT_ARBITR_LOST, stat);
  654. CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_PASSIVE, stat);
  655. CAN_IntCmd(p_can_dev->instance, CAN_INT_BUS_ERR, stat);
  656. break;
  657. default:
  658. break;
  659. }
  660. }
  661. #ifdef RT_CAN_USING_CANFD
  662. static void _init_ll_struct_canfd(can_device *p_can_dev)
  663. {
  664. if (p_can_dev->ll_init.pstcCanFd == NULL)
  665. {
  666. p_can_dev->ll_init.pstcCanFd = (stc_canfd_config_t *)rt_malloc(sizeof(stc_canfd_config_t));
  667. }
  668. RT_ASSERT((p_can_dev->ll_init.pstcCanFd != RT_NULL));
  669. CAN_FD_StructInit(p_can_dev->ll_init.pstcCanFd);
  670. }
  671. static rt_err_t _config_can_bit_timing(can_device *p_can_dev, void *arg)
  672. {
  673. rt_err_t rt_ret = RT_EOK;
  674. struct rt_can_bit_timing_config *timing_configs = (struct rt_can_bit_timing_config *)arg;
  675. RT_ASSERT(timing_configs != RT_NULL);
  676. RT_ASSERT(timing_configs->count == 1 || timing_configs->count == 2);
  677. RT_ASSERT(timing_configs->items[0].num_sspoff == 0);
  678. _get_can_bit_timing(&p_can_dev->ll_init.stcBitCfg, &timing_configs->items[0]);
  679. if (timing_configs->count == 2)
  680. {
  681. _get_can_bit_timing_fd(p_can_dev->ll_init.pstcCanFd, &timing_configs->items[1]);
  682. }
  683. /* init can */
  684. CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  685. p_can_dev->rt_can.config.can_timing = timing_configs->items[0];
  686. if (timing_configs->count == 2)
  687. {
  688. p_can_dev->rt_can.config.canfd_timing = timing_configs->items[1];
  689. }
  690. return rt_ret;
  691. }
  692. static rt_err_t _canfd_control(can_device *p_can_dev, int cmd, void *arg)
  693. {
  694. rt_uint32_t argval;
  695. rt_err_t timing_stat;
  696. switch (cmd)
  697. {
  698. case RT_CAN_CMD_SET_BAUD:
  699. argval = (rt_uint32_t) arg;
  700. RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_ARBITRATION(argval));
  701. if (p_can_dev->rt_can.config.baud_rate == argval)
  702. {
  703. break;
  704. }
  705. timing_stat = _calc_can_bit_timing(p_can_dev->instance, \
  706. CAN_BIT_TIMING_CANFD_ARBITRATION, \
  707. argval, \
  708. &p_can_dev->ll_init.stcBitCfg);
  709. if (timing_stat != RT_EOK)
  710. {
  711. return timing_stat;
  712. }
  713. CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  714. p_can_dev->rt_can.config.baud_rate = argval;
  715. break;
  716. case RT_CAN_CMD_SET_CANFD:
  717. argval = (rt_uint32_t) arg;
  718. if (p_can_dev->rt_can.config.enable_canfd == argval)
  719. {
  720. break;
  721. }
  722. RT_ASSERT(IS_CAN_FRAME(argval));
  723. if (argval != CAN_FRAME_CLASSIC)
  724. {
  725. p_can_dev->ll_init.pstcCanFd->u8Mode = (argval == CAN_FRAME_ISO_FD) ? CAN_FD_MD_ISO : CAN_FD_MD_BOSCH;
  726. }
  727. CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  728. p_can_dev->rt_can.config.enable_canfd = argval;
  729. argval = (argval > CAN_FRAME_CLASSIC) ? ENABLE : DISABLE;
  730. #if defined(HC32F472) || defined(HC32F4A8)
  731. CAN_FD_Cmd(p_can_dev->instance, (en_functional_state_t)argval);
  732. #endif
  733. break;
  734. case RT_CAN_CMD_SET_BAUD_FD:
  735. argval = (rt_uint32_t) arg;
  736. RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_DATA(argval));
  737. if (p_can_dev->rt_can.config.baud_rate_fd == argval)
  738. {
  739. break;
  740. }
  741. timing_stat = _calc_can_bit_timing(p_can_dev->instance, \
  742. CAN_BIT_TIMING_CANFD_DATA, \
  743. argval, \
  744. &p_can_dev->ll_init.pstcCanFd->stcBitCfg);
