drv_sdio.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-10-10 Tanek first version
  9. */
  10. #include <rtthread.h>
  11. #include <rthw.h>
  12. #include <drivers/dev_mmcsd_core.h>
  13. #include <board.h>
  14. #include <fsl_usdhc.h>
  15. #include <fsl_gpio.h>
  16. #include <fsl_iomuxc.h>
  17. #define RT_USING_SDIO1
  18. #define RT_USING_SDIO2
  19. //#define DEBUG
  20. #ifdef DEBUG
  21. static int enable_log = 1;
  22. #define MMCSD_DGB(fmt, ...) \
  23. do \
  24. { \
  25. if (enable_log) \
  26. { \
  27. rt_kprintf(fmt, ##__VA_ARGS__); \
  28. } \
  29. } while (0)
  30. #else
  31. #define MMCSD_DGB(fmt, ...)
  32. #endif
  33. #define CACHE_LINESIZE (32)
  34. #define IMXRT_MAX_FREQ (25UL * 1000UL * 1000UL)
  35. #define USDHC_READ_BURST_LEN (8U) /*!< number of words USDHC read in a single burst */
  36. #define USDHC_WRITE_BURST_LEN (8U) /*!< number of words USDHC write in a single burst */
  37. #define USDHC_DATA_TIMEOUT (0xFU) /*!< data timeout counter value */
  38. #define SDMMCHOST_SUPPORT_MAX_BLOCK_LENGTH (4096U)
  39. #define SDMMCHOST_SUPPORT_MAX_BLOCK_COUNT (USDHC_MAX_BLOCK_COUNT)
  40. /* Read/write watermark level. The bigger value indicates DMA has higher read/write performance. */
  41. #define USDHC_READ_WATERMARK_LEVEL (0x80U)
  42. #define USDHC_WRITE_WATERMARK_LEVEL (0x80U)
  43. /* DMA mode */
  44. #define USDHC_DMA_MODE kUSDHC_DmaModeAdma2
  45. /* Endian mode. */
  46. #define USDHC_ENDIAN_MODE kUSDHC_EndianModeLittle
  47. //#ifdef SOC_IMXRT1170_SERIES
  48. #define USDHC_ADMA_TABLE_WORDS (32U) /* define the ADMA descriptor table length */
  49. #define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
  50. //#else
  51. //#define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
  52. //#define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
  53. //#endif
  54. //rt_align(USDHC_ADMA2_ADDR_ALIGN) uint32_t g_usdhcAdma2Table[USDHC_ADMA_TABLE_WORDS] SECTION("NonCacheable");
  55. AT_NONCACHEABLE_SECTION_ALIGN(uint32_t g_usdhcAdma2Table[USDHC_ADMA_TABLE_WORDS], USDHC_ADMA2_ADDR_ALIGN);
  56. struct imxrt_mmcsd
  57. {
  58. struct rt_mmcsd_host *host;
  59. struct rt_mmcsd_req *req;
  60. struct rt_mmcsd_cmd *cmd;
  61. struct rt_timer timer;
  62. rt_uint32_t *buf;
  63. //USDHC_Type *base;
  64. usdhc_host_t usdhc_host;
  65. #ifndef SOC_IMXRT1170_SERIES
  66. clock_div_t usdhc_div;
  67. #endif
  68. clock_ip_name_t ip_clock;
  69. uint32_t *usdhc_adma2_table;
  70. };
  71. #ifndef CODE_STORED_ON_SDCARD
  72. static void _mmcsd_gpio_init(struct imxrt_mmcsd *mmcsd)
  73. {
  74. // CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
  75. }
  76. #endif
  77. static void SDMMCHOST_ErrorRecovery(USDHC_Type *base)
  78. {
  79. uint32_t status = 0U;
  80. /* get host present status */
  81. status = USDHC_GetPresentStatusFlags(base);
  82. /* check command inhibit status flag */
