test_uart_v2.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. /*
  2. * Copyright (c) 2022-2024, Xiaohua Semiconductor Co., Ltd.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2024-12-30 CDT first version
  9. */
  10. /*
  11. * 程序清单:这是一个串口设备
  12. * 例程导出了 uart_sample_v2 命令到控制终端
  13. *
  14. * 命令解释:命令第二个参数是要使用的串口设备名称,为空则使用默认的串口设备(uart1)
  15. * 程序功能:通过串口输出字符串:
  16. * drv_usart: drv_usart_v1
  17. * commnucation:using DMA/interrupt,
  18. * uart_ch: uartx (x对应测试通道)
  19. * 输出输入的字符
  20. *
  21. * 命令调用格式:
  22. * uart1 中断,命令调用格式:uart_sample_v2 uart1 int
  23. * uart1 DMA,命令调用格式:uart_sample_v2 uart1 dma
  24. *
  25. * 中断方式,rtconfig.h修改如下
  26. * #define BSP_USING_GPIO
  27. * #define BSP_USING_UART
  28. * #define BSP_USING_UART1
  29. * //#define BSP_UART1_RX_USING_DMA
  30. * //#define BSP_UART1_TX_USING_DMA
  31. * #define BSP_UART1_RX_BUFSIZE 256
  32. * #define BSP_UART1_TX_BUFSIZE 256
  33. * #define BSP_USING_UART2
  34. * #define BSP_UART2_RX_USING_DMA
  35. * #define BSP_UART2_TX_USING_DMA
  36. * #define BSP_UART2_RX_BUFSIZE 256
  37. * #define BSP_UART2_TX_BUFSIZE 0
  38. * #define BSP_USING_UART5
  39. * //#define BSP_UART5_RX_USING_DMA
  40. * //#define BSP_UART5_TX_USING_DMA
  41. * #define BSP_UART5_RX_BUFSIZE 256
  42. * #define BSP_UART5_TX_BUFSIZE 256
  43. *
  44. * DMA方式,rtconfig.h修改如下
  45. * #define BSP_USING_GPIO
  46. * #define BSP_USING_UART
  47. * #define BSP_USING_UART1
  48. * #define BSP_UART1_RX_USING_DMA
  49. * #define BSP_UART1_TX_USING_DMA
  50. * #define BSP_UART1_RX_BUFSIZE 256
  51. * #define BSP_UART1_TX_BUFSIZE 256
  52. * #define BSP_USING_UART2
  53. * #define BSP_UART2_RX_USING_DMA
  54. * #define BSP_UART2_TX_USING_DMA
  55. * #define BSP_UART2_RX_BUFSIZE 256
  56. * #define BSP_UART2_TX_BUFSIZE 0
  57. * #define BSP_USING_UART5
  58. * #define BSP_UART5_RX_USING_DMA
  59. * #define BSP_UART5_TX_USING_DMA
  60. * #define BSP_UART5_RX_BUFSIZE 256
  61. * #define BSP_UART5_TX_BUFSIZE 256
  62. *
  63. */
  64. #include <rtthread.h>
  65. #include <rtdevice.h>
  66. #if defined(HC32F460) && defined(BSP_USING_UART2)
  67. #define SAMPLE_DEFAULT_UART_NAME "uart2"
  68. #elif defined(HC32F4A0) && defined (BSP_USING_UART6)
  69. #define SAMPLE_DEFAULT_UART_NAME "uart6"
  70. #elif defined(HC32F448) && defined (BSP_USING_UART1)
  71. #define SAMPLE_DEFAULT_UART_NAME "uart1"
  72. #elif defined(HC32F472) && defined (BSP_USING_UART1)
  73. #define SAMPLE_DEFAULT_UART_NAME "uart1"
  74. #elif defined(HC32F4A8) && defined (BSP_USING_UART6)
  75. #define SAMPLE_DEFAULT_UART_NAME "uart6"
  76. #elif defined(HC32F334) && defined (BSP_USING_UART1)
  77. #define SAMPLE_DEFAULT_UART_NAME "uart1"
  78. #endif
  79. #if defined(SAMPLE_DEFAULT_UART_NAME)
  80. /* 串口接收消息结构 */
  81. struct rx_msg
  82. {
  83. rt_device_t dev;
  84. rt_size_t size;
  85. };
  86. /* 串口设备句柄 */
  87. static rt_device_t serial;
  88. /* 消息队列控制块 */
  89. static struct rt_messagequeue rx_mq;
  90. /* 用于接收消息的信号量 */
  91. static struct rt_semaphore rx_sem;
  92. static rt_device_t serial;
