drv_can.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057
  1. /*
  2. * Copyright (c) 2006-2025, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-08-05 Xeon Xu the first version
  9. * 2019-01-22 YLZ port from stm324xx-HAL to bsp stm3210x-HAL
  10. * 2019-02-19 YLZ add support EXTID RTR Frame. modify send, recv functions.
  11. * fix bug.port to BSP [stm32]
  12. * 2019-03-27 YLZ support double can channels, support stm32F4xx (only Legacy mode).
  13. * 2019-06-17 YLZ port to new STM32F1xx HAL V1.1.3.
  14. * 2021-02-02 YuZhe XU fix bug in filter config
  15. * 2021-8-25 SVCHAO The baud rate is configured according to the different APB1 frequencies.
  16. f4-series only.
  17. * 2025-09-20 wdfk_prog Implemented sendmsg_nonblocking op to support framework's async TX.
  18. */
  19. #include "drv_can.h"
  20. #ifdef BSP_USING_CAN
  21. #define LOG_TAG "drv_can"
  22. #include <drv_log.h>
  23. /* attention !!! baud calculation example: Tclk / ((ss + bs1 + bs2) * brp) = 36 / ((1 + 8 + 3) * 3) = 1MHz*/
  24. #if defined (SOC_SERIES_STM32F1)/* APB1 36MHz(max) */
  25. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  26. {
  27. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 3)},
  28. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_3TQ | 5)},
  29. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 6)},
  30. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 12)},
  31. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 24)},
  32. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 30)},
  33. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 60)},
  34. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 150)},
  35. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_3TQ | 300)}
  36. };
  37. #elif defined (SOC_SERIES_STM32F4) /* 42MHz or 45MHz */
  38. #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)|| defined(STM32F417xx) ||\
  39. defined(STM32F401xC) || defined(STM32F401xE) /* 42MHz(max) */
  40. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  41. {
  42. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 3)},
  43. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_4TQ | 4)},
  44. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 6)},
  45. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 12)},
  46. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 24)},
  47. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 30)},
  48. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 60)},
  49. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 150)},
  50. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_4TQ | 300)}
  51. };
  52. #else /* APB1 45MHz(max) */
  53. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  54. {
  55. #ifdef BSP_USING_CAN168M
  56. {CAN1MBaud, (CAN_SJW_1TQ | CAN_BS1_3TQ | CAN_BS2_3TQ | 6)},
  57. #else
  58. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 3)},
  59. #endif
  60. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_8TQ | CAN_BS2_5TQ | 4)},
  61. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 6)},
  62. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 12)},
  63. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 24)},
  64. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 30)},
  65. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 60)},
  66. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 150)},
  67. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_5TQ | 300)}
