board.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. /*
  2. * Copyright (c) 2021-2025 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_sdxc_soc_drv.h"
  21. #include "hpm_pllctl_drv.h"
  22. #include "hpm_pwm_drv.h"
  23. #include "hpm_pcfg_drv.h"
  24. #include "hpm_enet_drv.h"
  25. #include <rtconfig.h>
  26. static bool invert_led_level;
  27. /**
  28. * @brief FLASH configuration option definitions:
  29. * option[0]:
  30. * [31:16] 0xfcf9 - FLASH configuration option tag
  31. * [15:4] 0 - Reserved
  32. * [3:0] option words (exclude option[0])
  33. * option[1]:
  34. * [31:28] Flash probe type
  35. * 0 - SFDP SDR / 1 - SFDP DDR
  36. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  37. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  38. * 6 - OctaBus DDR (SPI -> OPI DDR)
  39. * 8 - Xccela DDR (SPI -> OPI DDR)
  40. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  41. * [27:24] Command Pads after Power-on Reset
  42. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  43. * [23:20] Command Pads after Configuring FLASH
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  46. * 0 - Not needed
  47. * 1 - QE bit is at bit 6 in Status Register 1
  48. * 2 - QE bit is at bit1 in Status Register 2
  49. * 3 - QE bit is at bit7 in Status Register 2
  50. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  51. * [15:8] Dummy cycles
  52. * 0 - Auto-probed / detected / default value
  53. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  54. * [7:4] Misc.
  55. * 0 - Not used
  56. * 1 - SPI mode
  57. * 2 - Internal loopback
  58. * 3 - External DQS
  59. * [3:0] Frequency option
  60. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  61. *
  62. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  63. * [31:20] Reserved
  64. * [19:16] IO voltage
  65. * 0 - 3V / 1 - 1.8V
  66. * [15:12] Pin group
  67. * 0 - 1st group / 1 - 2nd group
  68. * [11:8] Connection selection
  69. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  70. * [7:0] Drive Strength
  71. * 0 - Default value
  72. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  73. * JESD216)
  74. * [31:16] reserved
  75. * [15:12] Sector Erase Command Option, not required here
  76. * [11:8] Sector Size Option, not required here
  77. * [7:0] Flash Size Option
  78. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  79. */
  80. #if defined(FLASH_XIP) && FLASH_XIP
  81. __attribute__ ((section(".nor_cfg_option"), used)) const uint32_t option[4] = {0xfcf90002, 0x00000007, 0xE, 0x0};
  82. #endif
  83. #if defined(FLASH_UF2) && FLASH_UF2
  84. ATTR_PLACE_AT(".uf2_signature") __attribute__((used)) const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  85. #endif
  86. void board_init_console(void)
  87. {
  88. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  89. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  90. console_config_t cfg;
  91. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  92. uart rx pin when configuring pin function will cause a wrong data to be received.
  93. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  94. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  95. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  96. cfg.type = BOARD_CONSOLE_TYPE;
  97. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  98. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  99. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  100. if (status_success != console_init(&cfg)) {
  101. /* failed to initialize debug console */
  102. while (1) {
  103. }
  104. }
  105. #else
  106. while (1) {
  107. }
  108. #endif
  109. #endif
  110. }
  111. void board_print_clock_freq(void)
  112. {
  113. printf("==============================\n");
  114. printf(" %s clock summary\n", BOARD_NAME);
  115. printf("==============================\n");
  116. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  117. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  118. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  119. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  120. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  121. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  122. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  123. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  124. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  125. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  126. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  127. printf("==============================\n");
  128. }
  129. void board_init_uart(UART_Type *ptr)
  130. {
  131. /* configure uart's pin before opening uart's clock */
  132. init_uart_pins(ptr);
  133. board_init_uart_clock(ptr);
  134. }
  135. void board_print_banner(void)
  136. {
  137. const uint8_t banner[] = {"\n\
  138. ----------------------------------------------------------------------\n\
  139. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  140. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  141. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  142. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  143. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  144. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  145. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  146. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  147. ----------------------------------------------------------------------\n"};