  93. static struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  94. /* DMA接收数据回调函数 */
  95. static rt_err_t uart_input_dma(rt_device_t dev, rt_size_t size)
  96. {
  97. struct rx_msg msg;
  98. rt_err_t result;
  99. msg.dev = dev;
  100. msg.size = size;
  101. result = rt_mq_send(&rx_mq, &msg, sizeof(msg));
  102. if (result == -RT_EFULL)
  103. {
  104. /* 消息队列满 */
  105. rt_kprintf("message queue full!\n");
  106. }
  107. return result;
  108. }
  109. /* INT接收数据回调函数 */
  110. static rt_err_t uart_input_int(rt_device_t dev, rt_size_t size)
  111. {
  112. /* 串口接收到数据后产生中断,调用此回调函数,然后发送接收信号量 */
  113. rt_sem_release(&rx_sem);
  114. return RT_EOK;
  115. }
  116. /* 发送完成回调函数 */
  117. static rt_err_t uart_ouput(rt_device_t dev, void *buffer)
  118. {
  119. return RT_EOK;
  120. }
  121. static void serial_thread_entry_dma(void *parameter)
  122. {
  123. struct rx_msg msg;
  124. rt_err_t result;
  125. rt_uint32_t rx_length;
  126. static char rx_buffer[256];
  127. static rt_uint32_t buf_size = sizeof(rx_buffer);
  128. static rt_uint32_t put_index = 0;
  129. while (1)
  130. {
  131. rt_memset(&msg, 0, sizeof(msg));
  132. /* 从消息队列中读取消息 */
  133. result = rt_mq_recv(&rx_mq, &msg, sizeof(msg), RT_WAITING_FOREVER);
  134. if (result > 0UL)
  135. {
  136. while (msg.size)
  137. {
  138. if (msg.size > (buf_size - put_index))
  139. {
  140. rx_length = rt_device_read(msg.dev, 0, rx_buffer + put_index, buf_size - put_index);
  141. msg.size -= rx_length;
  142. }
  143. else
  144. {
  145. rx_length = rt_device_read(msg.dev, 0, rx_buffer + put_index, msg.size);
  146. msg.size = 0UL;
  147. }
  148. rt_device_write(serial, 0, rx_buffer + put_index, rx_length);
  149. put_index += rx_length;
  150. put_index %= sizeof(rx_buffer);
  151. }
  152. }
  153. }
  154. }
  155. static void serial_thread_entry_int(void *parameter)
  156. {
  157. char ch;
  158. while (1)
  159. {
  160. /* 从串口读取一个字节的数据,没有读取到则等待接收信号量 */
  161. while (rt_device_read(serial, -1, &ch, 1) != 1)
  162. {
  163. /* 阻塞等待接收信号量,等到信号量后再次读取数据 */
  164. rt_sem_take(&rx_sem, RT_WAITING_FOREVER);
  165. }
  166. /* 读取到的数据通过串口错位输出 */
  167. rt_device_write(serial, 0, &ch, 1);
  168. }
  169. }
  170. int uart_sample_v2(int argc, char *argv[])
  171. {
  172. rt_thread_t thread;
  173. rt_err_t ret = RT_EOK;
  174. rt_size_t n;
  175. rt_err_t open_flag = 0UL;
  176. static char uart_name[RT_NAME_MAX];
  177. static char comm_mode[RT_NAME_MAX];
  178. const static char comm_mode_int[] = "int";
  179. const static char comm_mode_dma[] = "dma";
  180. const static char comm_info_dma[] = "\r\n drv_version: drv_usart_v2 \r\n communication: using DMA \r\n uart_ch: ";
  181. const static char comm_info_int[] = "\r\n drv_version: drv_usart_v2 \r\n communication: using interrupt \r\n uart_ch: ";
  182. static char comm_info[150];
  183. rt_memset(uart_name, 0, sizeof(uart_name));
  184. rt_memset(comm_mode, 0, sizeof(comm_mode));
  185. if (argc == 1)
  186. {
  187. rt_strncpy(uart_name, SAMPLE_DEFAULT_UART_NAME, RT_NAME_MAX);
  188. rt_strncpy(comm_mode, comm_mode_int, sizeof(comm_mode_int));
  189. }
