board.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472
  1. /*
  2. * Copyright (c) 2023-2025 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. *
  6. */
  7. #include "board.h"
  8. #include "hpm_uart_drv.h"
  9. #include "hpm_gptmr_drv.h"
  10. #include "hpm_lcdc_drv.h"
  11. #include "hpm_i2c_drv.h"
  12. #include "hpm_gpio_drv.h"
  13. #include "pinmux.h"
  14. #include "hpm_pmp_drv.h"
  15. #include "hpm_clock_drv.h"
  16. #include "hpm_sysctl_drv.h"
  17. #include "hpm_pllctlv2_drv.h"
  18. #include "hpm_sdxc_drv.h"
  19. #include "hpm_ddrctl_regs.h"
  20. #include "hpm_ddrphy_regs.h"
  21. #include "hpm_pcfg_drv.h"
  22. #include "hpm_pixelmux_drv.h"
  23. #include "hpm_lvb_drv.h"
  24. #include "hpm_enet_drv.h"
  25. #include "hpm_usb_drv.h"
  26. #include "hpm_mipi_dsi_drv.h"
  27. #include "hpm_mipi_dsi_phy_drv.h"
  28. #include <rtconfig.h>
  29. /**
  30. * @brief FLASH configuration option definitions:
  31. * option[0]:
  32. * [31:16] 0xfcf9 - FLASH configuration option tag
  33. * [15:4] 0 - Reserved
  34. * [3:0] option words (exclude option[0])
  35. * option[1]:
  36. * [31:28] Flash probe type
  37. * 0 - SFDP SDR / 1 - SFDP DDR
  38. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  39. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  40. * 6 - OctaBus DDR (SPI -> OPI DDR)
  41. * 8 - Xccela DDR (SPI -> OPI DDR)
  42. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  43. * [27:24] Command Pads after Power-on Reset
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [23:20] Command Pads after Configuring FLASH
  46. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  47. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  48. * 0 - Not needed
  49. * 1 - QE bit is at bit 6 in Status Register 1
  50. * 2 - QE bit is at bit1 in Status Register 2
  51. * 3 - QE bit is at bit7 in Status Register 2
  52. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  53. * [15:8] Dummy cycles
  54. * 0 - Auto-probed / detected / default value
  55. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  56. * [7:4] Misc.
  57. * 0 - Not used
  58. * 1 - SPI mode
  59. * 2 - Internal loopback
  60. * 3 - External DQS
  61. * [3:0] Frequency option
  62. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  63. *
  64. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  65. * [31:20] Reserved
  66. * [19:16] IO voltage
  67. * 0 - 3V / 1 - 1.8V
  68. * [15:12] Pin group
  69. * 0 - 1st group / 1 - 2nd group
  70. * [11:8] Connection selection
  71. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  72. * [7:0] Drive Strength
  73. * 0 - Default value
  74. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  75. * JESD216)
  76. * [31:16] reserved
  77. * [15:12] Sector Erase Command Option, not required here
  78. * [11:8] Sector Size Option, not required here
  79. * [7:0] Flash Size Option
  80. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  81. */
  82. #if defined(FLASH_XIP) && FLASH_XIP
  83. __attribute__((section(".nor_cfg_option"), used)) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
  84. #endif
  85. #if defined(FLASH_UF2) && FLASH_UF2
  86. ATTR_PLACE_AT(".uf2_signature") __attribute__((used)) const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  87. #endif
  88. void board_init_console(void)
  89. {
  90. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  91. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  92. console_config_t cfg;
  93. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  94. * uart rx pin when configuring pin function will cause a wrong data to be received.
  95. * And a uart rx dma request will be generated by default uart fifo dma trigger level.
  96. */
  97. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  98. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  99. cfg.type = BOARD_CONSOLE_TYPE;
  100. cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
  101. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  102. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  103. if (status_success != console_init(&cfg)) {
  104. /* failed to initialize debug console */
  105. while (1) {
  106. }
  107. }
  108. #else
  109. while (1)
  110. ;
  111. #endif
  112. #endif
  113. }
  114. void board_print_clock_freq(void)
  115. {
  116. printf("==============================\n");
  117. printf(" %s clock summary\n", BOARD_NAME);
  118. printf("==============================\n");
  119. printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
  120. printf("gpu0:\t\t %dHz\n", clock_get_frequency(clock_gpu0));
  121. printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis));
  122. printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic));
  123. printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif));
  124. printf("axid:\t\t %dHz\n", clock_get_frequency(clock_axid));
  125. printf("axiv:\t\t %dHz\n", clock_get_frequency(clock_axiv));
  126. printf("axig:\t\t %dHz\n", clock_get_frequency(clock_axig));
  127. printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
  128. printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
  129. printf("==============================\n");
  130. }
  131. void board_init_uart(UART_Type *ptr)
  132. {
  133. /* configure uart's pin before opening uart's clock */
  134. init_uart_pins(ptr);
  135. board_init_uart_clock(ptr);
  136. }
  137. void board_print_banner(void)
  138. {
  139. const uint8_t banner[] = { "\n\
  140. ----------------------------------------------------------------------\n\
  141. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  142. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  143. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  144. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  145. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  146. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  147. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  148. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  149. ----------------------------------------------------------------------\n" };
  150. #ifdef SDK_VERSION_STRING
  151. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  152. #endif
  153. printf("%s", banner);
  154. }
  155. uint8_t board_get_led_gpio_off_level(void)