  83. if ((status & kUSDHC_CommandInhibitFlag) != 0U)
  84. {
  85. /* reset command line */
  86. USDHC_Reset(base, kUSDHC_ResetCommand, 1000U);
  87. }
  88. /* check data inhibit status flag */
  89. if ((status & kUSDHC_DataInhibitFlag) != 0U)
  90. {
  91. /* reset data line */
  92. USDHC_Reset(base, kUSDHC_ResetData, 1000U);
  93. }
  94. }
  95. #ifndef CODE_STORED_ON_SDCARD
  96. static void _mmcsd_host_init(struct imxrt_mmcsd *mmcsd)
  97. {
  98. usdhc_host_t *usdhc_host = &mmcsd->usdhc_host;
  99. /* Initializes SDHC. */
  100. usdhc_host->config.dataTimeout = USDHC_DATA_TIMEOUT;
  101. usdhc_host->config.endianMode = USDHC_ENDIAN_MODE;
  102. usdhc_host->config.readWatermarkLevel = USDHC_READ_WATERMARK_LEVEL;
  103. usdhc_host->config.writeWatermarkLevel = USDHC_WRITE_WATERMARK_LEVEL;
  104. #if !(defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
  105. usdhc_host->config.readBurstLen = USDHC_READ_BURST_LEN;
  106. usdhc_host->config.writeBurstLen = USDHC_WRITE_BURST_LEN;
  107. #endif
  108. USDHC_Init(usdhc_host->base, &(usdhc_host->config));
  109. }
  110. static void _mmcsd_clk_init(struct imxrt_mmcsd *mmcsd)
  111. {
  112. CLOCK_EnableClock(mmcsd->ip_clock);
  113. #if !defined(SOC_IMXRT1170_SERIES) && !defined(SOC_MIMXRT1062DVL6A)
  114. CLOCK_SetDiv(mmcsd->usdhc_div, 5U);
  115. #endif
  116. }
  117. static void _mmcsd_isr_init(struct imxrt_mmcsd *mmcsd)
  118. {
  119. //NVIC_SetPriority(USDHC1_IRQn, 5U);
  120. }
  121. #endif
  122. static void _mmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  123. {
  124. struct imxrt_mmcsd *mmcsd;
  125. struct rt_mmcsd_cmd *cmd;
  126. struct rt_mmcsd_data *data;
  127. status_t error;
  128. usdhc_adma_config_t dmaConfig;
  129. usdhc_transfer_t fsl_content = {0};
  130. usdhc_command_t fsl_command = {0};
  131. usdhc_data_t fsl_data = {0};
  132. rt_uint32_t *buf = NULL;
  133. RT_ASSERT(host != RT_NULL);
  134. RT_ASSERT(req != RT_NULL);
  135. mmcsd = (struct imxrt_mmcsd *)host->private_data;
  136. RT_ASSERT(mmcsd != RT_NULL);
  137. cmd = req->cmd;
  138. RT_ASSERT(cmd != RT_NULL);
  139. MMCSD_DGB("\tcmd->cmd_code: %02d, cmd->arg: %08x, cmd->flags: %08x --> ", cmd->cmd_code, cmd->arg, cmd->flags);
  140. data = cmd->data;
  141. rt_memset(&dmaConfig, 0, sizeof(usdhc_adma_config_t));
  142. /* config adma */
  143. dmaConfig.dmaMode = USDHC_DMA_MODE;
  144. #if !(defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
  145. dmaConfig.burstLen = kUSDHC_EnBurstLenForINCR;
  146. #endif
  147. dmaConfig.admaTable = mmcsd->usdhc_adma2_table;
  148. dmaConfig.admaTableWords = USDHC_ADMA_TABLE_WORDS;
  149. fsl_command.index = cmd->cmd_code;
  150. fsl_command.argument = cmd->arg;
  151. if (cmd->cmd_code == STOP_TRANSMISSION)
  152. fsl_command.type = kCARD_CommandTypeAbort;
  153. else
  154. fsl_command.type = kCARD_CommandTypeNormal;
  155. switch (cmd->flags & RESP_MASK)