  68. };
  69. #endif
  70. #elif defined (SOC_SERIES_STM32F7)/* APB1 54MHz(max) */
  71. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  72. {
  73. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 3)},
  74. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_9TQ | CAN_BS2_7TQ | 4)},
  75. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 6)},
  76. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 12)},
  77. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 24)},
  78. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 30)},
  79. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 60)},
  80. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 150)},
  81. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_10TQ | CAN_BS2_7TQ | 300)}
  82. };
  83. #elif defined (SOC_SERIES_STM32L4)/* APB1 80MHz(max) */
  84. static const struct stm32_baud_rate_tab can_baud_rate_tab[] =
  85. {
  86. {CAN1MBaud, (CAN_SJW_2TQ | CAN_BS1_5TQ | CAN_BS2_2TQ | 10)},
  87. {CAN800kBaud, (CAN_SJW_2TQ | CAN_BS1_14TQ | CAN_BS2_5TQ | 5)},
  88. {CAN500kBaud, (CAN_SJW_2TQ | CAN_BS1_7TQ | CAN_BS2_2TQ | 16)},
  89. {CAN250kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 20)},
  90. {CAN125kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 40)},
  91. {CAN100kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 50)},
  92. {CAN50kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 100)},
  93. {CAN20kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 250)},
  94. {CAN10kBaud, (CAN_SJW_2TQ | CAN_BS1_13TQ | CAN_BS2_2TQ | 500)}
  95. };
  96. #endif
  97. #ifdef BSP_USING_CAN1
  98. static struct stm32_can drv_can1 =
  99. {
  100. .name = "can1",
  101. .CanHandle.Instance = CAN1,
  102. };
  103. #endif
  104. #ifdef BSP_USING_CAN2
  105. static struct stm32_can drv_can2 =
  106. {
  107. "can2",
  108. .CanHandle.Instance = CAN2,
  109. };
  110. #endif
  111. static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
  112. {
  113. rt_uint32_t len, index;
  114. len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
  115. for (index = 0; index < len; index++)
  116. {
  117. if (can_baud_rate_tab[index].baud_rate == baud)
  118. return index;
  119. }
  120. return 0; /* default baud is CAN1MBaud */
  121. }
  122. static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
  123. {
  124. struct stm32_can *drv_can;
  125. rt_uint32_t baud_index;
  126. RT_ASSERT(can);
  127. RT_ASSERT(cfg);
  128. drv_can = (struct stm32_can *)can->parent.user_data;
  129. RT_ASSERT(drv_can);
  130. drv_can->CanHandle.Init.TimeTriggeredMode = DISABLE;
  131. drv_can->CanHandle.Init.AutoBusOff = ENABLE;
  132. drv_can->CanHandle.Init.AutoWakeUp = DISABLE;
  133. drv_can->CanHandle.Init.AutoRetransmission = DISABLE;
  134. drv_can->CanHandle.Init.ReceiveFifoLocked = DISABLE;
  135. drv_can->CanHandle.Init.TransmitFifoPriority = ENABLE;
  136. switch (cfg->mode)
  137. {
  138. case RT_CAN_MODE_NORMAL:
  139. drv_can->CanHandle.Init.Mode = CAN_MODE_NORMAL;
  140. break;
  141. case RT_CAN_MODE_LISTEN:
  142. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT;
  143. break;
  144. case RT_CAN_MODE_LOOPBACK:
  145. drv_can->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
  146. break;
  147. case RT_CAN_MODE_LOOPBACKANLISTEN:
  148. drv_can->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
  149. break;
  150. }
  151. baud_index = get_can_baud_index(cfg->baud_rate);