  745. if (timing_stat != RT_EOK)
  746. {
  747. return timing_stat;
  748. }
  749. p_can_dev->ll_init.pstcCanFd->u8SSPOffset = p_can_dev->ll_init.pstcCanFd->stcBitCfg.u32TimeSeg1;
  750. CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  751. p_can_dev->rt_can.config.baud_rate_fd = argval;
  752. break;
  753. case RT_CAN_CMD_SET_BITTIMING:
  754. return _config_can_bit_timing(p_can_dev, arg);
  755. default:
  756. break;
  757. }
  758. return RT_EOK;
  759. }
  760. #endif
  761. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  762. {
  763. can_device *p_can_dev;
  764. rt_err_t rt_ret = RT_EOK;
  765. RT_ASSERT(can);
  766. RT_ASSERT(cfg);
  767. p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  768. RT_ASSERT(p_can_dev);
  769. RT_ASSERT(IS_VALID_WORK_MODE(cfg->mode));
  770. p_can_dev->ll_init.u8WorkMode = _get_can_work_mode(cfg->mode);
  771. #ifdef RT_CAN_USING_CANFD
  772. if (cfg->use_bit_timing)
  773. {
  774. _get_can_bit_timing(&p_can_dev->ll_init.stcBitCfg, &cfg->can_timing);
  775. _get_can_bit_timing_fd(p_can_dev->ll_init.pstcCanFd, &cfg->canfd_timing);
  776. }
  777. else
  778. {
  779. RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_ARBITRATION(cfg->baud_rate));
  780. RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_DATA(cfg->baud_rate_fd));
  781. rt_ret = _calc_can_bit_timing(p_can_dev->instance, \
  782. CAN_BIT_TIMING_CANFD_ARBITRATION, \
  783. cfg->baud_rate, \
  784. &p_can_dev->ll_init.stcBitCfg);
  785. if (rt_ret != RT_EOK)
  786. {
  787. return rt_ret;
  788. }
  789. rt_ret = _calc_can_bit_timing(p_can_dev->instance, \
  790. CAN_BIT_TIMING_CANFD_DATA, \
  791. cfg->baud_rate_fd, \
  792. &p_can_dev->ll_init.pstcCanFd->stcBitCfg);
  793. if (rt_ret != RT_EOK)
  794. {
  795. return rt_ret;
  796. }
  797. }
  798. p_can_dev->ll_init.pstcCanFd->u8SSPOffset = p_can_dev->ll_init.pstcCanFd->stcBitCfg.u32TimeSeg1;
  799. #else
  800. RT_ASSERT(IS_VALID_BAUD_RATE_CAN2_0(cfg->baud_rate));
  801. rt_uint32_t baud_index = _get_can_baud_index(cfg->baud_rate);
  802. p_can_dev->ll_init.stcBitCfg = _g_baudrate_tab[baud_index].ll_sbt;
  803. #endif
  804. /* init can */
  805. CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
  806. struct can_configure pre_config = p_can_dev->rt_can.config;
  807. rt_memcpy(&p_can_dev->rt_can.config, cfg, sizeof(struct can_configure));
  808. /* restore unmodifiable member */
  809. if ((p_can_dev->rt_can.parent.open_flag & RT_DEVICE_OFLAG_OPEN) == RT_DEVICE_OFLAG_OPEN)
  810. {
  811. p_can_dev->rt_can.config.msgboxsz = pre_config.msgboxsz;
  812. p_can_dev->rt_can.config.ticks = pre_config.ticks;
  813. }
  814. #ifdef RT_CAN_USING_HDR
  815. p_can_dev->rt_can.config.maxhdr = pre_config.maxhdr;
  816. #endif
  817. p_can_dev->rt_can.config.sndboxnumber = pre_config.sndboxnumber;
  818. return rt_ret;
  819. }
  820. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  821. {
  822. can_device *p_can_dev;
  823. RT_ASSERT(can != RT_NULL);
  824. p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  825. RT_ASSERT(p_can_dev);
  826. switch (cmd)
  827. {
  828. case RT_DEVICE_CTRL_CLR_INT:
  829. case RT_DEVICE_CTRL_SET_INT:
  830. _config_can_int(p_can_dev, cmd, arg);
  831. break;
  832. case RT_CAN_CMD_SET_FILTER:
  833. return _config_can_filter(p_can_dev, arg);
  834. case RT_CAN_CMD_SET_MODE:
  835. return _config_can_work_mode(p_can_dev, arg);
  836. case RT_CAN_CMD_SET_BAUD:
