drv_uart.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. /* Copyright (c) 2023, Canaan Bright Sight Co., Ltd
  2. *
  3. * Redistribution and use in source and binary forms, with or without
  4. * modification, are permitted provided that the following conditions are met:
  5. * 1. Redistributions of source code must retain the above copyright
  6. * notice, this list of conditions and the following disclaimer.
  7. * 2. Redistributions in binary form must reproduce the above copyright
  8. * notice, this list of conditions and the following disclaimer in the
  9. * documentation and/or other materials provided with the distribution.
  10. *
  11. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
  12. * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  13. * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  14. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  15. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
  16. * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  17. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  18. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  19. * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  20. * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  21. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  22. * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  23. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  24. */
  25. /*
  26. * Copyright (c) 2006-2025 RT-Thread Development Team
  27. *
  28. * SPDX-License-Identifier: Apache-2.0
  29. */
  30. #include <rthw.h>
  31. #include <rtdevice.h>
  32. #include <lwp_user_mm.h>
  33. #include <ioremap.h>
  34. #include <rtdbg.h>
  35. #include "board.h"
  36. #include "drv_pdma.h"
  37. #include <mmu.h>
  38. #include "drv_uart.h"
  39. #include "riscv_io.h"
  40. #define UART_DEFAULT_BAUDRATE 115200
  41. #define UART_CLK 50000000
  42. #define PDMA_CH_INVALID 0xFF
  43. #define UART0_IRQ K230_IRQ_UART0
  44. #define UART1_IRQ K230_IRQ_UART1
  45. #define UART2_IRQ K230_IRQ_UART2
  46. #define UART3_IRQ K230_IRQ_UART3
  47. #define UART4_IRQ K230_IRQ_UART4
  48. #define UART_RBR (0x00) /* receive buffer register */
  49. #define UART_THR (0x00) /* transmit holding register */
  50. #define UART_DLL (0x00) /* divisor latch low register */
  51. #define UART_DLH (0x04) /* diviso latch high register */
  52. #define UART_IER (0x04) /* interrupt enable register */
  53. #define UART_IIR (0x08) /* interrupt identity register */
  54. #define UART_FCR (0x08) /* FIFO control register */
  55. #define UART_LCR (0x0c) /* line control register */
  56. #define UART_MCR (0x10) /* modem control register */
  57. #define UART_LSR (0x14) /* line status register */
  58. #define UART_MSR (0x18) /* modem status register */
  59. #define UART_SCH (0x1c) /* scratch register */
  60. #define UART_USR (0x7c) /* status register */
  61. #define UART_TFL (0x80) /* transmit FIFO level */
  62. #define UART_RFL (0x84) /* RFL */
  63. #define UART_HALT (0xa4) /* halt tx register */
  64. #define UART_DLF (0xc0) /* Divisor Latch Fraction Register */
  65. #define BIT(x) (1 << x)
  66. /* Line Status Rigster */
  67. #define UART_LSR_RXFIFOE (BIT(7))
  68. #define UART_LSR_TEMT (BIT(6))