  148. #ifdef SDK_VERSION_STRING
  149. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  150. #endif
  151. printf("%s", banner);
  152. }
  153. static void board_turnoff_rgb_led(void)
  154. {
  155. uint8_t port_pin18_status;
  156. uint8_t port_pin19_status;
  157. uint8_t port_pin20_status;
  158. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  159. HPM_IOC->PAD[IOC_PAD_PB18].FUNC_CTL = IOC_PB18_FUNC_CTL_GPIO_B_18;
  160. HPM_IOC->PAD[IOC_PAD_PB19].FUNC_CTL = IOC_PB19_FUNC_CTL_GPIO_B_19;
  161. HPM_IOC->PAD[IOC_PAD_PB20].FUNC_CTL = IOC_PB20_FUNC_CTL_GPIO_B_20;
  162. HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
  163. HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
  164. HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
  165. port_pin18_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 18);
  166. port_pin19_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 19);
  167. port_pin20_status = gpio_read_pin(BOARD_G_GPIO_CTRL, GPIO_DI_GPIOB, 20);
  168. invert_led_level = false;
  169. /**
  170. * hpm board evkmini Rev. B led light modification, resulting in two versions of rgb led processing different
  171. *
  172. */
  173. if ((port_pin18_status & port_pin19_status & port_pin20_status) == 0) {
  174. /* Mini Rev B */
  175. invert_led_level = true;
  176. pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(0);
  177. HPM_IOC->PAD[IOC_PAD_PB18].PAD_CTL = pad_ctl;
  178. HPM_IOC->PAD[IOC_PAD_PB19].PAD_CTL = pad_ctl;
  179. HPM_IOC->PAD[IOC_PAD_PB20].PAD_CTL = pad_ctl;
  180. }
  181. }
  182. uint8_t board_get_led_pwm_off_level(void)
  183. {
  184. if (invert_led_level) {
  185. return BOARD_LED_ON_LEVEL;
  186. } else {
  187. return BOARD_LED_OFF_LEVEL;
  188. }
  189. }
  190. uint8_t board_get_led_gpio_off_level(void)
  191. {
  192. if (invert_led_level) {
  193. return BOARD_LED_ON_LEVEL;
  194. } else {
  195. return BOARD_LED_OFF_LEVEL;
  196. }
  197. }
  198. void board_ungate_mchtmr_at_lp_mode(void)
  199. {
  200. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  201. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  202. }
  203. void board_init(void)
  204. {
  205. board_turnoff_rgb_led();
  206. board_init_clock();
  207. board_init_console();
  208. board_init_pmp();
  209. #if BOARD_SHOW_CLOCK
  210. board_print_clock_freq();
  211. #endif
  212. #if BOARD_SHOW_BANNER
  213. board_print_banner();
  214. #endif
  215. }
  216. void board_init_core1(void)
  217. {
  218. clock_update_core_clock();
  219. board_init_console();
  220. board_init_pmp();
  221. }
  222. void board_init_sdram_pins(void)
  223. {
  224. init_femc_pins();
  225. }
  226. uint32_t board_init_femc_clock(void)
  227. {
  228. clock_add_to_group(clock_femc, 0);
  229. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  230. return clock_get_frequency(clock_femc);
  231. }
  232. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
  233. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  234. static void set_reset_pin_level_tm070rdh13(uint8_t level)
  235. {
  236. gpio_write_pin(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN, level);
  237. }
  238. static void set_backlight_tm070rdh13(uint16_t percent)
  239. {
  240. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, percent > 0 ? 1 : 0);
  241. }
  242. void board_init_lcd_rgb_tm070rdh13(void)
  243. {
  244. init_lcd_pins(BOARD_LCD_BASE);
  245. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  246. gpio_set_pin_output(BOARD_LCD_POWER_GPIO_BASE, BOARD_LCD_POWER_GPIO_INDEX, BOARD_LCD_POWER_GPIO_PIN);
  247. hpm_panel_hw_interface_t hw_if = {0};
  248. hpm_panel_t *panel = hpm_panel_find_device_default();
  249. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  250. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_display, timing->pixel_clock_khz);
  251. hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
  252. hw_if.set_backlight = set_backlight_tm070rdh13;
  253. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  254. hpm_panel_register_interface(panel, &hw_if);
  255. printf("name: %s, lcdc_clk: %ukhz\n",
  256. hpm_panel_get_name(panel),
  257. lcdc_pixel_clk_khz);
  258. hpm_panel_reset(panel);
  259. hpm_panel_init(panel);
  260. hpm_panel_power_on(panel);
  261. }
  262. #endif
  263. #ifdef CONFIG_HPM_PANEL
  264. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
  265. {
  266. clock_add_to_group(clock_name, 0);
  267. uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
  268. uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
  269. clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
  270. return clock_get_frequency(clock_name) / 1000;
  271. }
  272. void board_lcd_backlight(bool is_on)
  273. {
  274. hpm_panel_t *panel = hpm_panel_find_device_default();
  275. hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
  276. }
  277. void board_init_lcd(void)
  278. {
  279. #ifdef CONFIG_PANEL_RGB_TM070RDH13
  280. board_init_lcd_rgb_tm070rdh13();
  281. #endif
  282. }
  283. /*
  284. * Fix Errata E00039
  285. *
  286. * The vpw in hpm67 soc is invalid, but actual timing of vpw is equal to hpw.
  287. * So we need to fix the vpw to make it equal to hpw.
  288. * The vpw is fixed by compensating the back porch, we need keep to total time of xsync and back porch unchanged.