  837. #ifdef RT_CAN_USING_CANFD
  838. return _canfd_control(p_can_dev, cmd, arg);
  839. #else
  840. return _config_can20_baud(p_can_dev, arg);
  841. #endif
  842. case RT_CAN_CMD_SET_PRIV:
  843. return _config_can_priv_mode(p_can_dev, arg);
  844. case RT_CAN_CMD_GET_STATUS:
  845. {
  846. struct rt_can_status *rt_can_stat = (struct rt_can_status *)arg;
  847. stc_can_error_info_t stcErr = {0};
  848. CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
  849. rt_can_stat->rcverrcnt = stcErr.u8RxErrorCount;
  850. rt_can_stat->snderrcnt = stcErr.u8TxErrorCount;
  851. rt_can_stat->lasterrtype = stcErr.u8ErrorType;
  852. rt_can_stat->errcode = CAN_GetStatusValue(p_can_dev->instance);
  853. }
  854. break;
  855. #ifdef RT_CAN_USING_CANFD
  856. case RT_CAN_CMD_SET_CANFD:
  857. case RT_CAN_CMD_SET_BAUD_FD:
  858. case RT_CAN_CMD_SET_BITTIMING:
  859. return _canfd_control(p_can_dev, cmd, arg);
  860. #endif
  861. default:
  862. return -(RT_EINVAL);
  863. }
  864. return RT_EOK;
  865. }
  866. static rt_ssize_t _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  867. {
  868. struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
  869. stc_can_tx_frame_t stc_tx_frame = {0};
  870. int32_t ll_ret;
  871. RT_ASSERT(can != RT_NULL);
  872. can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  873. RT_ASSERT(p_can_dev);
  874. stc_tx_frame.u32ID = pmsg->id;
  875. if (RT_CAN_DTR == pmsg->rtr)
  876. {
  877. stc_tx_frame.RTR = 0;
  878. }
  879. else
  880. {
  881. stc_tx_frame.RTR = 1;
  882. }
  883. #ifdef RT_CAN_USING_CANFD
  884. if (pmsg->fd_frame != 0)
  885. {
  886. RT_ASSERT(pmsg->len <= CAN_DLC64);
  887. }
  888. else
  889. {
  890. RT_ASSERT(pmsg->len <= CAN_DLC8);
  891. }
  892. stc_tx_frame.FDF = pmsg->fd_frame;
  893. stc_tx_frame.BRS = pmsg->brs;
  894. #endif
  895. stc_tx_frame.DLC = pmsg->len & 0x0FU;
  896. /* Set up the IDE */
  897. stc_tx_frame.IDE = pmsg->ide;
  898. /* Set up the data field */
  899. uint32_t msg_len = _get_can_data_bytes_len(stc_tx_frame.DLC);
  900. rt_memcpy(&stc_tx_frame.au8Data, pmsg->data, msg_len);
  901. ll_ret = CAN_FillTxFrame(p_can_dev->instance, CAN_TX_BUF_PTB, &stc_tx_frame);
  902. if (ll_ret != LL_OK)
  903. {
  904. return -RT_ERROR;
  905. }
  906. /* Request transmission */
  907. CAN_StartTx(p_can_dev->instance, CAN_TX_REQ_PTB);
  908. return RT_EOK;
  909. }
  910. static rt_ssize_t _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  911. {
  912. int32_t ll_ret;
  913. struct rt_can_msg *pmsg;
  914. stc_can_rx_frame_t ll_rx_frame;
  915. RT_ASSERT(can != RT_NULL);
  916. can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
  917. RT_ASSERT(p_can_dev);
  918. pmsg = (struct rt_can_msg *) buf;
  919. /* get data */
  920. ll_ret = CAN_GetRxFrame(p_can_dev->instance, &ll_rx_frame);
  921. if (ll_ret != LL_OK)
  922. return -RT_ERROR;
  923. /* get id */
  924. if (0 == ll_rx_frame.IDE)
  925. {
  926. pmsg->ide = RT_CAN_STDID;
  927. }
  928. else
  929. {
  930. pmsg->ide = RT_CAN_EXTID;
  931. }
  932. pmsg->id = ll_rx_frame.u32ID;
  933. /* get type */
  934. if (0 == ll_rx_frame.RTR)
  935. {
  936. pmsg->rtr = RT_CAN_DTR;
  937. }
  938. else
  939. {
  940. pmsg->rtr = RT_CAN_RTR;
  941. }
  942. /* get len */
  943. pmsg->len = ll_rx_frame.DLC;
  944. /* get hdr_index */
  945. pmsg->hdr_index = 0;
  946. pmsg->priv = 0;
  947. #ifdef RT_CAN_USING_CANFD
  948. pmsg->fd_frame = ll_rx_frame.FDF;
  949. pmsg->brs = ll_rx_frame.BRS;