  156. {
  157. case RESP_NONE:
  158. fsl_command.responseType = kCARD_ResponseTypeNone;
  159. break;
  160. case RESP_R1:
  161. fsl_command.responseType = kCARD_ResponseTypeR1;
  162. break;
  163. case RESP_R1B:
  164. fsl_command.responseType = kCARD_ResponseTypeR1b;
  165. break;
  166. case RESP_R2:
  167. fsl_command.responseType = kCARD_ResponseTypeR2;
  168. break;
  169. case RESP_R3:
  170. fsl_command.responseType = kCARD_ResponseTypeR3;
  171. break;
  172. case RESP_R4:
  173. fsl_command.responseType = kCARD_ResponseTypeR4;
  174. break;
  175. case RESP_R6:
  176. fsl_command.responseType = kCARD_ResponseTypeR6;
  177. break;
  178. case RESP_R7:
  179. fsl_command.responseType = kCARD_ResponseTypeR7;
  180. break;
  181. case RESP_R5:
  182. fsl_command.responseType = kCARD_ResponseTypeR5;
  183. break;
  184. default:
  185. RT_ASSERT(NULL);
  186. }
  187. fsl_command.flags = 0;
  188. fsl_content.command = &fsl_command;
  189. if (data)
  190. {
  191. if (req->stop != NULL)
  192. fsl_data.enableAutoCommand12 = true;
  193. else
  194. fsl_data.enableAutoCommand12 = false;
  195. fsl_data.enableAutoCommand23 = false;
  196. fsl_data.enableIgnoreError = false;
  197. fsl_data.dataType = kUSDHC_TransferDataNormal; //todo : update data type
  198. fsl_data.blockSize = data->blksize;
  199. fsl_data.blockCount = data->blks;
  200. MMCSD_DGB(" blksize:%d, blks:%d ", fsl_data.blockSize, fsl_data.blockCount);
  201. if (((rt_uint32_t)data->buf & (CACHE_LINESIZE - 1)) || // align cache(32byte)
  202. ((rt_uint32_t)data->buf > 0x00000000 && (rt_uint32_t)data->buf < 0x00080000) /*|| // ITCM
  203. ((rt_uint32_t)data->buf >= 0x20000000 && (rt_uint32_t)data->buf < 0x20080000)*/) // DTCM
  204. {
  205. buf = rt_malloc_align(fsl_data.blockSize * fsl_data.blockCount, CACHE_LINESIZE);
  206. RT_ASSERT(buf != RT_NULL);
  207. MMCSD_DGB(" malloc buf: %p, data->buf:%p, %d ", buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
  208. }
  209. if ((cmd->cmd_code == WRITE_BLOCK) || (cmd->cmd_code == WRITE_MULTIPLE_BLOCK))
  210. {
  211. if (buf)
  212. {
  213. MMCSD_DGB(" write(data->buf to buf) ");
  214. rt_memcpy(buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
  215. fsl_data.txData = (uint32_t const *)buf;
  216. }
  217. else
  218. {
  219. fsl_data.txData = (uint32_t const *)data->buf;
  220. }
  221. fsl_data.rxData = NULL;
  222. }
  223. else
  224. {
  225. if (buf)
  226. {
  227. fsl_data.rxData = (uint32_t *)buf;
  228. }
  229. else
  230. {
  231. fsl_data.rxData = (uint32_t *)data->buf;
  232. }
  233. fsl_data.txData = NULL;
  234. }
  235. fsl_content.data = &fsl_data;
  236. }
  237. else
  238. {
  239. fsl_content.data = NULL;
  240. }
  241. error = USDHC_TransferBlocking(mmcsd->usdhc_host.base, &dmaConfig, &fsl_content);
  242. if (error != kStatus_Success)
  243. {
  244. SDMMCHOST_ErrorRecovery(mmcsd->usdhc_host.base);