  156. {
  157. return BOARD_LED_OFF_LEVEL;
  158. }
  159. void board_ungate_mchtmr_at_lp_mode(void)
  160. {
  161. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  162. sysctl_set_cpu0_lp_mode(HPM_SYSCTL, cpu_lp_mode_ungate_cpu_clock);
  163. }
  164. void board_init(void)
  165. {
  166. board_init_clock();
  167. board_init_console();
  168. board_init_pmp();
  169. #if BOARD_SHOW_CLOCK
  170. board_print_clock_freq();
  171. #endif
  172. #if BOARD_SHOW_BANNER
  173. board_print_banner();
  174. #endif
  175. }
  176. void board_delay_us(uint32_t us)
  177. {
  178. clock_cpu_delay_us(us);
  179. }
  180. void board_delay_ms(uint32_t ms)
  181. {
  182. clock_cpu_delay_ms(ms);
  183. }
  184. #if !defined(NO_BOARD_TIMER_SUPPORT) || !NO_BOARD_TIMER_SUPPORT
  185. static board_timer_cb timer_cb;
  186. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr)
  187. void board_timer_isr(void)
  188. {
  189. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  190. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  191. timer_cb();
  192. }
  193. }
  194. void board_timer_create(uint32_t ms, board_timer_cb cb)
  195. {
  196. uint32_t gptmr_freq;
  197. gptmr_channel_config_t config;
  198. timer_cb = cb;
  199. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  200. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  201. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  202. config.reload = gptmr_freq / 1000 * ms;
  203. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  204. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  205. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  206. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  207. }
  208. #endif
  209. void board_i2c_bus_clear(I2C_Type *ptr)
  210. {
  211. if (i2c_get_line_scl_status(ptr) == false) {
  212. printf("CLK is low, please power cycle the board\n");
  213. while (1) {
  214. }
  215. }
  216. if (i2c_get_line_sda_status(ptr) == false) {
  217. printf("SDA is low, try to issue I2C bus clear\n");
  218. } else {
  219. printf("I2C bus is ready\n");
  220. return;
  221. }
  222. i2c_gen_reset_signal(ptr, 9);
  223. board_delay_ms(100);
  224. printf("I2C bus is cleared\n");
  225. }
  226. uint32_t board_init_i2c_clock(I2C_Type *ptr)
  227. {
  228. uint32_t freq = 0;
  229. if (ptr == HPM_I2C0) {
  230. clock_add_to_group(clock_i2c0, 0);
  231. freq = clock_get_frequency(clock_i2c0);
  232. } else if (ptr == HPM_I2C1) {
  233. clock_add_to_group(clock_i2c1, 0);
  234. freq = clock_get_frequency(clock_i2c1);
  235. } else if (ptr == HPM_I2C2) {
  236. clock_add_to_group(clock_i2c2, 0);
  237. freq = clock_get_frequency(clock_i2c2);
  238. } else if (ptr == HPM_I2C3) {
  239. clock_add_to_group(clock_i2c3, 0);
  240. freq = clock_get_frequency(clock_i2c3);
  241. } else {
  242. ;
  243. }
  244. return freq;
  245. }
  246. void board_init_i2c(I2C_Type *ptr)
  247. {
  248. i2c_config_t config;
  249. hpm_stat_t stat;
  250. uint32_t freq;
  251. freq = board_init_i2c_clock(ptr);
  252. init_i2c_pins(ptr);
  253. board_i2c_bus_clear(ptr);
  254. config.i2c_mode = i2c_mode_normal;
  255. config.is_10bit_addressing = false;
  256. stat = i2c_init_master(ptr, freq, &config);
  257. if (stat != status_success) {
  258. printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
  259. while (1) {
  260. }
  261. }
  262. }
  263. uint32_t board_init_spi_clock(SPI_Type *ptr)
  264. {
  265. if (ptr == HPM_SPI1) {
  266. clock_add_to_group(clock_spi1, 0);
  267. return clock_get_frequency(clock_spi1);
  268. } else if (ptr == HPM_SPI2) {
  269. clock_add_to_group(clock_spi2, 0);
  270. return clock_get_frequency(clock_spi2);
  271. } else if (ptr == HPM_SPI3) {
  272. clock_add_to_group(clock_spi3, 0);
  273. return clock_get_frequency(clock_spi3);
  274. }
  275. return 0;
  276. }
  277. void board_init_gpio_pins(void)
  278. {
  279. init_gpio_pins();
  280. }
  281. void board_init_spi_pins(SPI_Type *ptr)
  282. {
  283. init_spi_pins(ptr);
  284. }
  285. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  286. {
  287. init_spi_pins_with_gpio_as_cs(ptr);
  288. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  289. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  290. }
  291. void board_write_spi_cs(uint32_t pin, uint8_t state)
  292. {
  293. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  294. }
  295. void board_init_led_pins(void)
  296. {
  297. init_led_pins_as_gpio();
  298. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN,
  299. board_get_led_gpio_off_level());
  300. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN,
  301. board_get_led_gpio_off_level());
  302. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN,
  303. board_get_led_gpio_off_level());
  304. }
  305. void board_led_toggle(void)
  306. {
  307. #ifdef BOARD_LED_TOGGLE_RGB
  308. static uint8_t i;
  309. switch (i) {
  310. case 1:
  311. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  312. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
  313. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  314. break;
  315. case 2:
  316. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  317. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  318. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
  319. break;
  320. case 0:
  321. default:
  322. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
  323. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  324. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  325. break;
  326. }
  327. i++;
  328. i = i % 3;
  329. #else
  330. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  331. #endif
  332. }
  333. void board_led_write(uint8_t state)
  334. {
  335. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  336. }
  337. void board_init_pmp(void)
  338. {
  339. extern uint32_t __noncacheable_start__[];
  340. extern uint32_t __noncacheable_end__[];
  341. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  342. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  343. uint32_t length = end_addr - start_addr;
  344. if (length == 0) {
  345. return;
  346. }
  347. /* Ensure the address and the length are power of 2 aligned */
  348. assert((length & (length - 1U)) == 0U);
  349. assert((start_addr & (length - 1U)) == 0U);