  190. else if (argc == 2)
  191. {
  192. rt_strncpy(uart_name, argv[1], RT_NAME_MAX);
  193. rt_strncpy(comm_mode, comm_mode_int, sizeof(comm_mode_int));
  194. }
  195. else if (argc == 3)
  196. {
  197. rt_strncpy(uart_name, argv[1], RT_NAME_MAX);
  198. rt_strncpy(comm_mode, argv[2], RT_NAME_MAX);
  199. }
  200. else
  201. {
  202. rt_kprintf("argc error!\n");
  203. return -RT_ERROR;
  204. }
  205. /* 查找串口设备 */
  206. serial = rt_device_find(uart_name);
  207. if (!serial)
  208. {
  209. rt_kprintf("find %s failed!\n", uart_name);
  210. return -RT_ERROR;
  211. }
  212. /* modify configure */
  213. config.baud_rate = BAUD_RATE_115200; //baudrate 115200
  214. config.data_bits = DATA_BITS_8; //data bit 8
  215. config.stop_bits = STOP_BITS_1; //stop bit 1
  216. config.parity = PARITY_NONE;
  217. rt_device_control(serial, RT_DEVICE_CTRL_CONFIG, &config);
  218. if (0 == rt_strncmp(comm_mode, comm_mode_dma, 3))
  219. {
  220. static char msg_pool[256U];
  221. /* 初始化消息队列 */
  222. rt_mq_init(&rx_mq, "rx_mq",
  223. msg_pool, /* 存放消息的缓冲区 */
  224. sizeof(struct rx_msg), /* 一条消息的最大长度 */
  225. sizeof(msg_pool), /* 存放消息的缓冲区大小 */
  226. RT_IPC_FLAG_FIFO); /* 如果有多个线程等待,按照先来先得到的方法分配消息 */
  227. /* 以DMA接收和发送模式打开串口设备 */
  228. open_flag |= RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX;
  229. rt_device_open(serial, open_flag);
  230. /* 设置回调函数 */
  231. rt_device_set_rx_indicate(serial, uart_input_dma);
  232. rt_device_set_tx_complete(serial, uart_ouput);
  233. /* 发送字符串 */
  234. n = rt_strlen(comm_info_dma);
  235. rt_strncpy(comm_info, comm_info_dma, n);
  236. rt_strncpy(comm_info + n, uart_name, rt_strlen(uart_name));
  237. rt_device_write(serial, 0, comm_info, rt_strlen(comm_info));
  238. /* 创建 serial 线程 */
  239. thread = rt_thread_create("serial", serial_thread_entry_dma, RT_NULL, 1024, 25, 10);
  240. }
  241. else if (0 == rt_strncmp(comm_mode, comm_mode_int, 3))
  242. {
  243. /* 以中断模式打开串口设备 */
  244. open_flag = RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX;
  245. rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);
  246. rt_device_open(serial, open_flag);
  247. /* 设置回调函数 */
  248. rt_device_set_rx_indicate(serial, uart_input_int);
  249. rt_device_set_tx_complete(serial, uart_ouput);
  250. /* 发送字符串 */
  251. n = rt_strlen(comm_info_int);
  252. rt_strncpy(comm_info, comm_info_int, n);
  253. rt_strncpy(comm_info + n, uart_name, rt_strlen(uart_name));
  254. rt_device_write(serial, 0, comm_info, rt_strlen(comm_info));
  255. /* 创建 serial 线程 */
  256. thread = rt_thread_create("serial", serial_thread_entry_int, RT_NULL, 1024, 25, 10);
  257. }
  258. else
  259. {
  260. rt_kprintf("communication mode error, please input cmd: uart_sample_v2 %s int or uart_sample_v1 uartx dma!\n", uart_name);
  261. return -RT_ERROR;
  262. }
  263. if (thread != RT_NULL)
  264. {
  265. rt_thread_startup(thread);
  266. }
  267. else
  268. {
  269. ret = -RT_ERROR;
  270. }
  271. return ret;
  272. }
  273. /* 导出到 msh 命令列表中 */
  274. MSH_CMD_EXPORT(uart_sample_v2, uart device sample);
  275. #endif