  245. MMCSD_DGB(" ***USDHC_TransferBlocking error: %d*** --> \n", error);
  246. cmd->err = -RT_ERROR;
  247. }
  248. if (buf)
  249. {
  250. if (fsl_data.rxData)
  251. {
  252. MMCSD_DGB("read copy buf to data->buf ");
  253. rt_memcpy(data->buf, buf, fsl_data.blockSize * fsl_data.blockCount);
  254. }
  255. rt_free_align(buf);
  256. }
  257. if ((cmd->flags & RESP_MASK) == RESP_R2)
  258. {
  259. cmd->resp[3] = fsl_command.response[0];
  260. cmd->resp[2] = fsl_command.response[1];
  261. cmd->resp[1] = fsl_command.response[2];
  262. cmd->resp[0] = fsl_command.response[3];
  263. MMCSD_DGB(" resp 0x%08X 0x%08X 0x%08X 0x%08X\n",
  264. cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
  265. }
  266. else
  267. {
  268. cmd->resp[0] = fsl_command.response[0];
  269. MMCSD_DGB(" resp 0x%08X\n", cmd->resp[0]);
  270. }
  271. mmcsd_req_complete(host);
  272. return;
  273. }
  274. static void _mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  275. {
  276. struct imxrt_mmcsd *mmcsd;
  277. unsigned int usdhc_clk;
  278. unsigned int bus_width;
  279. uint32_t src_clk;
  280. RT_ASSERT(host != RT_NULL);
  281. RT_ASSERT(host->private_data != RT_NULL);
  282. RT_ASSERT(io_cfg != RT_NULL);
  283. mmcsd = (struct imxrt_mmcsd *)host->private_data;
  284. usdhc_clk = io_cfg->clock;
  285. bus_width = io_cfg->bus_width;
  286. if (usdhc_clk > IMXRT_MAX_FREQ)
  287. usdhc_clk = IMXRT_MAX_FREQ;
  288. #ifdef SOC_IMXRT1170_SERIES
  289. clock_root_config_t rootCfg = {0};
  290. /* SYS PLL2 528MHz. */
  291. const clock_sys_pll2_config_t sysPll2Config = {
  292. .ssEnable = false,
  293. };
  294. CLOCK_InitSysPll2(&sysPll2Config);
  295. CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd2, 24);
  296. rootCfg.mux = 4;
  297. rootCfg.div = 2;
  298. CLOCK_SetRootClock(kCLOCK_Root_Usdhc1, &rootCfg);
  299. src_clk = CLOCK_GetRootClockFreq(kCLOCK_Root_Usdhc1);
  300. #elif defined(SOC_MIMXRT1062DVL6A)
  301. CLOCK_InitSysPll(&sysPllConfig_BOARD_BootClockRUN);
  302. /*configure system pll PFD0 fractional divider to 24, output clock is 528MHZ * 18 / 24 = 396 MHZ*/
  303. CLOCK_InitSysPfd(kCLOCK_Pfd0, 24U);
  304. /* Configure USDHC clock source and divider */
  305. CLOCK_SetDiv(kCLOCK_Usdhc1Div, 1U); /* USDHC clock root frequency maximum: 198MHZ */
  306. CLOCK_SetMux(kCLOCK_Usdhc1Mux, 1U);
  307. src_clk = 396000000U / 2U;
  308. #else
  309. src_clk = (CLOCK_GetSysPfdFreq(kCLOCK_Pfd2) / (CLOCK_GetDiv(mmcsd->usdhc_div) + 1U));
  310. #endif
  311. MMCSD_DGB("\tsrc_clk: %d, usdhc_clk: %d, bus_width: %d\n", src_clk, usdhc_clk, bus_width);
  312. if (usdhc_clk)
  313. {
  314. USDHC_SetSdClock(mmcsd->usdhc_host.base, src_clk, usdhc_clk);
  315. /* Change bus width */
  316. if (bus_width == MMCSD_BUS_WIDTH_8)
  317. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth8Bit);
  318. else if (bus_width == MMCSD_BUS_WIDTH_4)