  350. pmp_entry_t pmp_entry[4] = { 0 };
  351. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000);
  352. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  353. pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000);
  354. pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  355. pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  356. pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  357. pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  358. pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  359. #ifdef CONFIG_VGLITE
  360. extern uint32_t __gpu_start__[];
  361. extern uint32_t __gpu_end__[];
  362. uint32_t gpu_start_addr = (uint32_t) __gpu_start__;
  363. uint32_t gpu_end_addr = (uint32_t) __gpu_end__;
  364. uint32_t gpu_length = gpu_end_addr - gpu_start_addr;
  365. if (gpu_length) {
  366. assert((gpu_length & (gpu_length - 1U)) == 0U);
  367. assert((gpu_start_addr & (gpu_length - 1U)) == 0U);
  368. pmp_entry[3].pmp_addr = PMP_NAPOT_ADDR(gpu_start_addr, gpu_length);
  369. pmp_entry[3].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  370. pmp_entry[3].pma_addr = PMA_NAPOT_ADDR(gpu_start_addr, gpu_length);
  371. pmp_entry[3].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_WB_NO_ALLOC, AMO_EN);
  372. }
  373. #endif
  374. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  375. }
  376. void board_init_display_system_clock(void)
  377. {
  378. clock_add_to_group(clock_gpu0, 0);
  379. clock_add_to_group(clock_gwc0, 0);
  380. clock_add_to_group(clock_gwc1, 0);
  381. clock_add_to_group(clock_lvb, 0);
  382. clock_add_to_group(clock_lcb, 0);
  383. clock_add_to_group(clock_lcd0, 0);
  384. clock_add_to_group(clock_dsi0, 0);
  385. clock_add_to_group(clock_dsi1, 0);
  386. clock_add_to_group(clock_camera0, 0);
  387. clock_add_to_group(clock_camera1, 0);
  388. clock_add_to_group(clock_jpeg, 0);
  389. clock_add_to_group(clock_pdma, 0);
  390. }
  391. void board_init_clock(void)
  392. {
  393. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  394. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  395. /* Configure the External OSC ramp-up time: ~9ms */
  396. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  397. /* Select clock setting preset1 */
  398. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  399. }
  400. /* Add clocks to group 0 */
  401. clock_add_to_group(clock_cpu0, 0);
  402. clock_add_to_group(clock_ahb, 0);
  403. clock_add_to_group(clock_axic, 0);
  404. clock_add_to_group(clock_axis, 0);
  405. clock_add_to_group(clock_axiv, 0);
  406. clock_add_to_group(clock_axid, 0);
  407. clock_add_to_group(clock_axig, 0);
  408. clock_add_to_group(clock_mchtmr0, 0);
  409. clock_add_to_group(clock_xpi0, 0);
  410. clock_add_to_group(clock_xdma, 0);
  411. clock_add_to_group(clock_hdma, 0);
  412. clock_add_to_group(clock_xram, 0);
  413. clock_add_to_group(clock_lmm0, 0);
  414. clock_add_to_group(clock_gpio, 0);
  415. clock_add_to_group(clock_ptpc, 0);
  416. board_init_display_system_clock();
  417. /* Connect Group0 to CPU0 */
  418. clock_connect_group_to_cpu(0, 0);
  419. /* Bump up DCDC voltage to 1275mv */
  420. pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
  421. /* Configure PLL1_CLK0 Post Divider to 1 */
  422. pllctlv2_set_postdiv(HPM_PLLCTLV2, pllctlv2_pll0, pllctlv2_clk0, pllctlv2_div_1p0);
  423. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, pllctlv2_pll0, BOARD_CPU_FREQ);
  424. /* Configure axis to 200MHz */
  425. clock_set_source_divider(clock_axis, clk_src_pll1_clk0, 4);
  426. /* Configure axig/clock_gpu0 to 400MHz */
  427. clock_set_source_divider(clock_axig, clk_src_pll1_clk0, 2);
  428. /* Configure mchtmr to 24MHz */
  429. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  430. clock_update_core_clock();
  431. }
  432. void board_init_can(MCAN_Type *ptr)
  433. {
  434. init_can_pins(ptr);
  435. }
  436. uint32_t board_init_can_clock(MCAN_Type *ptr)
  437. {
  438. uint32_t freq = 0;
  439. if (ptr == HPM_MCAN0) {
  440. /* Set the CAN0 peripheral clock to 80MHz */
  441. clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10);
  442. clock_add_to_group(clock_can0, 0);
  443. freq = clock_get_frequency(clock_can0);
  444. } else if (ptr == HPM_MCAN1) {
  445. /* Set the CAN1 peripheral clock to 80MHz */
  446. clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10);
  447. clock_add_to_group(clock_can1, 0);
  448. freq = clock_get_frequency(clock_can1);
  449. } else if (ptr == HPM_MCAN2) {
  450. /* Set the CAN2 peripheral clock to 8MHz */
  451. clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10);
  452. clock_add_to_group(clock_can2, 0);
  453. freq = clock_get_frequency(clock_can2);
  454. } else if (ptr == HPM_MCAN3) {
  455. /* Set the CAN3 peripheral clock to 80MHz */
  456. clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10);
  457. clock_add_to_group(clock_can3, 0);
  458. freq = clock_get_frequency(clock_can3);
  459. } else if (ptr == HPM_MCAN4) {
  460. /* Set the CAN4 peripheral clock to 80MHz */
  461. clock_set_source_divider(clock_can4, clk_src_pll1_clk0, 10);
  462. clock_add_to_group(clock_can4, 0);
  463. freq = clock_get_frequency(clock_can4);
  464. } else if (ptr == HPM_MCAN5) {
  465. /* Set the CAN5 peripheral clock to 80MHz */
  466. clock_set_source_divider(clock_can5, clk_src_pll1_clk0, 10);
  467. clock_add_to_group(clock_can5, 0);
  468. freq = clock_get_frequency(clock_can5);
  469. } else if (ptr == HPM_MCAN6) {
  470. /* Set the CAN6 peripheral clock to 80MHz */
  471. clock_set_source_divider(clock_can6, clk_src_pll1_clk0, 10);
  472. clock_add_to_group(clock_can6, 0);
  473. freq = clock_get_frequency(clock_can6);
  474. } else if (ptr == HPM_MCAN7) {
  475. /* Set the CAN7 peripheral clock to 80MHz */
  476. clock_set_source_divider(clock_can7, clk_src_pll1_clk0, 10);
  477. clock_add_to_group(clock_can7, 0);
  478. freq = clock_get_frequency(clock_can7);
  479. } else {
  480. /* Invalid CAN instance */
  481. }
  482. return freq;
  483. }
  484. uint32_t board_init_uart_clock(UART_Type *ptr)
  485. {
  486. uint32_t freq = 0U;
  487. if (ptr == HPM_UART0) {
  488. clock_add_to_group(clock_uart0, 0);
  489. freq = clock_get_frequency(clock_uart0);
  490. } else if (ptr == HPM_UART1) {