  152. drv_can->CanHandle.Init.SyncJumpWidth = BAUD_DATA(SJW, baud_index);
  153. drv_can->CanHandle.Init.TimeSeg1 = BAUD_DATA(BS1, baud_index);
  154. drv_can->CanHandle.Init.TimeSeg2 = BAUD_DATA(BS2, baud_index);
  155. drv_can->CanHandle.Init.Prescaler = BAUD_DATA(RRESCL, baud_index);
  156. /* init can */
  157. if (HAL_CAN_Init(&drv_can->CanHandle) != HAL_OK)
  158. {
  159. return -RT_ERROR;
  160. }
  161. /* default filter config */
  162. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  163. return RT_EOK;
  164. }
  165. static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
  166. {
  167. rt_uint32_t argval;
  168. struct stm32_can *drv_can;
  169. struct rt_can_filter_config *filter_cfg;
  170. RT_ASSERT(can != RT_NULL);
  171. drv_can = (struct stm32_can *)can->parent.user_data;
  172. RT_ASSERT(drv_can != RT_NULL);
  173. switch (cmd)
  174. {
  175. case RT_DEVICE_CTRL_CLR_INT:
  176. argval = (rt_uint32_t) arg;
  177. if (argval == RT_DEVICE_FLAG_INT_RX)
  178. {
  179. if (CAN1 == drv_can->CanHandle.Instance)
  180. {
  181. HAL_NVIC_DisableIRQ(CAN1_RX0_IRQn);
  182. HAL_NVIC_DisableIRQ(CAN1_RX1_IRQn);
  183. }
  184. #ifdef CAN2
  185. if (CAN2 == drv_can->CanHandle.Instance)
  186. {
  187. HAL_NVIC_DisableIRQ(CAN2_RX0_IRQn);
  188. HAL_NVIC_DisableIRQ(CAN2_RX1_IRQn);
  189. }
  190. #endif
  191. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  192. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  193. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  194. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  195. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  196. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  197. }
  198. else if (argval == RT_DEVICE_FLAG_INT_TX)
  199. {
  200. if (CAN1 == drv_can->CanHandle.Instance)
  201. {
  202. HAL_NVIC_DisableIRQ(CAN1_TX_IRQn);
  203. }
  204. #ifdef CAN2
  205. if (CAN2 == drv_can->CanHandle.Instance)
  206. {
  207. HAL_NVIC_DisableIRQ(CAN2_TX_IRQn);
  208. }
  209. #endif
  210. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  211. }
  212. else if (argval == RT_DEVICE_CAN_INT_ERR)
  213. {
  214. if (CAN1 == drv_can->CanHandle.Instance)
  215. {
  216. NVIC_DisableIRQ(CAN1_SCE_IRQn);
  217. }
  218. #ifdef CAN2
  219. if (CAN2 == drv_can->CanHandle.Instance)
  220. {
  221. NVIC_DisableIRQ(CAN2_SCE_IRQn);
  222. }
  223. #endif
  224. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  225. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  226. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  227. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  228. __HAL_CAN_DISABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  229. }
  230. break;
  231. case RT_DEVICE_CTRL_SET_INT:
  232. argval = (rt_uint32_t) arg;
  233. if (argval == RT_DEVICE_FLAG_INT_RX)
  234. {
  235. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_MSG_PENDING);
  236. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_FULL);
  237. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO0_OVERRUN);
  238. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_MSG_PENDING);
  239. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_FULL);
  240. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_RX_FIFO1_OVERRUN);
  241. if (CAN1 == drv_can->CanHandle.Instance)
  242. {
  243. HAL_NVIC_SetPriority(CAN1_RX0_IRQn, 1, 0);
  244. HAL_NVIC_EnableIRQ(CAN1_RX0_IRQn);