  289. */
  290. void board_lcdc_vpw_fix(lcdc_config_t *config)
  291. {
  292. uint32_t hpw = config->hsync.pulse_width;
  293. uint32_t vpw = config->vsync.pulse_width;
  294. uint32_t diff;
  295. if (vpw < hpw) {
  296. diff = hpw - vpw;
  297. config->hsync.pulse_width = vpw;
  298. config->hsync.back_porch_pulse += diff;
  299. } else if (hpw < vpw) {
  300. diff = vpw - hpw;
  301. config->vsync.back_porch_pulse += diff;
  302. }
  303. }
  304. void board_panel_para_to_lcdc(lcdc_config_t *config)
  305. {
  306. const hpm_panel_timing_t *timing;
  307. hpm_panel_t *panel = hpm_panel_find_device_default();
  308. timing = hpm_panel_get_timing(panel);
  309. config->resolution_x = timing->hactive;
  310. config->resolution_y = timing->vactive;
  311. config->hsync.pulse_width = timing->hsync_len;
  312. config->hsync.back_porch_pulse = timing->hback_porch;
  313. config->hsync.front_porch_pulse = timing->hfront_porch;
  314. config->vsync.pulse_width = timing->vsync_len;
  315. config->vsync.back_porch_pulse = timing->vback_porch;
  316. config->vsync.front_porch_pulse = timing->vfront_porch;
  317. config->control.invert_hsync = timing->hsync_pol;
  318. config->control.invert_vsync = timing->vsync_pol;
  319. config->control.invert_href = timing->de_pol;
  320. config->control.invert_pixel_data = timing->pixel_data_pol;
  321. config->control.invert_pixel_clock = timing->pixel_clk_pol;
  322. board_lcdc_vpw_fix(config);
  323. }
  324. #endif
  325. void board_delay_ms(uint32_t ms)
  326. {
  327. clock_cpu_delay_ms(ms);
  328. }
  329. void board_delay_us(uint32_t us)
  330. {
  331. clock_cpu_delay_us(us);
  332. }
  333. #if !defined(NO_BOARD_TIMER_SUPPORT) || !NO_BOARD_TIMER_SUPPORT
  334. static board_timer_cb timer_cb;
  335. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr)
  336. void board_timer_isr(void)
  337. {
  338. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  339. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  340. timer_cb();
  341. }
  342. }
  343. void board_timer_create(uint32_t ms, board_timer_cb cb)
  344. {
  345. uint32_t gptmr_freq;
  346. gptmr_channel_config_t config;
  347. timer_cb = cb;
  348. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  349. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  350. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  351. config.reload = gptmr_freq / 1000 * ms;
  352. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  353. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  354. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  355. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  356. }
  357. #endif
  358. void board_i2c_bus_clear(I2C_Type *ptr)
  359. {
  360. init_i2c_pins_as_gpio(ptr);
  361. if (ptr == BOARD_CAP_I2C_BASE) {
  362. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  363. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  364. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  365. printf("CLK is low, please power cycle the board\n");
  366. while (1) {
  367. }
  368. }
  369. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  370. printf("SDA is low, try to issue I2C bus clear\n");
  371. } else {
  372. printf("I2C bus is ready\n");
  373. return;
  374. }
  375. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  376. for (uint8_t i = 0; i < 3; i++) {
  377. for (uint32_t j = 0; j < 9; j++) {
  378. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  379. board_delay_ms(10);
  380. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  381. board_delay_ms(10);
  382. }
  383. board_delay_ms(100);
  384. }
  385. printf("I2C bus is cleared\n");
  386. }
  387. }
  388. uint32_t board_init_i2c_clock(I2C_Type *ptr)
  389. {
  390. uint32_t freq = 0;
  391. if (ptr == HPM_I2C0) {
  392. clock_add_to_group(clock_i2c0, 0);
  393. freq = clock_get_frequency(clock_i2c0);
  394. } else if (ptr == HPM_I2C1) {
  395. clock_add_to_group(clock_i2c1, 0);
  396. freq = clock_get_frequency(clock_i2c1);
  397. } else if (ptr == HPM_I2C2) {
  398. clock_add_to_group(clock_i2c2, 0);
  399. freq = clock_get_frequency(clock_i2c2);
  400. } else if (ptr == HPM_I2C3) {
  401. clock_add_to_group(clock_i2c3, 0);
  402. freq = clock_get_frequency(clock_i2c3);
  403. } else {
  404. ;
  405. }
  406. return freq;
  407. }
  408. void board_init_i2c(I2C_Type *ptr)
  409. {
  410. i2c_config_t config;
  411. hpm_stat_t stat;
  412. uint32_t freq;
  413. freq = board_init_i2c_clock(ptr);
  414. board_i2c_bus_clear(ptr);
  415. init_i2c_pins(ptr);
  416. config.i2c_mode = i2c_mode_normal;
  417. config.is_10bit_addressing = false;
  418. stat = i2c_init_master(ptr, freq, &config);
  419. if (stat != status_success) {