  491. clock_add_to_group(clock_uart1, 0);
  492. freq = clock_get_frequency(clock_uart1);
  493. } else if (ptr == HPM_UART2) {
  494. clock_add_to_group(clock_uart2, 0);
  495. freq = clock_get_frequency(clock_uart2);
  496. } else if (ptr == HPM_UART3) {
  497. clock_add_to_group(clock_uart3, 0);
  498. freq = clock_get_frequency(clock_uart3);
  499. } else {
  500. /* Not supported */
  501. }
  502. return freq;
  503. }
  504. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz);
  505. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  506. static void set_reset_pin_level_tm070rdh13(uint8_t level)
  507. {
  508. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, level);
  509. }
  510. static void set_backlight_tm070rdh13(uint16_t percent)
  511. {
  512. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 9, percent > 0 ? 1 : 0);
  513. }
  514. static void set_video_router_tm070rdh13(void)
  515. {
  516. pixelmux_rgb_data_source_enable(pixelmux_rgb_sel_lcdc0);
  517. }
  518. void board_init_lcd_rgb_tm070rdh13(void)
  519. {
  520. init_lcd_rgb_ctl_pins();
  521. init_lcd_rgb_pins();
  522. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOY, 5);
  523. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOY, 5, 1);
  524. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 9);
  525. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 14);
  526. hpm_panel_hw_interface_t hw_if = {0};
  527. hpm_panel_t *panel = hpm_panel_find_device_default();
  528. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  529. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
  530. hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13;
  531. hw_if.set_backlight = set_backlight_tm070rdh13;
  532. hw_if.set_video_router = set_video_router_tm070rdh13;
  533. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  534. hpm_panel_register_interface(panel, &hw_if);
  535. printf("name: %s, lcdc_clk: %ukhz\n",
  536. hpm_panel_get_name(panel),
  537. lcdc_pixel_clk_khz);
  538. hpm_panel_reset(panel);
  539. hpm_panel_init(panel);
  540. hpm_panel_power_on(panel);
  541. }
  542. #endif
  543. #if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007
  544. static void set_backlight_cc10128007(uint16_t percent)
  545. {
  546. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, percent > 0 ? 1 : 0);
  547. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 30, percent > 0 ? 1 : 0);
  548. }
  549. static void set_video_router_cc10128007(void)
  550. {
  551. pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds);
  552. #if defined(CONFIG_HPM_PANEL_MULTI_ENABLE) && CONFIG_HPM_PANEL_MULTI_ENABLE
  553. pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc1);
  554. #else
  555. pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0);
  556. #endif
  557. }
  558. void board_init_lcd_lvds_cc10128007(void)
  559. {
  560. init_lcd_lvds_single_ctl_pins();
  561. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 30);
  562. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31);
  563. init_mipi_lvds_tx_phy1_pin();
  564. hpm_panel_hw_interface_t hw_if = {0};
  565. #if defined(CONFIG_HPM_PANEL_MULTI_ENABLE) && CONFIG_HPM_PANEL_MULTI_ENABLE
  566. hpm_panel_t *panel = hpm_panel_find_device(BOARD_MULTI_PANEL_LVDS_NAME);
  567. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  568. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(BOARD_MULTI_PANEL_LVDS_LCDC_CLK, timing->pixel_clock_khz);
  569. #else
  570. hpm_panel_t *panel = hpm_panel_find_device_default();
  571. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  572. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
  573. #endif
  574. hw_if.set_video_router = set_video_router_cc10128007;
  575. hw_if.set_backlight = set_backlight_cc10128007;
  576. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  577. hw_if.video.lvds.channel_di_index = 0;
  578. hw_if.video.lvds.channel_index = 1; /* ch1 -> phy1*/
  579. hw_if.video.lvds.lvb_base = HPM_LVB;
  580. hpm_panel_register_interface(panel, &hw_if);
  581. printf("name: %s, lcdc_clk: %ukhz\n",
  582. hpm_panel_get_name(panel),
  583. lcdc_pixel_clk_khz);
  584. hpm_panel_reset(panel);
  585. hpm_panel_init(panel);
  586. hpm_panel_power_on(panel);
  587. }
  588. #endif
  589. #if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B
  590. static void set_reset_pin_level_mc10128007_31b(uint8_t level)
  591. {
  592. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOB, 1, level);
  593. }
  594. static void set_video_router_mc10128007_31b(void)
  595. {
  596. pixelmux_mipi_dsi0_data_source_enable(pixelmux_mipi_dsi0_sel_lcdc0);
  597. pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_mipi);
  598. }
  599. void board_init_lcd_mipi_mc10128007_31b(void)
  600. {
  601. /* RESET */
  602. init_lcd_mipi_ctl_pins();
  603. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOB, 1);
  604. init_mipi_lvds_tx_phy0_pin();
  605. hpm_panel_hw_interface_t hw_if = {0};
  606. #if defined(CONFIG_HPM_PANEL_MULTI_ENABLE) && CONFIG_HPM_PANEL_MULTI_ENABLE
  607. hpm_panel_t *panel = hpm_panel_find_device(BOARD_MULTI_PANEL_MIPI_NAME);
  608. #else
  609. hpm_panel_t *panel = hpm_panel_find_device_default();
  610. #endif
  611. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  612. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz);
  613. hw_if.set_reset_pin_level = set_reset_pin_level_mc10128007_31b;
  614. hw_if.set_video_router = set_video_router_mc10128007_31b;
  615. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  616. hw_if.video.mipi.format = HPM_PANEL_MIPI_FORMAT_RGB888;
  617. hw_if.video.mipi.mipi_host_base = HPM_MIPI_DSI0;
  618. hw_if.video.mipi.mipi_phy_base = HPM_MIPI_DSI_PHY0;
  619. hpm_panel_register_interface(panel, &hw_if);
  620. printf("name: %s, lcdc_clk: %ukhz\n",
  621. hpm_panel_get_name(panel),
  622. lcdc_pixel_clk_khz);
  623. hpm_panel_reset(panel);
  624. hpm_panel_init(panel);
  625. hpm_panel_power_on(panel);
  626. }
  627. #endif
  628. #if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01
  629. static void set_reset_pin_level_tm103xdgp01(uint8_t level)
  630. {
  631. gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, level);
  632. }
  633. static void set_video_router_tm103xdgp01(void)
  634. {