  69. #define UART_LSR_THRE (BIT(5))
  70. #define UART_LSR_BI (BIT(4))
  71. #define UART_LSR_FE (BIT(3))
  72. #define UART_LSR_PE (BIT(2))
  73. #define UART_LSR_OE (BIT(1))
  74. #define UART_LSR_DR (BIT(0))
  75. #define UART_LSR_BRK_ERROR_BITS 0x1E /* BI, FE, PE, OE bits */
  76. /* Line Control Register */
  77. #define UART_LCR_DLAB (BIT(7))
  78. #define UART_LCR_SBC (BIT(6))
  79. #define UART_LCR_PARITY_MASK (BIT(5)|BIT(4))
  80. #define UART_LCR_EPAR (1 << 4)
  81. #define UART_LCR_OPAR (0 << 4)
  82. #define UART_LCR_PARITY (BIT(3))
  83. #define UART_LCR_STOP (BIT(2))
  84. #define UART_LCR_DLEN_MASK (BIT(1)|BIT(0))
  85. #define UART_LCR_WLEN5 (0)
  86. #define UART_LCR_WLEN6 (1)
  87. #define UART_LCR_WLEN7 (2)
  88. #define UART_LCR_WLEN8 (3)
  89. /* Halt Register */
  90. #define UART_HALT_LCRUP (BIT(2))
  91. #define UART_HALT_FORCECFG (BIT(1))
  92. #define UART_HALT_HTX (BIT(0))
  93. /* Interrupt Enable Register */
  94. #define UART_IER_MASK (0xff)
  95. #define UART_IER_PTIME (BIT(7))
  96. #define UART_IER_RS485 (BIT(4))
  97. #define UART_IER_MSI (BIT(3))
  98. #define UART_IER_RLSI (BIT(2))
  99. #define UART_IER_THRI (BIT(1))
  100. #define UART_IER_RDI (BIT(0))
  101. /* Interrupt ID Register */
  102. #define UART_IIR_FEFLAG_MASK (BIT(6)|BIT(7))
  103. #define UART_IIR_IID_MASK (BIT(0)|BIT(1)|BIT(2)|BIT(3))
  104. #define UART_IIR_IID_MSTA (0)
  105. #define UART_IIR_IID_NOIRQ (1)
  106. #define UART_IIR_IID_THREMP (2)
  107. #define UART_IIR_IID_RXDVAL (4)
  108. #define UART_IIR_IID_LINESTA (6)
  109. #define UART_IIR_IID_BUSBSY (7)
  110. #define UART_IIR_IID_CHARTO (12)
  111. struct device_uart
  112. {
  113. rt_ubase_t hw_base;
  114. void* pa_base;
  115. rt_uint32_t irqno;
  116. };
  117. struct k230_uart_dev
  118. {
  119. struct rt_serial_device serial;
  120. struct device_uart uart;
  121. const char *name;
  122. rt_uint32_t pa_base;
  123. rt_uint32_t uart_to_size;
  124. rt_uint32_t irqno;
  125. #ifdef BSP_UART_USING_DMA
  126. /* DMA info */
  127. rt_uint8_t dma_ch;
  128. usr_pdma_cfg_t pdma_cfg;
  129. rt_event_t dma_event;
  130. #endif
  131. };
  132. static struct k230_uart_dev uart_devs[] =
  133. {
  134. #ifdef BSP_USING_UART0
  135. {
  136. .name = "uart0",
  137. .pa_base = UART0_BASE_ADDR,
  138. .uart_to_size = UART0_IO_SIZE,
  139. .irqno = UART0_IRQ,
  140. },
  141. #endif
  142. #ifdef BSP_USING_UART1
  143. {
  144. .name = "uart1",
  145. .pa_base = UART1_BASE_ADDR,
  146. .uart_to_size = UART1_IO_SIZE,
  147. .irqno = UART1_IRQ,
  148. },
  149. #endif
  150. #ifdef BSP_USING_UART2
  151. {
  152. .name = "uart2",
  153. .pa_base = UART2_BASE_ADDR,
  154. .uart_to_size = UART2_IO_SIZE,
  155. .irqno = UART2_IRQ,
  156. },
  157. #endif
  158. #ifdef BSP_USING_UART3
  159. {
  160. .name = "uart3",
  161. .pa_base = UART3_BASE_ADDR,
  162. .uart_to_size = UART3_IO_SIZE,
  163. .irqno = UART3_IRQ,
  164. },
  165. #endif
  166. #ifdef BSP_USING_UART4
  167. {
  168. .name = "uart4",
  169. .pa_base = UART4_BASE_ADDR,
  170. .uart_to_size = UART4_IO_SIZE,
  171. .irqno = UART4_IRQ,
  172. },
  173. #endif
  174. #if !defined(BSP_USING_UART0) && !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && !defined(BSP_USING_UART4)
  175. #error "No UART device defined!"