  245. HAL_NVIC_SetPriority(CAN1_RX1_IRQn, 1, 0);
  246. HAL_NVIC_EnableIRQ(CAN1_RX1_IRQn);
  247. }
  248. #ifdef CAN2
  249. if (CAN2 == drv_can->CanHandle.Instance)
  250. {
  251. HAL_NVIC_SetPriority(CAN2_RX0_IRQn, 1, 0);
  252. HAL_NVIC_EnableIRQ(CAN2_RX0_IRQn);
  253. HAL_NVIC_SetPriority(CAN2_RX1_IRQn, 1, 0);
  254. HAL_NVIC_EnableIRQ(CAN2_RX1_IRQn);
  255. }
  256. #endif
  257. }
  258. else if (argval == RT_DEVICE_FLAG_INT_TX)
  259. {
  260. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_TX_MAILBOX_EMPTY);
  261. if (CAN1 == drv_can->CanHandle.Instance)
  262. {
  263. HAL_NVIC_SetPriority(CAN1_TX_IRQn, 1, 0);
  264. HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);
  265. }
  266. #ifdef CAN2
  267. if (CAN2 == drv_can->CanHandle.Instance)
  268. {
  269. HAL_NVIC_SetPriority(CAN2_TX_IRQn, 1, 0);
  270. HAL_NVIC_EnableIRQ(CAN2_TX_IRQn);
  271. }
  272. #endif
  273. }
  274. else if (argval == RT_DEVICE_CAN_INT_ERR)
  275. {
  276. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_WARNING);
  277. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR_PASSIVE);
  278. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_BUSOFF);
  279. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_LAST_ERROR_CODE);
  280. __HAL_CAN_ENABLE_IT(&drv_can->CanHandle, CAN_IT_ERROR);
  281. if (CAN1 == drv_can->CanHandle.Instance)
  282. {
  283. HAL_NVIC_SetPriority(CAN1_SCE_IRQn, 1, 0);
  284. HAL_NVIC_EnableIRQ(CAN1_SCE_IRQn);
  285. }
  286. #ifdef CAN2
  287. if (CAN2 == drv_can->CanHandle.Instance)
  288. {
  289. HAL_NVIC_SetPriority(CAN2_SCE_IRQn, 1, 0);
  290. HAL_NVIC_EnableIRQ(CAN2_SCE_IRQn);
  291. }
  292. #endif
  293. }
  294. break;
  295. case RT_CAN_CMD_SET_FILTER:
  296. {
  297. rt_uint32_t id_h = 0;
  298. rt_uint32_t id_l = 0;
  299. rt_uint32_t mask_h = 0;
  300. rt_uint32_t mask_l = 0;
  301. rt_uint32_t mask_l_tail = 0; /*CAN_FxR2 bit [2:0]*/
  302. if (RT_NULL == arg)
  303. {
  304. /* default filter config */
  305. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  306. }
  307. else
  308. {
  309. filter_cfg = (struct rt_can_filter_config *)arg;
  310. /* get default filter */
  311. for (int i = 0; i < filter_cfg->count; i++)
  312. {
  313. if (filter_cfg->items[i].hdr_bank == -1)
  314. {
  315. /* use default filter bank settings */
  316. if (rt_strcmp(drv_can->name, "can1") == 0)
  317. {
  318. /* can1 banks 0~13 */
  319. drv_can->FilterConfig.FilterBank = i;
  320. }
  321. else if (rt_strcmp(drv_can->name, "can2") == 0)
  322. {
  323. /* can2 banks 14~27 */
  324. drv_can->FilterConfig.FilterBank = i + 14;
  325. }
  326. }
  327. else
  328. {
  329. /* use user-defined filter bank settings */
  330. drv_can->FilterConfig.FilterBank = filter_cfg->items[i].hdr_bank;
  331. }
  332. /**
  333. * ID | CAN_FxR1[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] |
  334. * MASK | CAN_FxR2[31:24] | CAN_FxR2[23:16] | CAN_FxR2[15:8] | CAN_FxR2[7:0] |
  335. * STD ID | STID[10:3] | STDID[2:0] |<- 21bit ->|
  336. * EXT ID | EXTID[28:21] | EXTID[20:13] | EXTID[12:5] | EXTID[4:0] IDE RTR 0|
  337. * @note the 32bit STD ID must << 21 to fill CAN_FxR1[31:21] and EXT ID must << 3,
  338. * -> but the id bit of struct rt_can_filter_item is 29,
  339. * -> so STD id << 18 and EXT id Don't need << 3, when get the high 16bit.
  340. * -> FilterIdHigh : (((STDid << 18) or (EXT id)) >> 13) & 0xFFFF,
  341. * -> FilterIdLow: ((STDid << 18) or (EXT id << 3)) & 0xFFFF.