  420. printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
  421. while (1) {
  422. }
  423. }
  424. }
  425. uint32_t board_init_uart_clock(UART_Type *ptr)
  426. {
  427. uint32_t freq = 0U;
  428. if (ptr == HPM_UART0) {
  429. clock_add_to_group(clock_uart0, 0);
  430. freq = clock_get_frequency(clock_uart0);
  431. } else if (ptr == HPM_UART6) {
  432. clock_add_to_group(clock_uart6, 0);
  433. freq = clock_get_frequency(clock_uart6);
  434. } else if (ptr == HPM_UART7) {
  435. clock_add_to_group(clock_uart7, 0);
  436. freq = clock_get_frequency(clock_uart7);
  437. } else if (ptr == HPM_UART13) {
  438. clock_add_to_group(clock_uart13, 0);
  439. freq = clock_get_frequency(clock_uart13);
  440. } else if (ptr == HPM_UART14) {
  441. clock_add_to_group(clock_uart14, 0);
  442. freq = clock_get_frequency(clock_uart14);
  443. } else {
  444. /* Not supported */
  445. }
  446. return freq;
  447. }
  448. uint32_t board_init_spi_clock(SPI_Type *ptr)
  449. {
  450. uint32_t freq = 0;
  451. if (ptr == HPM_SPI0) {
  452. /* SPI0 clock configure */
  453. clock_add_to_group(clock_spi0, 0);
  454. freq = clock_get_frequency(clock_spi0);
  455. }
  456. else if (ptr == HPM_SPI1) {
  457. /* SPI1 clock configure */
  458. clock_add_to_group(clock_spi1, 0);
  459. freq = clock_get_frequency(clock_spi1);
  460. }
  461. else if (ptr == HPM_SPI2) {
  462. /* SPI2 clock configure */
  463. clock_add_to_group(clock_spi2, 0);
  464. freq = clock_get_frequency(clock_spi2);
  465. }
  466. else if (ptr == HPM_SPI3) {
  467. /* SPI3 clock configure */
  468. clock_add_to_group(clock_spi3, 0);
  469. freq = clock_get_frequency(clock_spi3);
  470. }
  471. else {
  472. /* Invalid instance */
  473. }
  474. return freq;
  475. }
  476. void board_init_cap_touch(void)
  477. {
  478. init_cap_pins();
  479. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  480. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  481. board_delay_ms(1);
  482. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  483. board_delay_ms(1);
  484. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  485. board_delay_ms(55);
  486. gpio_set_pin_input(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  487. board_init_i2c(BOARD_CAP_I2C_BASE);
  488. }
  489. void board_init_gpio_pins(void)
  490. {
  491. init_gpio_pins();
  492. }
  493. void board_init_spi_pins(SPI_Type *ptr)
  494. {
  495. init_spi_pins(ptr);
  496. }
  497. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  498. {
  499. init_spi_pins_with_gpio_as_cs(ptr);
  500. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  501. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  502. }
  503. void board_write_spi_cs(uint32_t pin, uint8_t state)
  504. {
  505. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  506. }
  507. void board_init_led_pins(void)
  508. {
  509. board_turnoff_rgb_led();
  510. init_led_pins_as_gpio();
  511. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  512. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  513. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  514. }
  515. void board_led_toggle(void)
  516. {
  517. static uint8_t i;
  518. if (!invert_led_level) {
  519. /* hpm6750 Mini Rev A led configure*/
  520. gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_G_GPIO_PIN);
  521. } else {
  522. /* hpm6750 Mini Rev B led configure*/
  523. gpio_write_port(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, ((1 << i)) << BOARD_G_GPIO_PIN);
  524. }
  525. i++;
  526. i = i % 3;
  527. }
  528. void board_led_write(uint8_t state)
  529. {
  530. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  531. }
  532. void board_init_cam_pins(void)
  533. {
  534. init_cam_pins(HPM_CAM0);
  535. }
  536. void board_init_usb(USB_Type *ptr)
  537. {
  538. if (ptr == HPM_USB0) {
  539. init_usb_pins(ptr);
  540. clock_add_to_group(clock_usb0, 0);
  541. }
  542. }
  543. void board_init_pmp(void)
  544. {
  545. uint32_t start_addr;
  546. uint32_t end_addr;
  547. uint32_t length;
  548. pmp_entry_t pmp_entry[16];
  549. uint8_t index = 0;
  550. /* Init noncachable memory */
  551. extern uint32_t __noncacheable_start__[];
  552. extern uint32_t __noncacheable_end__[];
  553. start_addr = (uint32_t) __noncacheable_start__;
  554. end_addr = (uint32_t) __noncacheable_end__;
  555. length = end_addr - start_addr;
  556. if (length > 0) {
  557. /* Ensure the address and the length are power of 2 aligned */
  558. assert((length & (length - 1U)) == 0U);
  559. assert((start_addr & (length - 1U)) == 0U);
  560. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  561. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  562. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  563. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  564. index++;