  176. #endif
  177. };
  178. static int _drv_uart_putc(struct rt_serial_device *serial, char c);
  179. #ifdef BSP_UART_USING_DMA
  180. typedef enum
  181. {
  182. K230_UART_PDMA_EVENT_NONE,
  183. K230_UART_PDMA_EVENT_COMPLETE,
  184. K230_UART_PDMA_EVENT_TIMEOUT
  185. } uart_pdma_event_t;
  186. static void _k230_uart_pdma_call_back(rt_uint8_t ch, rt_bool_t is_done)
  187. {
  188. uart_pdma_event_t event_type = is_done ? K230_UART_PDMA_EVENT_COMPLETE : K230_UART_PDMA_EVENT_TIMEOUT;
  189. for (size_t i = 0; i < sizeof(uart_devs)/sizeof(uart_devs[0]); i++)
  190. {
  191. struct k230_uart_dev *d = &uart_devs[i];
  192. if (d->dma_ch != PDMA_CH_INVALID && d->dma_ch == ch && d->dma_event != RT_NULL)
  193. {
  194. rt_event_send(d->dma_event, event_type);
  195. return;
  196. }
  197. }
  198. }
  199. static rt_err_t _uart_dma_init(struct k230_uart_dev *dev)
  200. {
  201. rt_err_t err;
  202. usr_pdma_cfg_t *cfg = &dev->pdma_cfg;
  203. if (!strcmp(dev->name, "uart0"))
  204. {
  205. cfg->device = UART0_TX;
  206. }
  207. else if (!strcmp(dev->name, "uart1"))
  208. {
  209. cfg->device = UART1_TX;
  210. }
  211. else if (!strcmp(dev->name, "uart2"))
  212. {
  213. cfg->device = UART2_TX;
  214. }
  215. else if (!strcmp(dev->name, "uart3"))
  216. {
  217. cfg->device = UART3_TX;
  218. }
  219. else if (!strcmp(dev->name, "uart4"))
  220. {
  221. cfg->device = UART4_TX;
  222. }
  223. cfg->dst_addr = (rt_uint8_t *)(uintptr_t)dev->pa_base;
  224. cfg->pdma_ch_cfg.ch_src_type = CONTINUE;
  225. cfg->pdma_ch_cfg.ch_dev_hsize = PSBYTE1;
  226. cfg->pdma_ch_cfg.ch_dat_endian = PDEFAULT;
  227. cfg->pdma_ch_cfg.ch_dev_blen = PBURST_LEN_16;
  228. cfg->pdma_ch_cfg.ch_priority = 7; // channel priority
  229. cfg->pdma_ch_cfg.ch_dev_tout = 0xFFF; // device timeout
  230. return RT_EOK;
  231. }
  232. static rt_ssize_t _uart_dma_write(struct rt_serial_device *serial, const void *buffer, rt_size_t size)
  233. {
  234. struct k230_uart_dev *uart_dev = rt_container_of(serial, struct k230_uart_dev, serial);
  235. rt_uint32_t recv_event;
  236. rt_err_t err;
  237. rt_uint8_t ch;
  238. err = k230_pdma_request_channel(&ch);
  239. if (err != RT_EOK)
  240. {
  241. const char *ptr = buffer;
  242. for (rt_size_t i = 0; i < size; i++)
  243. {
  244. _drv_uart_putc(serial, ptr[i]);
  245. }
  246. return size;
  247. }
  248. uint32_t len = RT_ALIGN(size, 64);
  249. uint8_t *buf = rt_malloc_align(len, 64);
  250. rt_memcpy(buf, buffer, size);
  251. rt_hw_cpu_dcache_clean((void*)buf, len);
  252. void *buf_pa = rt_kmem_v2p(buf);
  253. uart_dev->dma_ch = ch;
  254. err = k230_pdma_set_callback(ch, _k230_uart_pdma_call_back);
  255. if (err != RT_EOK)
  256. {
  257. k230_pdma_release_channel(ch);
  258. rt_free_align(buf);
  259. return err;
  260. }
  261. uart_dev->pdma_cfg.src_addr = buf_pa;
  262. uart_dev->pdma_cfg.line_size = len;
  263. rt_event_control(uart_dev->dma_event, RT_IPC_CMD_RESET, NULL);
  264. err = k230_pdma_config(ch, &uart_dev->pdma_cfg);
  265. err = k230_pdma_start(ch);
  266. err = rt_event_recv(uart_dev->dma_event,
  267. K230_UART_PDMA_EVENT_COMPLETE | K230_UART_PDMA_EVENT_TIMEOUT,