  635. pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_lvds);
  636. pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds);
  637. pixelmux_lvb_di1_data_source_enable(pixelmux_lvb_di1_sel_lcdc0);
  638. pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0);
  639. }
  640. void board_init_lcd_lvds_tm103xdgp01(void)
  641. {
  642. init_lcd_lvds_double_ctl_pins();
  643. gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31);
  644. init_mipi_lvds_tx_phy0_pin();
  645. init_mipi_lvds_tx_phy1_pin();
  646. hpm_panel_hw_interface_t hw_if = {0};
  647. hpm_panel_t *panel = hpm_panel_find_device_default();
  648. const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel);
  649. /* In split mode: lcdc_pixel_clk = 2 * panel_pixel_clk */
  650. uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz * 2);
  651. hw_if.set_reset_pin_level = set_reset_pin_level_tm103xdgp01;
  652. hw_if.set_video_router = set_video_router_tm103xdgp01;
  653. hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz;
  654. hw_if.video.lvds.channel_di_index = 0;
  655. hw_if.video.lvds.lvb_base = HPM_LVB;
  656. hpm_panel_register_interface(panel, &hw_if);
  657. printf("name: %s, lcdc_clk: %ukhz\n",
  658. hpm_panel_get_name(panel),
  659. lcdc_pixel_clk_khz);
  660. hpm_panel_reset(panel);
  661. hpm_panel_init(panel);
  662. hpm_panel_power_on(panel);
  663. }
  664. #endif
  665. #ifdef CONFIG_HPM_PANEL
  666. void board_lcd_backlight(bool is_on)
  667. {
  668. hpm_panel_t *panel = hpm_panel_find_device_default();
  669. hpm_panel_set_backlight(panel, is_on == true ? 100 : 0);
  670. }
  671. uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz)
  672. {
  673. clock_add_to_group(clock_name, 0);
  674. uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000;
  675. uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz;
  676. clock_set_source_divider(clock_name, clk_src_pll4_clk0, div);
  677. return clock_get_frequency(clock_name) / 1000;
  678. }
  679. void board_init_lcd(void)
  680. {
  681. #if defined(CONFIG_HPM_PANEL_MULTI_ENABLE) && CONFIG_HPM_PANEL_MULTI_ENABLE
  682. board_init_lcd_lvds_cc10128007();
  683. board_init_lcd_mipi_mc10128007_31b();
  684. #else
  685. #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13
  686. board_init_lcd_rgb_tm070rdh13();
  687. #endif
  688. #if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007
  689. board_init_lcd_lvds_cc10128007();
  690. #endif
  691. #if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B
  692. board_init_lcd_mipi_mc10128007_31b();
  693. #endif
  694. #if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01
  695. board_init_lcd_lvds_tm103xdgp01();
  696. #endif
  697. #endif
  698. }
  699. void board_panel_para_to_lcdc_by_name(char *name, lcdc_config_t *config)
  700. {
  701. const hpm_panel_timing_t *timing;
  702. hpm_panel_t *panel;
  703. if (name)
  704. panel = hpm_panel_find_device(name);
  705. else
  706. panel = hpm_panel_find_device_default();
  707. timing = hpm_panel_get_timing(panel);
  708. config->resolution_x = timing->hactive;
  709. config->resolution_y = timing->vactive;
  710. config->hsync.pulse_width = timing->hsync_len;
  711. config->hsync.back_porch_pulse = timing->hback_porch;
  712. config->hsync.front_porch_pulse = timing->hfront_porch;
  713. config->vsync.pulse_width = timing->vsync_len;
  714. config->vsync.back_porch_pulse = timing->vback_porch;
  715. config->vsync.front_porch_pulse = timing->vfront_porch;
  716. config->control.invert_hsync = timing->hsync_pol;
  717. config->control.invert_vsync = timing->vsync_pol;
  718. config->control.invert_href = timing->de_pol;
  719. config->control.invert_pixel_data = timing->pixel_data_pol;
  720. config->control.invert_pixel_clock = timing->pixel_clk_pol;
  721. }
  722. void board_panel_para_to_lcdc(lcdc_config_t *config)
  723. {
  724. board_panel_para_to_lcdc_by_name(NULL, config);
  725. }
  726. #endif
  727. void board_init_gwc(void)
  728. {
  729. clock_add_to_group(clock_gwc0, 0);
  730. clock_add_to_group(clock_gwc1, 0);
  731. clock_add_to_group(clock_lcd0, 0);
  732. clock_add_to_group(clock_crc0, 0);
  733. }
  734. void board_init_cap_touch(void)
  735. {
  736. init_cap_pins();
  737. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  738. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  739. board_delay_ms(1);
  740. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  741. board_delay_ms(1);
  742. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  743. board_delay_ms(55);
  744. gpio_set_pin_input(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN);
  745. board_init_i2c(BOARD_CAP_I2C_BASE);
  746. }
  747. void board_init_cam_pins(void)
  748. {
  749. init_cam_pins();
  750. /* enable cam RST pin out with high level */
  751. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  752. /* PWDN pin set to low when power up */
  753. gpio_set_pin_output_with_initial(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, 0);
  754. pixelmux_cam0_data_source_enable(pixelmux_cam0_sel_dvp);
  755. }
  756. void board_write_cam_rst(uint8_t state)
  757. {
  758. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  759. }
  760. void board_write_cam_pwdn(uint8_t state)
  761. {
  762. gpio_write_pin(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, state);
  763. }
  764. uint32_t board_init_cam_clock(CAM_Type *ptr)
  765. {
  766. uint32_t freq = 0;
  767. if (ptr == HPM_CAM0) {
  768. /* Configure camera clock to 24MHz */
  769. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  770. clock_add_to_group(clock_camera0, 0);
  771. freq = clock_get_frequency(clock_camera0);
  772. } else if (ptr == HPM_CAM1) {
  773. /* Configure camera clock to 24MHz */
  774. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  775. clock_add_to_group(clock_camera1, 0);
  776. freq = clock_get_frequency(clock_camera1);
  777. } else {
  778. /* Invalid camera instance */
  779. }
  780. return freq;
  781. }
  782. void board_init_mipi_csi_cam_pins(void)
  783. {
  784. init_cam_mipi_csi_pins();
  785. init_mipi_lvds_rx_phy1_pin();
  786. /* enable cam RST pin out with high level */
  787. gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DI_GPIOB, 0, 1);
  788. }
  789. void board_write_mipi_csi_cam_rst(uint8_t state)
  790. {