  565. }
  566. pmp_config(&pmp_entry[0], index);
  567. }
  568. void board_init_clock(void)
  569. {
  570. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  571. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  572. /* Configure the External OSC ramp-up time: ~9ms */
  573. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  574. /* Select clock setting preset1 */
  575. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  576. }
  577. /* Add clocks to group 0 */
  578. clock_add_to_group(clock_cpu0, 0);
  579. clock_add_to_group(clock_mchtmr0, 0);
  580. clock_add_to_group(clock_axi0, 0);
  581. clock_add_to_group(clock_axi1, 0);
  582. clock_add_to_group(clock_axi2, 0);
  583. clock_add_to_group(clock_ahb, 0);
  584. clock_add_to_group(clock_xdma, 0);
  585. clock_add_to_group(clock_hdma, 0);
  586. clock_add_to_group(clock_xpi0, 0);
  587. clock_add_to_group(clock_xpi1, 0);
  588. clock_add_to_group(clock_ram0, 0);
  589. clock_add_to_group(clock_ram1, 0);
  590. clock_add_to_group(clock_lmm0, 0);
  591. clock_add_to_group(clock_lmm1, 0);
  592. clock_add_to_group(clock_gpio, 0);
  593. clock_add_to_group(clock_mot0, 0);
  594. clock_add_to_group(clock_mot1, 0);
  595. clock_add_to_group(clock_mot2, 0);
  596. clock_add_to_group(clock_mot3, 0);
  597. clock_add_to_group(clock_synt, 0);
  598. clock_add_to_group(clock_ptpc, 0);
  599. /* Connect Group0 to CPU0 */
  600. clock_connect_group_to_cpu(0, 0);
  601. /* Add clocks to Group1 */
  602. clock_add_to_group(clock_cpu1, 1);
  603. clock_add_to_group(clock_mchtmr1, 1);
  604. /* Connect Group1 to CPU1 */
  605. clock_connect_group_to_cpu(1, 1);
  606. /* Bump up DCDC voltage to 1275mv */
  607. pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
  608. pcfg_dcdc_switch_to_dcm_mode(HPM_PCFG);
  609. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  610. printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
  611. while (1) {
  612. }
  613. }
  614. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  615. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  616. clock_update_core_clock();
  617. clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2); /*200m hz*/
  618. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  619. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  620. }
  621. uint32_t board_init_cam_clock(CAM_Type *ptr)
  622. {
  623. uint32_t freq = 0;
  624. if (ptr == HPM_CAM0) {
  625. /* Configure camera clock to 24MHz */
  626. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  627. clock_add_to_group(clock_camera0, 0);
  628. freq = clock_get_frequency(clock_camera0);
  629. } else if (ptr == HPM_CAM1) {
  630. /* Configure camera clock to 24MHz */
  631. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  632. clock_add_to_group(clock_camera1, 0);
  633. freq = clock_get_frequency(clock_camera1);
  634. } else {
  635. /* Invalid camera instance */
  636. }
  637. return freq;
  638. }
  639. uint32_t board_init_dao_clock(void)
  640. {
  641. clock_add_to_group(clock_dao, 0);
  642. board_config_i2s_clock(DAO_I2S, 48000);
  643. return clock_get_frequency(clock_dao);
  644. }
  645. uint32_t board_init_pdm_clock(void)
  646. {
  647. clock_add_to_group(clock_pdm, 0);
  648. board_config_i2s_clock(PDM_I2S, 16000);
  649. return clock_get_frequency(clock_pdm);
  650. }
  651. hpm_stat_t board_set_audio_pll_clock(uint32_t freq)
  652. {
  653. return pllctl_init_frac_pll_with_freq(HPM_PLLCTL, 3, freq); /* pll3clk */
  654. }
  655. void board_init_i2s_pins(I2S_Type *ptr)
  656. {
  657. init_i2s_pins(ptr);
  658. }
  659. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  660. {
  661. uint32_t freq = 0;
  662. if (ptr == HPM_I2S0) {
  663. clock_add_to_group(clock_i2s0, 0);
  664. if ((sample_rate % 22050) == 0) {
  665. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  666. } else {
  667. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  668. }
  669. clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
  670. freq = clock_get_frequency(clock_i2s0);
  671. } else if (ptr == HPM_I2S1) {
  672. clock_add_to_group(clock_i2s1, 0);
  673. if ((sample_rate % 22050) == 0) {
  674. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 22050*n sample rate */
  675. } else {
  676. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 25); /* config clock_aud0 for 8000*n sample rate */
  677. }
  678. clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
  679. freq = clock_get_frequency(clock_i2s1);
  680. } else {
  681. ;
  682. }
  683. return freq;
  684. }
  685. void board_init_adc12_pins(void)