  268. RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
  269. RT_WAITING_FOREVER,
  270. &recv_event);
  271. k230_pdma_stop(ch);
  272. k230_pdma_release_channel(ch);
  273. uart_dev->dma_ch = PDMA_CH_INVALID;
  274. rt_free_align(buf);
  275. return size;
  276. }
  277. static rt_ssize_t _uart_dma_tran(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
  278. {
  279. rt_ssize_t len;
  280. if (RT_SERIAL_DMA_TX == direction)
  281. {
  282. len = _uart_dma_write(serial, (void*)buf, size);
  283. }
  284. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
  285. return len;
  286. }
  287. #endif
  288. #define write32(addr, val) writel(val, (void*)(addr))
  289. #define read32(addr) readl((void*)(addr))
  290. static void _uart_init(void *uart_base)
  291. {
  292. uint32_t bdiv;
  293. uint32_t dlf;
  294. uint32_t dlh;
  295. uint32_t dll;
  296. bdiv = UART_CLK / UART_DEFAULT_BAUDRATE;
  297. dlh = bdiv >> 12;
  298. dll = (bdiv - (dlh << 12)) / 16;
  299. dlf = bdiv - (dlh << 12) - dll * 16;
  300. // dlh can be 0 only if bdiv < 4096 (since we're shifting right by 12 bits)
  301. // bdiv = UART_CLK / UART_DEFAULT_BAUDRATE
  302. // = 50000000 / 115200
  303. // = 434.027
  304. // so when dlh is 0,
  305. // dll = (bdiv - (dlh << 12)) / 16
  306. // = (434.027 - 0) / 16
  307. // = 27.626
  308. // which means dll can not reach 0,
  309. // so we use 1 as the minimum value for dll
  310. if((dlh == 0) && (dll < 1))
  311. {
  312. dll = 1;
  313. dlf = 0;
  314. }
  315. write32(uart_base + UART_LCR, 0x00);
  316. /* Disable all interrupts */
  317. write32(uart_base + UART_IER, 0x00);
  318. /* Enable DLAB */
  319. write32(uart_base + UART_LCR, 0x80);
  320. if (bdiv)
  321. {
  322. /* Set divisor low byte */
  323. write32(uart_base + UART_DLL, dll);
  324. /* Set divisor high byte */
  325. write32(uart_base + UART_DLH, dlh);
  326. /* Set divisor fraction byte*/
  327. write32(uart_base + UART_DLF, dlf);
  328. }
  329. /* 8 bits, no parity, one stop bit */
  330. write32(uart_base + UART_LCR, 0x03);
  331. /* Enable FIFO */
  332. write32(uart_base + UART_FCR, 0x01);
  333. /* No modem control DTR RTS */
  334. write32(uart_base + UART_MCR, 0x00);
  335. /* Clear line status */
  336. read32(uart_base + UART_LSR);
  337. /* Read receive buffer */
  338. read32(uart_base + UART_RBR);
  339. read32(uart_base + UART_USR);
  340. read32(uart_base + UART_FCR);
  341. /* Set scratchpad */
  342. write32(uart_base + UART_SCH, 0x00);
  343. //enable uart rx irq
  344. // write32(uart_base + UART_IER, 0x01);
  345. }
  346. static void _uart_set_isr(void *uart_base, uint8_t enable, uint32_t irq_type)
  347. {
  348. uint32_t value;
  349. value = read32(uart_base + UART_IER);
  350. if (enable)
  351. {
  352. value |= irq_type;
  353. }
  354. else
  355. {
  356. value &= ~irq_type;
  357. }
  358. write32(uart_base + UART_IER, value);
  359. }
  360. static rt_err_t _uart_control(struct rt_serial_device *serial, int cmd, void *arg)
  361. {
  362. struct device_uart *uart = (struct device_uart*)serial->parent.user_data;
  363. #ifdef RT_USING_SERIAL_V2