  950. #endif
  951. uint32_t msg_len = _get_can_data_bytes_len(ll_rx_frame.DLC);
  952. rt_memcpy(pmsg->data, &ll_rx_frame.au8Data, msg_len);
  953. return RT_EOK;
  954. }
  955. static const struct rt_can_ops _can_ops =
  956. {
  957. _can_config,
  958. _can_control,
  959. _can_sendmsg,
  960. _can_recvmsg,
  961. };
  962. rt_inline void _isr_can_rx(can_device *p_can_dev)
  963. {
  964. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF) == SET)
  965. {
  966. /* RX overflow. */
  967. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RXOF_IND);
  968. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF);
  969. }
  970. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX) == SET)
  971. {
  972. /* Received a frame. */
  973. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX);
  974. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RX_IND);
  975. }
  976. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN) == SET)
  977. {
  978. /* RX buffer warning. */
  979. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN);
  980. }
  981. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL) == SET)
  982. {
  983. /* RX buffer full. */
  984. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL);
  985. }
  986. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN) == SET)
  987. {
  988. /* RX buffer overrun. */
  989. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN);
  990. }
  991. }
  992. rt_inline void _isr_can_tx(can_device *p_can_dev)
  993. {
  994. rt_bool_t is_tx_done = RT_FALSE;
  995. rt_bool_t need_check_single_trans = RT_FALSE;
  996. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_BUF_FULL) == SET)
  997. {
  998. /* TX buffer full. */
  999. }
  1000. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED) == SET)
  1001. {
  1002. /* TX aborted. */
  1003. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED);
  1004. }
  1005. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_PTB_TX) == SET)
  1006. {
  1007. /* PTB transmitted. */
  1008. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_PTB_TX);
  1009. if (p_can_dev->ll_init.u8PTBSingleShotTx == CAN_PTB_SINGLESHOT_TX_ENABLE)
  1010. {
  1011. need_check_single_trans = RT_TRUE;
  1012. }
  1013. else
  1014. {
  1015. is_tx_done = RT_TRUE;
  1016. }
  1017. }
  1018. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_STB_TX) == SET)
  1019. {
  1020. /* STB transmitted. */
  1021. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_STB_TX);
  1022. if (p_can_dev->ll_init.u8STBSingleShotTx == CAN_STB_SINGLESHOT_TX_ENABLE)
  1023. {
  1024. need_check_single_trans = RT_TRUE;
  1025. }
  1026. else
  1027. {
  1028. is_tx_done = RT_TRUE;
  1029. }
  1030. }
  1031. if (need_check_single_trans)
  1032. {
  1033. if ((CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR) != SET) \
  1034. || (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST) != SET))
  1035. {
  1036. is_tx_done = RT_TRUE;
  1037. }
  1038. }
  1039. if (is_tx_done)
  1040. {
  1041. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_DONE);
  1042. }
  1043. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST) == SET)
  1044. {
  1045. rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_FAIL);
  1046. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST);
  1047. }
  1048. }
  1049. rt_inline void _isr_can_err(can_device *p_can_dev)
  1050. {
  1051. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_INT) == SET)