  686. {
  687. init_adc12_pins();
  688. }
  689. void board_init_adc16_pins(void)
  690. {
  691. init_adc16_pins();
  692. }
  693. uint32_t board_init_adc_clock(void *ptr, bool clk_src_bus)
  694. {
  695. uint32_t freq = 0;
  696. if (ptr == (void *)HPM_ADC0) {
  697. if (clk_src_bus) {
  698. /* Configure the ADC clock from AHB (@200MHz by default)*/
  699. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  700. } else {
  701. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  702. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  703. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  704. }
  705. clock_add_to_group(clock_adc0, 0);
  706. freq = clock_get_frequency(clock_adc0);
  707. } else if (ptr == (void *)HPM_ADC1) {
  708. if (clk_src_bus) {
  709. /* Configure the ADC clock from AHB (@200MHz by default)*/
  710. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  711. } else {
  712. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  713. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  714. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  715. }
  716. clock_add_to_group(clock_adc1, 0);
  717. freq = clock_get_frequency(clock_adc1);
  718. } else if (ptr == (void *)HPM_ADC2) {
  719. if (clk_src_bus) {
  720. /* Configure the ADC clock from AHB (@200MHz by default)*/
  721. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  722. } else {
  723. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  724. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  725. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  726. }
  727. clock_add_to_group(clock_adc2, 0);
  728. freq = clock_get_frequency(clock_adc2);
  729. } else if (ptr == (void *)HPM_ADC3) {
  730. if (clk_src_bus) {
  731. /* Configure the ADC clock from AHB (@200MHz by default)*/
  732. clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
  733. } else {
  734. /* Configure the ADC clock from pll1_clk1 divided by 2 (@200MHz by default) */
  735. clock_set_adc_source(clock_adc3, clk_adc_src_ana2);
  736. clock_set_source_divider(clock_ana2, clk_src_pll1_clk1, 2U);
  737. }
  738. clock_add_to_group(clock_adc3, 0);
  739. freq = clock_get_frequency(clock_adc3);
  740. }
  741. return freq;
  742. }
  743. void board_init_acmp_pins(void)
  744. {
  745. init_acmp_pins();
  746. }
  747. void board_init_acmp_clock(ACMP_Type *ptr)
  748. {
  749. (void)ptr;
  750. clock_add_to_group(BOARD_ACMP_CLK, BOARD_RUNNING_CORE & 0x1);
  751. }
  752. void board_init_can(CAN_Type *ptr)
  753. {
  754. init_can_pins(ptr);
  755. }
  756. uint32_t board_init_can_clock(CAN_Type *ptr)
  757. {
  758. uint32_t freq = 0;
  759. if (ptr == HPM_CAN0) {
  760. /* Set the CAN0 peripheral clock to 80MHz */
  761. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  762. clock_add_to_group(clock_can0, 0);
  763. freq = clock_get_frequency(clock_can0);
  764. } else if (ptr == HPM_CAN1) {
  765. /* Set the CAN1 peripheral clock to 80MHz */
  766. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  767. clock_add_to_group(clock_can1, 0);
  768. freq = clock_get_frequency(clock_can1);
  769. } else if (ptr == HPM_CAN2) {
  770. /* Set the CAN2 peripheral clock to 80MHz */
  771. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  772. clock_add_to_group(clock_can2, 0);
  773. freq = clock_get_frequency(clock_can2);
  774. } else if (ptr == HPM_CAN3) {
  775. /* Set the CAN3 peripheral clock to 80MHz */
  776. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  777. clock_add_to_group(clock_can3, 0);
  778. freq = clock_get_frequency(clock_can3);
  779. } else {
  780. /* Invalid CAN instance */
  781. }
  782. return freq;
  783. }
  784. #ifdef INIT_EXT_RAM_FOR_DATA
  785. /*
  786. * this function will be called during startup to initialize external memory for data use
  787. */
  788. void _init_ext_ram(void)
  789. {
  790. uint32_t femc_clk_in_hz;
  791. femc_config_t config = {0};
  792. femc_sdram_config_t sdram_config = {0};
  793. board_init_sdram_pins();
  794. femc_clk_in_hz = board_init_femc_clock();
  795. femc_default_config(HPM_FEMC, &config);
  796. femc_init(HPM_FEMC, &config);
  797. femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
  798. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  799. sdram_config.prescaler = 0x3;
  800. sdram_config.burst_len_in_byte = 8;
  801. sdram_config.auto_refresh_count_in_one_burst = 1;
  802. sdram_config.col_addr_bits = BOARD_SDRAM_COLUMN_ADDR_BITS;
  803. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  804. sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
  805. sdram_config.refresh_recover_in_ns = 60; /* Trc */