  342. * @note the mask bit of struct rt_can_filter_item is 32,
  343. * -> FilterMaskIdHigh: (((STD mask << 21) or (EXT mask <<3)) >> 16) & 0xFFFF
  344. * -> FilterMaskIdLow: ((STD mask << 21) or (EXT mask <<3)) & 0xFFFF
  345. */
  346. if (filter_cfg->items[i].mode == CAN_FILTERMODE_IDMASK)
  347. {
  348. /* make sure the CAN_FxR1[2:0](IDE RTR) work */
  349. mask_l_tail = 0x06;
  350. }
  351. else if (filter_cfg->items[i].mode == CAN_FILTERMODE_IDLIST)
  352. {
  353. /* same as CAN_FxR1 */
  354. mask_l_tail = (filter_cfg->items[i].ide << 2) |
  355. (filter_cfg->items[i].rtr << 1);
  356. }
  357. if (filter_cfg->items[i].ide == RT_CAN_STDID)
  358. {
  359. id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF;
  360. id_l = ((filter_cfg->items[i].id << 18) |
  361. (filter_cfg->items[i].ide << 2) |
  362. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  363. mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF;
  364. mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF;
  365. }
  366. else if (filter_cfg->items[i].ide == RT_CAN_EXTID)
  367. {
  368. id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF;
  369. id_l = ((filter_cfg->items[i].id << 3) |
  370. (filter_cfg->items[i].ide << 2) |
  371. (filter_cfg->items[i].rtr << 1)) & 0xFFFF;
  372. mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF;
  373. mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF;
  374. }
  375. drv_can->FilterConfig.FilterIdHigh = id_h;
  376. drv_can->FilterConfig.FilterIdLow = id_l;
  377. drv_can->FilterConfig.FilterMaskIdHigh = mask_h;
  378. drv_can->FilterConfig.FilterMaskIdLow = mask_l;
  379. drv_can->FilterConfig.FilterMode = filter_cfg->items[i].mode;
  380. drv_can->FilterConfig.FilterFIFOAssignment = filter_cfg->items[i].rxfifo;/*rxfifo = CAN_RX_FIFO0/CAN_RX_FIFO1*/
  381. /* Filter conf */
  382. HAL_CAN_ConfigFilter(&drv_can->CanHandle, &drv_can->FilterConfig);
  383. }
  384. }
  385. break;
  386. }
  387. case RT_CAN_CMD_SET_MODE:
  388. argval = (rt_uint32_t) arg;
  389. if (argval != RT_CAN_MODE_NORMAL &&
  390. argval != RT_CAN_MODE_LISTEN &&
  391. argval != RT_CAN_MODE_LOOPBACK &&
  392. argval != RT_CAN_MODE_LOOPBACKANLISTEN)
  393. {
  394. return -RT_ERROR;
  395. }
  396. if (argval != drv_can->device.config.mode)
  397. {
  398. drv_can->device.config.mode = argval;
  399. return _can_config(&drv_can->device, &drv_can->device.config);
  400. }
  401. break;
  402. case RT_CAN_CMD_SET_BAUD:
  403. argval = (rt_uint32_t) arg;
  404. if (argval != CAN1MBaud &&
  405. argval != CAN800kBaud &&
  406. argval != CAN500kBaud &&
  407. argval != CAN250kBaud &&
  408. argval != CAN125kBaud &&
  409. argval != CAN100kBaud &&
  410. argval != CAN50kBaud &&
  411. argval != CAN20kBaud &&
  412. argval != CAN10kBaud)
  413. {
  414. return -RT_ERROR;
  415. }
  416. if (argval != drv_can->device.config.baud_rate)
  417. {
  418. drv_can->device.config.baud_rate = argval;
  419. return _can_config(&drv_can->device, &drv_can->device.config);
  420. }
  421. break;
  422. case RT_CAN_CMD_SET_PRIV:
  423. argval = (rt_uint32_t) arg;
  424. if (argval != RT_CAN_MODE_PRIV &&
  425. argval != RT_CAN_MODE_NOPRIV)
  426. {
  427. return -RT_ERROR;
  428. }
  429. if (argval != drv_can->device.config.privmode)
  430. {
  431. drv_can->device.config.privmode = argval;
  432. return _can_config(&drv_can->device, &drv_can->device.config);
  433. }
  434. break;
  435. case RT_CAN_CMD_GET_STATUS:
  436. {
  437. rt_uint32_t errtype;
  438. errtype = drv_can->CanHandle.Instance->ESR;
  439. drv_can->device.status.rcverrcnt = errtype >> 24;
  440. drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
  441. drv_can->device.status.lasterrtype = errtype & 0x70;
  442. drv_can->device.status.errcode = errtype & 0x07;
  443. rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
  444. break;
  445. }
  446. case RT_CAN_CMD_START:
  447. argval = (rt_uint32_t) arg;
  448. if (argval == 0)
  449. {
  450. HAL_CAN_Stop(&drv_can->CanHandle);
  451. }
  452. else
  453. {
  454. HAL_CAN_Start(&drv_can->CanHandle);
  455. }
  456. break;
  457. }
  458. return RT_EOK;
  459. }
  460. /**
  461. * @internal
  462. * @brief Low-level function to send a CAN message to a specific hardware mailbox.