  319. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth4Bit);
  320. else if (bus_width == MMCSD_BUS_WIDTH_1)
  321. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth1Bit);
  322. else
  323. RT_ASSERT(RT_NULL);
  324. }
  325. }
  326. #ifdef DEBUG
  327. static void log_toggle(int en)
  328. {
  329. enable_log = en;
  330. }
  331. #endif
  332. static const struct rt_mmcsd_host_ops ops =
  333. {
  334. _mmc_request,
  335. _mmc_set_iocfg,
  336. RT_NULL,//_mmc_get_card_status,
  337. RT_NULL,//_mmc_enable_sdio_irq,
  338. };
  339. rt_int32_t _imxrt_mci_init(void)
  340. {
  341. struct rt_mmcsd_host *host;
  342. struct imxrt_mmcsd *mmcsd;
  343. #if (defined(FSL_FEATURE_USDHC_HAS_HS400_MODE) && (FSL_FEATURE_USDHC_HAS_HS400_MODE))
  344. uint32_t hs400Capability = 0U;
  345. #endif
  346. host = mmcsd_alloc_host();
  347. if (!host)
  348. {
  349. return -RT_ERROR;
  350. }
  351. mmcsd = rt_malloc(sizeof(struct imxrt_mmcsd));
  352. if (!mmcsd)
  353. {
  354. rt_kprintf("alloc mci failed\n");
  355. goto err;
  356. }
  357. rt_memset(mmcsd, 0, sizeof(struct imxrt_mmcsd));
  358. mmcsd->usdhc_host.base = USDHC1;
  359. //#ifndef SOC_IMXRT1170_SERIES
  360. // mmcsd->usdhc_div = kCLOCK_Usdhc1Div;
  361. //#endif
  362. mmcsd->usdhc_adma2_table = g_usdhcAdma2Table;
  363. host->ops = &ops;
  364. host->freq_min = 375000;
  365. host->freq_max = 25000000;
  366. host->valid_ocr = VDD_32_33 | VDD_33_34;
  367. host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | \
  368. MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
  369. #if defined(FSL_FEATURE_USDHC_INSTANCE_SUPPORT_HS400_MODEn) && (FSL_FEATURE_USDHC_INSTANCE_SUPPORT_HS400_MODEn)
  370. hs400Capability = (uint32_t)FSL_FEATURE_USDHC_INSTANCE_SUPPORT_HS400_MODEn(mmcsd->usdhc_host.base);
  371. #endif
  372. #if (defined(FSL_FEATURE_USDHC_HAS_HS400_MODE) && (FSL_FEATURE_USDHC_HAS_HS400_MODE))
  373. if (hs400Capability != 0U)
  374. {
  375. host->flags |= (uint32_t)MMCSD_SUP_HIGHSPEED_HS400;
  376. }
  377. #endif
  378. host->max_seg_size = 65535;
  379. host->max_dma_segs = 2;
  380. //#ifdef SOC_IMXRT1170_SERIES
  381. host->max_blk_size = SDMMCHOST_SUPPORT_MAX_BLOCK_LENGTH;
  382. host->max_blk_count = SDMMCHOST_SUPPORT_MAX_BLOCK_COUNT;
  383. //#else
  384. // host->max_blk_size = 512;
  385. // host->max_blk_count = 4096;
  386. //#endif
  387. mmcsd->host = host;
  388. #ifndef CODE_STORED_ON_SDCARD
  389. _mmcsd_clk_init(mmcsd);
  390. _mmcsd_isr_init(mmcsd);
  391. _mmcsd_gpio_init(mmcsd);
  392. _mmcsd_host_init(mmcsd);
  393. #endif
  394. host->private_data = mmcsd;
  395. mmcsd_change(host);
  396. return 0;
  397. err:
  398. mmcsd_free_host(host);
  399. return -RT_ENOMEM;
  400. }
  401. int imxrt_mci_init(void)
  402. {
  403. /* initilize sd card */
  404. _imxrt_mci_init();
  405. return 0;
  406. }
  407. INIT_DEVICE_EXPORT(imxrt_mci_init);