  806. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  807. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  808. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  809. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  810. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  811. sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
  812. sdram_config.cs = BOARD_SDRAM_CS;
  813. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  814. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  815. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  816. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  817. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  818. sdram_config.delay_cell_disable = true;
  819. sdram_config.delay_cell_value = 0;
  820. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  821. }
  822. #endif
  823. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  824. {
  825. uint32_t actual_freq = 0;
  826. do {
  827. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  828. clock_add_to_group(sdxc_clk, 0);
  829. sdxc_enable_inverse_clock(ptr, false);
  830. sdxc_enable_sd_clock(ptr, false);
  831. /* Configure the clock below 400KHz for the identification state */
  832. if (freq <= 400000UL) {
  833. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  834. }
  835. /* configure the clock to 24MHz for the SDR12/Default speed */
  836. else if (freq <= 26000000UL) {
  837. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  838. }
  839. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  840. else if (freq <= 52000000UL) {
  841. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  842. }
  843. /* Configure the clock to 100MHz for the SDR50 */
  844. else if (freq <= 100000000UL) {
  845. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  846. }
  847. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  848. else if (freq <= 208000000UL) {
  849. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  850. }
  851. /* For other unsupported clock ranges, configure the clock to 24MHz */
  852. else {
  853. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  854. }
  855. if (need_inverse) {
  856. sdxc_enable_inverse_clock(ptr, true);
  857. }
  858. hpm_stat_t status = clock_wait_source_stable(sdxc_clk);
  859. if (status != status_success) {
  860. break;
  861. }
  862. sdxc_enable_sd_clock(ptr, true);
  863. actual_freq = clock_get_frequency(sdxc_clk);
  864. } while (false);
  865. return actual_freq;
  866. }
  867. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  868. {
  869. pwm_cmp_config_t cmp_config = {0};
  870. pwm_output_channel_t ch_config = {0};
  871. pwm_stop_counter(ptr);
  872. pwm_get_default_cmp_config(ptr, &cmp_config);
  873. pwm_get_default_output_channel_config(ptr, &ch_config);
  874. pwm_set_reload(ptr, 0, 0xF);
  875. pwm_set_start_count(ptr, 0, 0);
  876. cmp_config.mode = pwm_cmp_mode_output_compare;
  877. cmp_config.cmp = 0x10;
  878. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  879. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  880. ch_config.cmp_start_index = cmp_index;
  881. ch_config.cmp_end_index = cmp_index;
  882. ch_config.invert_output = !board_get_led_pwm_off_level();
  883. pwm_config_output_channel(ptr, pin, &ch_config);
  884. }
  885. void board_init_rgb_pwm_pins(void)
  886. {
  887. board_turnoff_rgb_led();
  888. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  889. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  890. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  891. init_led_pins_as_pwm();
  892. }
  893. void board_disable_output_rgb_led(uint8_t color)
  894. {
  895. switch (color) {
  896. case BOARD_RGB_RED:
  897. pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  898. break;
  899. case BOARD_RGB_GREEN:
  900. pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  901. break;
  902. case BOARD_RGB_BLUE:
  903. pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  904. break;
  905. default:
  906. while (1) {
  907. ;
  908. }
  909. }
  910. }
  911. void board_enable_output_rgb_led(uint8_t color)
  912. {
  913. switch (color) {
  914. case BOARD_RGB_RED:
  915. pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  916. break;
  917. case BOARD_RGB_GREEN:
  918. pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  919. break;
  920. case BOARD_RGB_BLUE:
  921. pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  922. break;
  923. default:
  924. while (1) {
  925. ;
  926. }
  927. }
  928. }
  929. void board_init_beep_pwm_pins(void)
  930. {
  931. init_beep_pwm_pins();
  932. }
  933. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  934. {
  935. if (ptr == HPM_ENET0) {