  463. *
  464. * This function is part of the **blocking** send mechanism. It is called by
  465. * `_can_int_tx` after a hardware mailbox has already been acquired. Its role is
  466. * to format the message according to the STM32 hardware requirements and place
  467. * it into the specified mailbox for transmission.
  468. *
  469. * @param[in] can A pointer to the CAN device structure.
  470. * @param[in] buf A pointer to the `rt_can_msg` to be sent.
  471. * @param[in] box_num The specific hardware mailbox index (0, 1, or 2) to use for this tran
  472. *
  473. * @return `RT_EOK` on success, or an error code on failure.
  474. */
  475. static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
  476. {
  477. CAN_HandleTypeDef *hcan;
  478. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  479. struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
  480. CAN_TxHeaderTypeDef txheader = {0};
  481. HAL_CAN_StateTypeDef state = hcan->State;
  482. /* Check the parameters */
  483. RT_ASSERT(IS_CAN_DLC(pmsg->len));
  484. if ((state == HAL_CAN_STATE_READY) ||
  485. (state == HAL_CAN_STATE_LISTENING))
  486. {
  487. /*check select mailbox is empty */
  488. switch (1 << box_num)
  489. {
  490. case CAN_TX_MAILBOX0:
  491. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME0) != SET)
  492. {
  493. /* Return function status */
  494. return -RT_ERROR;
  495. }
  496. break;
  497. case CAN_TX_MAILBOX1:
  498. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME1) != SET)
  499. {
  500. /* Return function status */
  501. return -RT_ERROR;
  502. }
  503. break;
  504. case CAN_TX_MAILBOX2:
  505. if (HAL_IS_BIT_SET(hcan->Instance->TSR, CAN_TSR_TME2) != SET)
  506. {
  507. /* Return function status */
  508. return -RT_ERROR;
  509. }
  510. break;
  511. default:
  512. RT_ASSERT(0);
  513. break;
  514. }
  515. if (RT_CAN_STDID == pmsg->ide)
  516. {
  517. txheader.IDE = CAN_ID_STD;
  518. RT_ASSERT(IS_CAN_STDID(pmsg->id));
  519. txheader.StdId = pmsg->id;
  520. }
  521. else
  522. {
  523. txheader.IDE = CAN_ID_EXT;
  524. RT_ASSERT(IS_CAN_EXTID(pmsg->id));
  525. txheader.ExtId = pmsg->id;
  526. }
  527. if (RT_CAN_DTR == pmsg->rtr)
  528. {
  529. txheader.RTR = CAN_RTR_DATA;
  530. }
  531. else
  532. {
  533. txheader.RTR = CAN_RTR_REMOTE;
  534. }
  535. /* clear TIR */
  536. hcan->Instance->sTxMailBox[box_num].TIR &= CAN_TI0R_TXRQ;
  537. /* Set up the Id */
  538. if (RT_CAN_STDID == pmsg->ide)
  539. {
  540. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.StdId << CAN_TI0R_STID_Pos) | txheader.RTR;
  541. }
  542. else
  543. {
  544. hcan->Instance->sTxMailBox[box_num].TIR |= (txheader.ExtId << CAN_TI0R_EXID_Pos) | txheader.IDE | txheader.RTR;
  545. }
  546. /* Set up the DLC */
  547. hcan->Instance->sTxMailBox[box_num].TDTR = pmsg->len & 0x0FU;
  548. /* Set up the data field */
  549. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDHR,
  550. ((uint32_t)pmsg->data[7] << CAN_TDH0R_DATA7_Pos) |
  551. ((uint32_t)pmsg->data[6] << CAN_TDH0R_DATA6_Pos) |
  552. ((uint32_t)pmsg->data[5] << CAN_TDH0R_DATA5_Pos) |
  553. ((uint32_t)pmsg->data[4] << CAN_TDH0R_DATA4_Pos));
  554. WRITE_REG(hcan->Instance->sTxMailBox[box_num].TDLR,
  555. ((uint32_t)pmsg->data[3] << CAN_TDL0R_DATA3_Pos) |
  556. ((uint32_t)pmsg->data[2] << CAN_TDL0R_DATA2_Pos) |
  557. ((uint32_t)pmsg->data[1] << CAN_TDL0R_DATA1_Pos) |
  558. ((uint32_t)pmsg->data[0] << CAN_TDL0R_DATA0_Pos));
  559. /* Request transmission */
  560. SET_BIT(hcan->Instance->sTxMailBox[box_num].TIR, CAN_TI0R_TXRQ);
  561. return RT_EOK;
  562. }
  563. else
  564. {
  565. /* Update error code */
  566. hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
  567. return -RT_ERROR;
  568. }
  569. }
  570. /**
  571. * @internal
  572. * @brief Low-level, hardware-specific non-blocking function to send a CAN message.