  364. rt_ubase_t ctrl_flag = 0;
  365. rt_ubase_t ctrl_arg;
  366. #endif
  367. #ifdef RT_USING_SERIAL_V2
  368. ctrl_arg = (rt_ubase_t)arg;
  369. if (ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING))
  370. {
  371. ctrl_flag |= RT_DEVICE_FLAG_INT_RX;
  372. }
  373. #endif
  374. switch (cmd)
  375. {
  376. case RT_DEVICE_CTRL_CLR_INT:
  377. #ifdef RT_USING_SERIAL_V2
  378. if (ctrl_flag & RT_DEVICE_FLAG_INT_RX)
  379. #else
  380. if ((size_t)arg == RT_DEVICE_FLAG_INT_RX)
  381. #endif
  382. {
  383. _uart_set_isr((void*)(uart->hw_base), 0, UART_IER_RDI);
  384. }
  385. break;
  386. case RT_DEVICE_CTRL_SET_INT:
  387. #ifdef RT_USING_SERIAL_V2
  388. if (ctrl_flag & RT_DEVICE_FLAG_INT_RX)
  389. #else
  390. if ((size_t)arg == RT_DEVICE_FLAG_INT_RX)
  391. #endif
  392. {
  393. _uart_set_isr((void*)(uart->hw_base), 1, UART_IER_RDI);
  394. }
  395. break;
  396. #ifdef RT_USING_SERIAL_V2
  397. case RT_DEVICE_CTRL_CONFIG:
  398. if (ctrl_flag & RT_DEVICE_FLAG_INT_RX)
  399. {
  400. _uart_set_isr((void*)(uart->hw_base), 1, UART_IER_RDI);
  401. }
  402. break;
  403. #endif
  404. case RT_FIOMMAP2:
  405. {
  406. struct dfs_mmap2_args *mmap2 = (struct dfs_mmap2_args *)arg;
  407. if (mmap2)
  408. {
  409. if (mmap2->length > 0x400)
  410. {
  411. return -RT_ENOMEM;
  412. }
  413. mmap2->ret = lwp_map_user_phy(lwp_self(), RT_NULL, uart->pa_base, mmap2->length, 0);
  414. }
  415. break;
  416. }
  417. }
  418. return (RT_EOK);
  419. }
  420. static int _drv_uart_putc(struct rt_serial_device *serial, char c)
  421. {
  422. volatile uint32_t *sed_buf;
  423. volatile uint32_t *sta;
  424. struct device_uart *uart = (struct device_uart*)serial->parent.user_data;
  425. sed_buf = (uint32_t *)(uart->hw_base + UART_THR);
  426. sta = (uint32_t *)(uart->hw_base + UART_USR);
  427. /* FIFO status, contain valid data */
  428. // while (!(*sta & 0x02));
  429. while (!(read32(uart->hw_base + UART_LSR) & 0x20));
  430. *sed_buf = c;
  431. return (1);
  432. }
  433. static int _drv_uart_getc(struct rt_serial_device *serial)
  434. {
  435. struct device_uart *uart = (struct device_uart*)serial->parent.user_data;
  436. volatile uint32_t *lsr = (uint32_t *)(uart->hw_base + UART_LSR);
  437. volatile uint32_t *rbr = (uint32_t *)(uart->hw_base + UART_RBR);
  438. if (!(*lsr & UART_LSR_DR))
  439. {
  440. return -1;
  441. }
  442. return (int)*rbr;
  443. }
  444. /*
  445. * UART interface
  446. */
  447. static rt_err_t _rt_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
  448. {
  449. return (RT_EOK);
  450. }
  451. static void _rt_hw_uart_isr(int irq, void *param)
  452. {
  453. struct rt_serial_device *serial = (struct rt_serial_device*)param;
  454. struct device_uart *uart;
  455. size_t uart_base;
  456. uint32_t iir, lsr;
  457. uart = (struct device_uart*)serial->parent.user_data;
  458. uart_base = uart->hw_base;
  459. iir = readb((void*)(uart_base + UART_IIR)) & UART_IIR_IID_MASK;
  460. lsr = readb((void*)(uart_base + UART_LSR));
  461. // rt_kprintf("uart isr iir:%x lsr:%x\r\n", iir, lsr);
  462. if (iir == UART_IIR_IID_BUSBSY)
  463. {