  1052. {
  1053. /* ERROR. */
  1054. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_INT);
  1055. }
  1056. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR) == SET)
  1057. {
  1058. /* BUS ERROR. */
  1059. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR);
  1060. }
  1061. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE) == SET)
  1062. {
  1063. /* error-passive to error-active or error-active to error-passive. */
  1064. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE);
  1065. }
  1066. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN) == SET)
  1067. {
  1068. /* TEC or REC reached warning limit. */
  1069. CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN);
  1070. }
  1071. if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_OFF) == SET)
  1072. {
  1073. /* BUS OFF. */
  1074. }
  1075. }
  1076. rt_inline void _isr_ttcan(can_device *p_can_dev)
  1077. {
  1078. if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG) == SET)
  1079. {
  1080. /* Time trigger interrupt. */
  1081. CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG);
  1082. }
  1083. if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TRIG_ERR) == SET)
  1084. {
  1085. /* Trigger error interrupt. */
  1086. }
  1087. if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG) == SET)
  1088. {
  1089. /* Watch trigger interrupt. */
  1090. CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG);
  1091. }
  1092. }
  1093. static void _isr_can(can_device *p_can_dev)
  1094. {
  1095. stc_can_error_info_t stcErr;
  1096. (void)CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
  1097. _isr_can_rx(p_can_dev);
  1098. _isr_can_tx(p_can_dev);
  1099. _isr_can_err(p_can_dev);
  1100. _isr_ttcan(p_can_dev);
  1101. }
  1102. #if defined(BSP_USING_CAN1)
  1103. static void _irq_handler_can1(void)
  1104. {
  1105. rt_interrupt_enter();
  1106. _isr_can(&_g_can_dev_array[CAN1_INDEX]);
  1107. rt_interrupt_leave();
  1108. }
  1109. #if defined(HC32F472)
  1110. void CAN1_Handler(void)
  1111. {
  1112. _irq_handler_can1();
  1113. }
  1114. #endif
  1115. #endif
  1116. #if defined(BSP_USING_CAN2)
  1117. static void _irq_handler_can2(void)
  1118. {
  1119. rt_interrupt_enter();
  1120. _isr_can(&_g_can_dev_array[CAN2_INDEX]);
  1121. rt_interrupt_leave();
  1122. }
  1123. #if defined(HC32F472)
  1124. void CAN2_Handler(void)
  1125. {
  1126. _irq_handler_can2();
  1127. }
  1128. #endif
  1129. #endif
  1130. #if defined(BSP_USING_CAN3)
  1131. static void _irq_handler_can3(void)
  1132. {
  1133. rt_interrupt_enter();
  1134. _isr_can(&_g_can_dev_array[CAN3_INDEX]);
  1135. rt_interrupt_leave();
  1136. }
  1137. #if defined(HC32F472)
  1138. void CAN3_Handler(void)
  1139. {
  1140. _irq_handler_can3();
  1141. }
  1142. #endif
  1143. #endif
  1144. static void _enable_can_clock(void)
  1145. {
  1146. #if defined(BSP_USING_CAN1)
  1147. #if defined(HC32F4A0) || defined(HC32F472) || defined(HC32F4A8)
  1148. FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN1, ENABLE);
  1149. #elif defined(HC32F460)
  1150. FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN, ENABLE);
  1151. #endif
  1152. #endif
  1153. #if defined(BSP_USING_CAN2)
  1154. FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN2, ENABLE);
  1155. #endif
  1156. #if defined(BSP_USING_CAN3)
  1157. FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN3, ENABLE);