  573. *
  574. * This function interacts directly with the STM32 HAL library to add a message
  575. * to a hardware TX mailbox. It returns immediately and does not wait for the
  576. * transmission to complete.
  577. *
  578. * @param[in] can A pointer to the CAN device structure.
  579. * @param[in] buf A pointer to the `rt_can_msg` to be sent.
  580. *
  581. * @return
  582. * - `RT_EOK` if the message was successfully accepted by the hardware.
  583. * - `-RT_EBUSY` if all hardware mailboxes are currently full.
  584. * - `-RT_ERROR` on other HAL failures.
  585. */
  586. static rt_ssize_t _can_sendmsg_nonblocking(struct rt_can_device *can, const void *buf)
  587. {
  588. CAN_HandleTypeDef *hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  589. struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
  590. CAN_TxHeaderTypeDef txheader = {0};
  591. uint32_t tx_mailbox;
  592. if ((hcan->State != HAL_CAN_STATE_READY) && (hcan->State != HAL_CAN_STATE_LISTENING))
  593. return -RT_ERROR;
  594. if (HAL_CAN_GetTxMailboxesFreeLevel(hcan) == 0)
  595. return -RT_EBUSY;
  596. txheader.DLC = pmsg->len;
  597. txheader.RTR = (pmsg->rtr == RT_CAN_RTR) ? CAN_RTR_REMOTE : CAN_RTR_DATA;
  598. txheader.IDE = (pmsg->ide == RT_CAN_STDID) ? CAN_ID_STD : CAN_ID_EXT;
  599. if (txheader.IDE == CAN_ID_STD)
  600. txheader.StdId = pmsg->id;
  601. else
  602. txheader.ExtId = pmsg->id;
  603. HAL_StatusTypeDef status = HAL_CAN_AddTxMessage(hcan, &txheader, pmsg->data, &tx_mailbox);
  604. if (status != HAL_OK)
  605. {
  606. LOG_W("can sendmsg nonblocking send error %d", status);
  607. return -RT_ERROR;
  608. }
  609. return RT_EOK;
  610. }
  611. static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
  612. {
  613. HAL_StatusTypeDef status;
  614. CAN_HandleTypeDef *hcan;
  615. struct rt_can_msg *pmsg;
  616. CAN_RxHeaderTypeDef rxheader = {0};
  617. RT_ASSERT(can);
  618. hcan = &((struct stm32_can *)can->parent.user_data)->CanHandle;
  619. pmsg = (struct rt_can_msg *) buf;
  620. /* get data */
  621. status = HAL_CAN_GetRxMessage(hcan, fifo, &rxheader, pmsg->data);
  622. if (HAL_OK != status)
  623. return -RT_ERROR;
  624. /* get id */
  625. if (CAN_ID_STD == rxheader.IDE)
  626. {
  627. pmsg->ide = RT_CAN_STDID;
  628. pmsg->id = rxheader.StdId;
  629. }
  630. else
  631. {
  632. pmsg->ide = RT_CAN_EXTID;
  633. pmsg->id = rxheader.ExtId;
  634. }
  635. /* get type */
  636. if (CAN_RTR_DATA == rxheader.RTR)
  637. {
  638. pmsg->rtr = RT_CAN_DTR;
  639. }
  640. else
  641. {
  642. pmsg->rtr = RT_CAN_RTR;
  643. }
  644. /*get rxfifo = CAN_RX_FIFO0/CAN_RX_FIFO1*/
  645. pmsg->rxfifo = fifo;
  646. /* get len */
  647. pmsg->len = rxheader.DLC;
  648. /* get hdr_index */
  649. if (hcan->Instance == CAN1)
  650. {
  651. pmsg->hdr_index = rxheader.FilterMatchIndex;
  652. }
  653. #ifdef CAN2
  654. else if (hcan->Instance == CAN2)
  655. {
  656. pmsg->hdr_index = rxheader.FilterMatchIndex;
  657. }
  658. #endif
  659. return RT_EOK;
  660. }
  661. static const struct rt_can_ops _can_ops =
  662. {
  663. .configure = _can_config,
  664. .control = _can_control,
  665. .sendmsg = _can_sendmsg,
  666. .recvmsg = _can_recvmsg,
  667. .sendmsg_nonblocking = _can_sendmsg_nonblocking,
  668. };
  669. static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
  670. {
  671. CAN_HandleTypeDef *hcan;
  672. RT_ASSERT(can);
  673. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  674. switch (fifo)
  675. {
  676. case CAN_RX_FIFO0:
  677. /* save to user list */