  936. clock_add_to_group(clock_ptp0, BOARD_RUNNING_CORE & 0x1);
  937. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  938. } else if (ptr == HPM_ENET1) {
  939. clock_add_to_group(clock_ptp1, BOARD_RUNNING_CORE & 0x1);
  940. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  941. } else {
  942. return status_invalid_argument;
  943. }
  944. return status_success;
  945. }
  946. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  947. {
  948. clock_name_t eth_clk = (ptr == HPM_ENET0) ? clock_eth0 : clock_eth1;
  949. /* Configure Enet clock to output reference clock */
  950. clock_add_to_group(eth_clk, BOARD_RUNNING_CORE & 0x1);
  951. if (internal) {
  952. /* set pll output frequency at 1GHz */
  953. if (pllctl_init_int_pll_with_freq(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1000000000UL) == status_success) {
  954. /* set pll2_clk1 output frequency at 250MHz from PLL2 divided by 4 */
  955. pllctl_set_div(HPM_PLLCTL, PLLCTL_PLL_PLL2, 1, 4);
  956. /* set eth clock frequency at 50MHz for enet0 */
  957. clock_set_source_divider(eth_clk, clk_src_pll2_clk1, 5);
  958. } else {
  959. return status_fail;
  960. }
  961. }
  962. enet_rmii_enable_clock(ptr, internal);
  963. return status_success;
  964. }
  965. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  966. {
  967. init_enet_pins(ptr);
  968. if (ptr == HPM_ENET1) {
  969. gpio_set_pin_output_with_initial(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  970. } else {
  971. return status_invalid_argument;
  972. }
  973. return status_success;
  974. }
  975. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  976. {
  977. if (ptr == HPM_ENET1) {
  978. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 0);
  979. board_delay_ms(1);
  980. gpio_write_pin(BOARD_ENET_RMII_RST_GPIO, BOARD_ENET_RMII_RST_GPIO_INDEX, BOARD_ENET_RMII_RST_GPIO_PIN, 1);
  981. } else {
  982. return status_invalid_argument;
  983. }
  984. return status_success;
  985. }
  986. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  987. {
  988. (void) ptr;
  989. return enet_pbl_32;
  990. }
  991. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  992. {
  993. if (ptr == HPM_ENET0) {
  994. intc_m_enable_irq(IRQn_ENET0);
  995. } else if (ptr == HPM_ENET1) {
  996. intc_m_enable_irq(IRQn_ENET1);
  997. } else {
  998. return status_invalid_argument;
  999. }
  1000. return status_success;
  1001. }
  1002. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  1003. {
  1004. (void) ptr;
  1005. return status_success;
  1006. }
  1007. void board_init_enet_pps_pins(ENET_Type *ptr)
  1008. {
  1009. (void) ptr;
  1010. init_enet_pps_pins();
  1011. }
  1012. void board_init_enet_pps_capture_pins(ENET_Type *ptr)
  1013. {
  1014. (void) ptr;
  1015. init_enet_pps_capture_pins();
  1016. }
  1017. void board_init_dao_pins(void)
  1018. {
  1019. init_dao_pins();
  1020. }
  1021. void board_init_gptmr_channel_pin(GPTMR_Type *ptr, uint32_t channel, bool as_comp)
  1022. {
  1023. init_gptmr_channel_pin(ptr, channel, as_comp);
  1024. }
  1025. void board_init_clk_ref_pin(void)
  1026. {
  1027. init_clk_ref_pin();
  1028. }
  1029. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  1030. {
  1031. uint32_t freq = 0U;
  1032. if (ptr == HPM_GPTMR0) {
  1033. clock_add_to_group(clock_gptmr0, BOARD_RUNNING_CORE & 0x1);
  1034. freq = clock_get_frequency(clock_gptmr0);
  1035. } else if (ptr == HPM_GPTMR1) {
  1036. clock_add_to_group(clock_gptmr1, BOARD_RUNNING_CORE & 0x1);
  1037. freq = clock_get_frequency(clock_gptmr1);
  1038. } else if (ptr == HPM_GPTMR2) {
  1039. clock_add_to_group(clock_gptmr2, BOARD_RUNNING_CORE & 0x1);
  1040. freq = clock_get_frequency(clock_gptmr2);
  1041. } else if (ptr == HPM_GPTMR3) {
  1042. clock_add_to_group(clock_gptmr3, BOARD_RUNNING_CORE & 0x1);
  1043. freq = clock_get_frequency(clock_gptmr3);
  1044. } else if (ptr == HPM_GPTMR4) {
  1045. clock_add_to_group(clock_gptmr4, BOARD_RUNNING_CORE & 0x1);
  1046. freq = clock_get_frequency(clock_gptmr4);
  1047. } else if (ptr == HPM_GPTMR5) {
  1048. clock_add_to_group(clock_gptmr5, BOARD_RUNNING_CORE & 0x1);
  1049. freq = clock_get_frequency(clock_gptmr5);
  1050. } else if (ptr == HPM_GPTMR6) {
  1051. clock_add_to_group(clock_gptmr6, BOARD_RUNNING_CORE & 0x1);
  1052. freq = clock_get_frequency(clock_gptmr6);
  1053. } else if (ptr == HPM_GPTMR7) {
  1054. clock_add_to_group(clock_gptmr7, BOARD_RUNNING_CORE & 0x1);
  1055. freq = clock_get_frequency(clock_gptmr7);
  1056. } else if (ptr == HPM_PTMR) {
  1057. clock_add_to_group(clock_ptmr, BOARD_RUNNING_CORE & 0x1);
  1058. freq = clock_get_frequency(clock_ptmr);
  1059. } else {
  1060. /* Not supported */
  1061. }
  1062. return freq;
  1063. }