  1158. #endif
  1159. }
  1160. static void _config_can_irq(void)
  1161. {
  1162. struct hc32_irq_config irq_config;
  1163. #if defined(BSP_USING_CAN1)
  1164. irq_config.irq_num = BSP_CAN1_IRQ_NUM;
  1165. irq_config.int_src = CAN1_INT_SRC;
  1166. irq_config.irq_prio = BSP_CAN1_IRQ_PRIO;
  1167. /* register interrupt */
  1168. hc32_install_irq_handler(&irq_config,
  1169. _irq_handler_can1,
  1170. RT_TRUE);
  1171. #endif
  1172. #if defined(BSP_USING_CAN2)
  1173. irq_config.irq_num = BSP_CAN2_IRQ_NUM;
  1174. irq_config.int_src = CAN2_INT_SRC;
  1175. irq_config.irq_prio = BSP_CAN2_IRQ_PRIO;
  1176. /* register interrupt */
  1177. hc32_install_irq_handler(&irq_config,
  1178. _irq_handler_can2,
  1179. RT_TRUE);
  1180. #endif
  1181. #if defined(BSP_USING_CAN3)
  1182. irq_config.irq_num = BSP_CAN3_IRQ_NUM;
  1183. irq_config.int_src = CAN3_INT_SRC;
  1184. irq_config.irq_prio = BSP_CAN3_IRQ_PRIO;
  1185. /* register interrupt */
  1186. hc32_install_irq_handler(&irq_config,
  1187. _irq_handler_can3,
  1188. RT_TRUE);
  1189. #endif
  1190. }
  1191. static void _init_ll_struct_filter(can_device *p_can_dev)
  1192. {
  1193. if (p_can_dev->ll_init.pstcFilter == RT_NULL)
  1194. {
  1195. p_can_dev->ll_init.pstcFilter = (stc_can_filter_config_t *)rt_malloc(sizeof(stc_can_filter_config_t) * CAN_FILTER_COUNT);
  1196. }
  1197. RT_ASSERT((p_can_dev->ll_init.pstcFilter != RT_NULL));
  1198. rt_memset(p_can_dev->ll_init.pstcFilter, 0, sizeof(stc_can_filter_config_t) * CAN_FILTER_COUNT);
  1199. p_can_dev->ll_init.pstcFilter[0].u32ID = 0U;
  1200. p_can_dev->ll_init.pstcFilter[0].u32IDMask = 0x1FFFFFFF;
  1201. p_can_dev->ll_init.pstcFilter[0].u32IDType = CAN_ID_STD_EXT;
  1202. p_can_dev->ll_init.u16FilterSelect = CAN_FILTER1;
  1203. }
  1204. static void _init_default_cfg(can_device *p_can_dev)
  1205. {
  1206. struct can_configure rt_can_config = CANDEFAULTCONFIG;
  1207. rt_can_config.privmode = RT_CAN_MODE_NOPRIV;
  1208. rt_can_config.ticks = 50;
  1209. #ifdef RT_CAN_USING_HDR
  1210. rt_can_config.maxhdr = CAN_FILTER_COUNT;
  1211. #endif
  1212. #ifdef RT_CAN_USING_CANFD
  1213. rt_can_config.baud_rate_fd = CANFD_DATA_BAUD_1M;
  1214. #endif
  1215. rt_can_config.sndboxnumber = 1;
  1216. p_can_dev->rt_can.config = rt_can_config;
  1217. CAN_StructInit(&p_can_dev->ll_init);
  1218. if (p_can_dev->init.single_trans_mode)
  1219. {
  1220. p_can_dev->ll_init.u8PTBSingleShotTx = CAN_PTB_SINGLESHOT_TX_ENABLE;
  1221. }
  1222. #ifdef RT_CAN_USING_CANFD
  1223. _init_ll_struct_canfd(p_can_dev);
  1224. #endif
  1225. _init_ll_struct_filter(p_can_dev);
  1226. }
  1227. extern rt_err_t rt_hw_board_can_init(CM_CAN_TypeDef *CANx);
  1228. extern void CanPhyEnable(void);
  1229. int rt_hw_can_init(void)
  1230. {
  1231. _config_can_irq();
  1232. _enable_can_clock();
  1233. CanPhyEnable();
  1234. int result = RT_EOK;
  1235. uint32_t i = 0;
  1236. for (; i < CAN_INDEX_MAX; i++)
  1237. {
  1238. _init_default_cfg(&_g_can_dev_array[i]);
  1239. /* register CAN device */
  1240. rt_hw_board_can_init(_g_can_dev_array[i].instance);
  1241. rt_hw_can_register(&_g_can_dev_array[i].rt_can, \
  1242. _g_can_dev_array[i].init.name,
  1243. &_can_ops,
  1244. &_g_can_dev_array[i]);
  1245. }
  1246. return result;
  1247. }
  1248. INIT_DEVICE_EXPORT(rt_hw_can_init);
  1249. #endif
  1250. #endif /* BSP_USING_CAN */
  1251. /************************** end of file ******************/