  464. (void)readb((void*)(uart_base + UART_USR));
  465. }
  466. else if (lsr & (UART_LSR_DR | UART_LSR_BI))
  467. {
  468. struct rt_serial_rx_fifo *rx_fifo;
  469. rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  470. if (rx_fifo == NULL)
  471. {
  472. readb((void*)(uart_base + UART_RBR));
  473. return;
  474. }
  475. #ifdef RT_USING_SERIAL_V2
  476. uint8_t data;
  477. do {
  478. data = readb((void*)(uart_base + UART_RBR));
  479. rt_ringbuffer_putchar(&(rx_fifo->rb), data);
  480. lsr = readb((void*)(uart_base + UART_LSR));
  481. } while(lsr & UART_LSR_DR);
  482. #endif
  483. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
  484. }
  485. else if (iir & UART_IIR_IID_CHARTO)
  486. /* has charto irq but no dr lsr? just read and ignore */
  487. {
  488. readb((void*)(uart_base + UART_RBR));
  489. }
  490. }
  491. const struct rt_uart_ops _uart_ops =
  492. {
  493. .configure = _rt_uart_configure,
  494. .control = _uart_control,
  495. .putc = _drv_uart_putc,
  496. .getc = _drv_uart_getc,
  497. #ifdef BSP_UART_USING_DMA
  498. .dma_transmit = _uart_dma_tran
  499. #else
  500. .dma_transmit = RT_NULL
  501. #endif
  502. };
  503. int rt_hw_uart_init(void)
  504. {
  505. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  506. rt_err_t ret;
  507. for (int i = 0; i < sizeof(uart_devs)/sizeof(uart_devs[0]); i++)
  508. {
  509. struct k230_uart_dev *dev = &uart_devs[i];
  510. dev->serial.ops = &_uart_ops;
  511. dev->serial.config = config;
  512. dev->serial.config.baud_rate = UART_DEFAULT_BAUDRATE;
  513. dev->uart.pa_base = (void *)(uintptr_t)dev->pa_base;
  514. dev->uart.hw_base = (rt_base_t)rt_ioremap(dev->uart.pa_base, dev->uart_to_size);
  515. dev->uart.irqno = dev->irqno;
  516. #ifdef BSP_UART_USING_DMA
  517. dev->dma_ch = PDMA_CH_INVALID;
  518. dev->dma_event = (rt_event_t)rt_malloc(sizeof(struct rt_event));
  519. if (dev->dma_event == RT_NULL)
  520. {
  521. LOG_E("Failed to allocate memory for %s pdma_event!", dev->name);
  522. return -RT_ENOMEM;
  523. }
  524. ret = rt_event_init(dev->dma_event, dev->name, RT_IPC_FLAG_FIFO);
  525. if (ret != RT_EOK)
  526. {
  527. LOG_E("Failed to init pdma_event for %s!", dev->name);
  528. rt_free(dev->dma_event);
  529. return ret;
  530. }
  531. ret = _uart_dma_init(dev);
  532. if (ret != RT_EOK)
  533. {
  534. LOG_E("Failed to init DMA for %s, ret=%d\n", dev->name, ret);
  535. return ret;
  536. }
  537. #endif
  538. _uart_init((void*)(dev->uart.hw_base));
  539. rt_hw_interrupt_install(dev->uart.irqno, _rt_hw_uart_isr, &dev->serial, dev->name);
  540. rt_hw_interrupt_umask(dev->uart.irqno);
  541. rt_uint32_t flags;
  542. flags = RT_DEVICE_FLAG_STREAM | RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX;
  543. #ifdef BSP_UART_USING_DMA
  544. flags = RT_DEVICE_FLAG_STREAM | RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_DMA_TX;
  545. #endif
  546. ret = rt_hw_serial_register(&dev->serial, dev->name, flags, &dev->uart);
  547. if (ret != RT_EOK)
  548. {
  549. LOG_E("Failed to register %s, ret=%d\n", dev->name, ret);
  550. return ret;
  551. }
  552. }
  553. return RT_EOK;
  554. }