  791. gpio_write_pin(HPM_GPIO0, GPIO_DI_GPIOB, 0, state);
  792. }
  793. static void _cpu_wait_ms(uint32_t cpu_freq, uint32_t ms)
  794. {
  795. uint32_t ticks_per_us = (cpu_freq + 1000000UL - 1UL) / 1000000UL;
  796. uint64_t expected_ticks = hpm_csr_get_core_mcycle() + (uint64_t)ticks_per_us * 1000UL * ms;
  797. while (hpm_csr_get_core_mcycle() < expected_ticks) {
  798. }
  799. }
  800. void init_ddr2_800(void)
  801. {
  802. /* Reduce the leakage by changing the DDR IO to high-z mode */
  803. HPM_DDRPHY->ACIOCR = 0x30c00813;
  804. HPM_DDRPHY->DXCCR = 0x4418189c;
  805. HPM_DDRPHY->DSGCR = 0xe004641f;
  806. /* Enable On-chip DCDC 1.8V output */
  807. HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1800) | PCFG_DCDCM_MODE_MODE_SET(1);
  808. /* Change DDR clock to 200MHz, namely: DDR2-800 */
  809. clock_set_source_divider(clock_axif, clk_src_pll1_clk0, 4);
  810. /* Enable DDR clock first */
  811. clock_add_to_group(clock_ddr0, 0);
  812. /* Wait until the clock is stable */
  813. uint32_t core_clock_freq = clock_get_frequency(clock_cpu0);
  814. _cpu_wait_ms(core_clock_freq, 5);
  815. /* Clear DFI_INIT_COMPLETE_EN bit */
  816. HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  817. /* Release DDR core reset */
  818. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26);
  819. /* Enable PORT */
  820. HPM_DDRCTL->PCFG[0].CTRL = 1;
  821. /* Configure W972GG6KB parameters, configure DDRCTL first */
  822. HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */
  823. | DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */
  824. | DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */
  825. | DDRCTL_MSTR_DDR3_SET(0); /* DDR2 Device */
  826. /* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */
  827. HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1)
  828. | DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */
  829. | DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */
  830. /* Configure DFI timing */
  831. HPM_DDRCTL->DFITMG0 = 0x03010101UL;
  832. HPM_DDRCTL->DFITMG1 = 0x00020101UL;
  833. HPM_DDRCTL->DFIUPD0 = 0x40005UL;
  834. HPM_DDRCTL->DFIUPD1 = 0x00020008UL;
  835. HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */
  836. /* Configure ADDRMAP */
  837. HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */
  838. HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */
  839. HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */
  840. HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */
  841. HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */
  842. HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */
  843. HPM_DDRCTL->ADDRMAP6 = 0x0F0F0606UL; /* HIF bit[27:26] as ROW[13:12] */
  844. /* Release DDR AXI reset */
  845. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27);
  846. /* Release DDR PHY */
  847. *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4);
  848. HPM_DDRPHY->DCR = DDRPHY_DCR_DDRMD_SET(2) /* Set to DDR2 mode */
  849. | DDRPHY_DCR_DDR8BNK_MASK /* BANK = 8 */
  850. | DDRPHY_DCR_BYTEMASK_MASK; /* BYTEMASK = 1 */
  851. HPM_DDRPHY->DSGCR |= DDRPHY_DSGCR_RRMODE_MASK; /* Enable RRMode */
  852. /* Configure DDR2 registers */
  853. HPM_DDRPHY->MR = (3UL << 0) /* BL = 3 */
  854. | (0UL << 3) /* BT = 0 */
  855. | (6UL << 4) /* CL = 6 */
  856. | (0UL << 7) /* Operating mode */
  857. | (0UL << 8) /* DLL Reset = 0 */
  858. | (6UL << 9); /* WR = 6 */
  859. HPM_DDRPHY->EMR = (1UL << 0) /* DLL Enable */
  860. | (0UL << 1) /* Output Driver Impedance Control */
  861. | (0UL << 6) | (1UL << 2) /* On Die Termination */
  862. | (0UL << 3) /* AL(Posted CAS Additive Latency) = 0 */
  863. | (0UL << 7) /* OCD = 0*/
  864. | (0UL << 10) /* DQS */
  865. | (0UL << 11) /* RDQS */
  866. | (0UL << 12); /* QOFF */
  867. HPM_DDRPHY->EMR2 = 0;
  868. HPM_DDRPHY->EMR3 = 0;
  869. HPM_DDRPHY->DTPR0 = (4UL << 0)
  870. | (5UL << 4)
  871. | (14UL << 8)
  872. | (15UL << 12)
  873. | (50UL << 16)
  874. | (10UL << 22)
  875. | (60UL << 26);
  876. HPM_DDRPHY->DTPR1 = (2UL << 0)
  877. | (31UL << 5)
  878. | (80UL << 11)
  879. | (40UL << 20)
  880. | (0x8 << 26);
  881. HPM_DDRPHY->DTPR2 = (256UL << 0)
  882. | (6UL << 10)
  883. | (4UL << 15)
  884. | (512UL << 19);
  885. /* tREFPRD */
  886. HPM_DDRPHY->PGCR2 = 0xF06D50;
  887. /* Set DFI_INIT_COMPLETE_EN bit */
  888. HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  889. /* Start PHY Init First */
  890. HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK;
  891. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  892. }
  893. /** Data training
  894. * RANKEN = 1, Others: default value
  895. */
  896. HPM_DDRPHY->DTCR = 0x91003587UL;
  897. /* Trigger PHY to do the PHY initialization and DRAM initialization */
  898. HPM_DDRPHY->PIR = 0xF501UL;
  899. /* Wait until the initialization sequence started */
  900. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) {
  901. }
  902. /* Wait until the initialization sequence completed */
  903. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  904. }
  905. /* Wait for normal mode */
  906. while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) {
  907. }
  908. }
  909. void init_ddr3l_1333(void)
  910. {
  911. /* Reduce the leakage by changing the DDR IO to high-z mode */
  912. HPM_DDRPHY->ACIOCR = 0x30c00813;
  913. HPM_DDRPHY->DXCCR = 0x4418189c;
  914. HPM_DDRPHY->DSGCR = 0xe004641f;
  915. /* Enable On-chip DCDC 1.4V output */
  916. HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1400) | PCFG_DCDCM_MODE_MODE_SET(1);
  917. /* Change DDR clock to 333.33MHz, namely: DDR3-1333 */
  918. clock_set_source_divider(clock_axif, clk_src_pll1_clk1, 2);
  919. /* Enable DDR clock first */
  920. clock_add_to_group(clock_ddr0, 0);
  921. /* Wait until the clock is stable */
  922. uint32_t core_clock_freq = clock_get_frequency(clock_cpu0);
  923. _cpu_wait_ms(core_clock_freq, 5);
  924. /* Release DDR PHY */
  925. *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4);
  926. /* Clear DFI_INIT_COMPLETE_EN bit */
  927. HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  928. *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 0);
  929. /* Release DDR core reset */
  930. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26);
  931. /* Configure DDRCTL first */
  932. HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */
  933. | DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */
  934. | DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */
  935. | DDRCTL_MSTR_DDR3_SET(1); /* DDR3 Device */
  936. /* Enable PORT */
  937. HPM_DDRCTL->PCFG[0].CTRL = 1;
  938. /* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */
  939. HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1)
  940. | DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */
  941. | DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */
  942. HPM_DDRCTL->DRAMTMG4 = 0x05010407;
  943. /* Configure DFI timing */
  944. HPM_DDRCTL->DFITMG0 = 0x07040102;
  945. HPM_DDRCTL->DFITMG1 = 0x20404;
  946. HPM_DDRCTL->DFIUPD1 = 0x20008;
  947. HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */
  948. HPM_DDRCTL->ODTMAP = 0x11;
  949. /* Configure ADDRMAP */
  950. HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */
  951. HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */
  952. HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */
  953. HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */
  954. HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */
  955. HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */
  956. HPM_DDRCTL->ADDRMAP6 = 0x0F060606UL; /* HIF bit[27:26] as ROW[13:12] */
  957. /* Release DDR AXI reset */
  958. *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27);
  959. /* Configure DDR3 registers */
  960. HPM_DDRPHY->MR0 = 0xC70;
  961. HPM_DDRPHY->MR1 = 0x6;
  962. HPM_DDRPHY->MR2 = 0x18;
  963. HPM_DDRPHY->MR3 = 0;
  964. HPM_DDRPHY->ODTCR = 0x84210000;
  965. HPM_DDRPHY->DTPR0 = 0x919c8866;
  966. HPM_DDRPHY->DTPR1 = 0x1a838360;
  967. HPM_DDRPHY->DTPR2 = 0x3002d200;
  968. /* tREFPRD */
  969. HPM_DDRPHY->PGCR2 = 0xf06d28;
  970. /* Set DFI_INIT_COMPLETE_EN bit */
  971. HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK;
  972. /* Start PHY Init First */
  973. HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK;
  974. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  975. }
  976. /** Data training
  977. * RANKEN = 1, Others: default value
  978. */
  979. HPM_DDRPHY->DTCR = 0x930035D7;
  980. /* Trigger PHY to do the PHY initialization and DRAM initialization */
  981. HPM_DDRPHY->PIR = 0xFF81UL;
  982. /* Wait until the initialization sequence started */
  983. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) {
  984. }
  985. /* Wait until the initialization sequence completed */
  986. while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) {
  987. }
  988. /* Wait for normal mode */
  989. while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) {
  990. }
  991. }
  992. void _init_ext_ram(void)
  993. {
  994. #if (BOARD_DDR_TYPE == DDR_TYPE_DDR2)
  995. init_ddr2_800();
  996. #endif
  997. #if (BOARD_DDR_TYPE == DDR_TYPE_DDR3L)
  998. init_ddr3l_1333();
  999. #endif
  1000. }
  1001. void board_init_usb(USB_Type *ptr)
  1002. {
  1003. if (ptr == HPM_USB0) {
  1004. init_usb_pins(ptr);
  1005. clock_add_to_group(clock_usb0, 0);
  1006. usb_hcd_set_power_ctrl_polarity(ptr, true);
  1007. /* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */
  1008. board_delay_ms(100);
  1009. }
  1010. }
  1011. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse)
  1012. {
  1013. uint32_t actual_freq = 0;
  1014. do {
  1015. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  1016. clock_add_to_group(sdxc_clk, 0);
  1017. sdxc_enable_inverse_clock(ptr, false);
  1018. sdxc_enable_sd_clock(ptr, false);
  1019. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk0, 4U);
  1020. /* Configure the clock below 400KHz for the identification state */
  1021. if (freq <= 400000UL) {
  1022. /* Set clock to 375KHz */
  1023. sdxc_set_clock_divider(ptr, 534U);
  1024. }
  1025. /* configure the clock to 24MHz for the SDR12/Default speed */
  1026. else if (freq <= 26000000UL) {
  1027. /* Set clock to 25MHz */
  1028. sdxc_set_clock_divider(ptr, 8U);
  1029. }
  1030. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  1031. else if (freq <= 52000000UL) {
  1032. /* Set clock to 50MHz */
  1033. sdxc_set_clock_divider(ptr, 4U);
  1034. }
  1035. /* Configure the clock to 100MHz for the SDR50 */
  1036. else if (freq <= 100000000UL) {
  1037. /* Set clock to 100MHz */
  1038. sdxc_set_clock_divider(ptr, 2U);
  1039. }
  1040. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  1041. else if (freq <= 208000000UL) {
  1042. /* set the SDXC0 clock to 166MHz (eMMC), set the SDXC1 clock to 133MHz */
  1043. uint32_t div = (sdxc_clk == clock_sdxc0) ? 4 : 5;
  1044. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, div);
  1045. sdxc_set_clock_divider(ptr, 1U);
  1046. }
  1047. /* For other unsupported clock ranges, configure the clock to 24MHz */
  1048. else {
  1049. /* Set clock to 25MHz */
  1050. sdxc_set_clock_divider(ptr, 5U);
  1051. }
  1052. if (need_inverse) {
  1053. sdxc_enable_inverse_clock(ptr, true);
  1054. }
  1055. hpm_stat_t status = clock_wait_source_stable(sdxc_clk);
  1056. if (status != status_success) {
  1057. break;
  1058. }
  1059. sdxc_enable_sd_clock(ptr, true);
  1060. actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr);
  1061. } while (false);
  1062. return actual_freq;
  1063. }
  1064. uint32_t board_init_dao_clock(void)
  1065. {
  1066. clock_add_to_group(clock_dao, 0);
  1067. board_config_i2s_clock(DAO_I2S, 48000);
  1068. return clock_get_frequency(clock_dao);
  1069. }
  1070. uint32_t board_init_pdm_clock(void)
  1071. {
  1072. clock_add_to_group(clock_pdm, 0);
  1073. board_config_i2s_clock(PDM_I2S, 16000);
  1074. return clock_get_frequency(clock_pdm);
  1075. }
  1076. uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
  1077. {
  1078. uint32_t freq = 0;
  1079. if (ptr == HPM_I2S0) {
  1080. clock_add_to_group(clock_i2s0, 0);
  1081. if ((sample_rate % 22050) == 0) {
  1082. clock_set_source_divider(clock_aud0, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  1083. } else {
  1084. clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 21); /* default 24576000Hz */
  1085. }
  1086. clock_set_i2s_source(clock_i2s0, clk_i2s_src_audn); /* clk_i2s_src_audn is equal to clk_i2s_src_aud0 */
  1087. freq = clock_get_frequency(clock_i2s0);
  1088. } else if (ptr == HPM_I2S1) {
  1089. clock_add_to_group(clock_i2s1, 0);
  1090. if ((sample_rate % 22050) == 0) {
  1091. clock_set_source_divider(clock_aud1, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  1092. } else {
  1093. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 21); /* default 24576000Hz */
  1094. }
  1095. clock_set_i2s_source(clock_i2s1, clk_i2s_src_audn); /* clk_i2s_src_audn is equal to clk_i2s_src_aud1 */
  1096. freq = clock_get_frequency(clock_i2s1);
  1097. } else if (ptr == HPM_I2S3) {
  1098. clock_add_to_group(clock_i2s3, 0);
  1099. if ((sample_rate % 22050) == 0) {
  1100. clock_set_source_divider(clock_aud3, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
  1101. } else {
  1102. clock_set_source_divider(clock_aud3, clk_src_pll3_clk0, 21); /* default 24576000Hz */
  1103. }
  1104. clock_set_i2s_source(clock_i2s3, clk_i2s_src_audn); /* clk_i2s_src_audn is equal to clk_i2s_src_aud3 */
  1105. freq = clock_get_frequency(clock_i2s3);
  1106. }
  1107. return freq;
  1108. }
  1109. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  1110. {
  1111. init_enet_pins(ptr);
  1112. if (ptr == HPM_ENET0) {
  1113. gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX,
  1114. BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1115. } else {
  1116. return status_invalid_argument;
  1117. }
  1118. return status_success;
  1119. }
  1120. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  1121. {
  1122. if (ptr == HPM_ENET0) {
  1123. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
  1124. board_delay_ms(1);
  1125. gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
  1126. } else {
  1127. return status_invalid_argument;
  1128. }
  1129. return status_success;
  1130. }
  1131. uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
  1132. {
  1133. (void) ptr;
  1134. return enet_pbl_32;
  1135. }
  1136. hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
  1137. {
  1138. if (ptr == HPM_ENET0) {
  1139. intc_m_enable_irq(IRQn_ENET0);
  1140. } else {
  1141. return status_invalid_argument;
  1142. }
  1143. return status_success;
  1144. }
  1145. hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
  1146. {
  1147. if (ptr == HPM_ENET0) {
  1148. intc_m_disable_irq(IRQn_ENET0);
  1149. } else {
  1150. return status_invalid_argument;
  1151. }
  1152. return status_success;
  1153. }
  1154. void board_init_enet_pps_pins(ENET_Type *ptr)
  1155. {
  1156. (void) ptr;
  1157. init_enet_pps_pins();
  1158. }
  1159. void board_init_enet_pps_capture_pins(ENET_Type *ptr)
  1160. {
  1161. (void) ptr;
  1162. init_enet_pps_capture_pins();
  1163. }
  1164. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  1165. {
  1166. /* set clock source */
  1167. if (ptr == HPM_ENET0) {
  1168. clock_add_to_group(clock_ptp0, BOARD_RUNNING_CORE & 0x1);
  1169. /* make sure pll0_clk0 output clock at 800MHz to get a clock at 100MHz for the enet0 ptp function */
  1170. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk0, 8); /* 100MHz */
  1171. } else {
  1172. return status_invalid_argument;
  1173. }
  1174. return status_success;
  1175. }
  1176. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  1177. {
  1178. (void) ptr;
  1179. (void) internal;
  1180. if (ptr == HPM_ENET0) {
  1181. clock_add_to_group(clock_eth0, BOARD_RUNNING_CORE & 0x1);
  1182. }
  1183. return status_success;
  1184. }
  1185. hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
  1186. {
  1187. if (ptr == HPM_ENET0) {
  1188. clock_add_to_group(clock_eth0, BOARD_RUNNING_CORE & 0x1);
  1189. return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY);
  1190. }
  1191. return status_invalid_argument;
  1192. }
  1193. void board_init_adc16_pins(void)
  1194. {
  1195. init_adc_pins();
  1196. }
  1197. uint32_t board_init_adc_clock(void *ptr, bool clk_src_bus)
  1198. {
  1199. uint32_t freq = 0;
  1200. if (ptr == (void *)HPM_ADC0) {
  1201. if (clk_src_bus) {
  1202. /* Configure the ADC clock from AXI (@200MHz by default)*/
  1203. clock_set_adc_source(clock_adc0, clk_adc_src_axi0);
  1204. } else {
  1205. /* Configure the ADC clock from pll0_clk1 divided by 4 (@200MHz by default) */
  1206. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  1207. clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
  1208. }
  1209. clock_add_to_group(clock_adc0, 0);
  1210. freq = clock_get_frequency(clock_adc0);
  1211. }
  1212. return freq;
  1213. }
  1214. void board_init_gptmr_channel_pin(GPTMR_Type *ptr, uint32_t channel, bool as_comp)
  1215. {
  1216. init_gptmr_channel_pin(ptr, channel, as_comp);
  1217. }
  1218. void board_init_clk_ref_pin(void)
  1219. {
  1220. init_clk_ref_pin();
  1221. }
  1222. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  1223. {
  1224. uint32_t freq = 0U;
  1225. if (ptr == HPM_GPTMR0) {
  1226. clock_add_to_group(clock_gptmr0, BOARD_RUNNING_CORE & 0x1);
  1227. freq = clock_get_frequency(clock_gptmr0);
  1228. } else if (ptr == HPM_GPTMR1) {
  1229. clock_add_to_group(clock_gptmr1, BOARD_RUNNING_CORE & 0x1);
  1230. freq = clock_get_frequency(clock_gptmr1);
  1231. } else if (ptr == HPM_GPTMR2) {
  1232. clock_add_to_group(clock_gptmr2, BOARD_RUNNING_CORE & 0x1);
  1233. freq = clock_get_frequency(clock_gptmr2);
  1234. } else if (ptr == HPM_GPTMR3) {
  1235. clock_add_to_group(clock_gptmr3, BOARD_RUNNING_CORE & 0x1);
  1236. freq = clock_get_frequency(clock_gptmr3);
  1237. } else if (ptr == HPM_GPTMR4) {
  1238. clock_add_to_group(clock_gptmr4, BOARD_RUNNING_CORE & 0x1);
  1239. freq = clock_get_frequency(clock_gptmr4);
  1240. } else if (ptr == HPM_GPTMR5) {
  1241. clock_add_to_group(clock_gptmr5, BOARD_RUNNING_CORE & 0x1);
  1242. freq = clock_get_frequency(clock_gptmr5);
  1243. } else if (ptr == HPM_GPTMR6) {
  1244. clock_add_to_group(clock_gptmr6, BOARD_RUNNING_CORE & 0x1);
  1245. freq = clock_get_frequency(clock_gptmr6);
  1246. } else if (ptr == HPM_GPTMR7) {
  1247. clock_add_to_group(clock_gptmr7, BOARD_RUNNING_CORE & 0x1);
  1248. freq = clock_get_frequency(clock_gptmr7);
  1249. } else if (ptr == HPM_PTMR) {
  1250. clock_add_to_group(clock_ptmr, BOARD_RUNNING_CORE & 0x1);
  1251. freq = clock_get_frequency(clock_ptmr);
  1252. } else {
  1253. /* Not supported */
  1254. }
  1255. return freq;
  1256. }