  678. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_MSG_PENDING))
  679. {
  680. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  681. }
  682. /* Check FULL flag for FIFO0 */
  683. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_FULL))
  684. {
  685. /* Clear FIFO0 FULL Flag */
  686. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
  687. }
  688. /* Check Overrun flag for FIFO0 */
  689. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV0) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO0_OVERRUN))
  690. {
  691. /* Clear FIFO0 Overrun Flag */
  692. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
  693. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  694. }
  695. break;
  696. case CAN_RX_FIFO1:
  697. /* save to user list */
  698. if (HAL_CAN_GetRxFifoFillLevel(hcan, CAN_RX_FIFO1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_MSG_PENDING))
  699. {
  700. rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
  701. }
  702. /* Check FULL flag for FIFO1 */
  703. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FF1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_FULL))
  704. {
  705. /* Clear FIFO1 FULL Flag */
  706. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
  707. }
  708. /* Check Overrun flag for FIFO1 */
  709. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_FOV1) && __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_RX_FIFO1_OVERRUN))
  710. {
  711. /* Clear FIFO1 Overrun Flag */
  712. __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
  713. rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
  714. }
  715. break;
  716. }
  717. }
  718. static void _can_check_tx_complete(struct rt_can_device *can)
  719. {
  720. CAN_HandleTypeDef *hcan;
  721. RT_ASSERT(can);
  722. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  723. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  724. {
  725. if (!__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  726. {
  727. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  728. }
  729. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  730. }
  731. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  732. {
  733. if (!__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  734. {
  735. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  736. }
  737. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  738. }
  739. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  740. {
  741. if (!__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  742. {
  743. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  744. }
  745. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  746. }
  747. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TERR0))/*IF AutoRetransmission = ENABLE,ACK ERR handler*/
  748. {
  749. SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ0);/*Abort the send request, trigger the TX interrupt,release completion quantity*/
  750. }
  751. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TERR1))
  752. {
  753. SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ1);
  754. }
  755. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TERR2))
  756. {
  757. SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ2);
  758. }
  759. }
  760. static void _can_sce_isr(struct rt_can_device *can)
  761. {
  762. CAN_HandleTypeDef *hcan;
  763. RT_ASSERT(can);
  764. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  765. rt_uint32_t errtype = hcan->Instance->ESR;
  766. switch ((errtype & 0x70) >> 4)
  767. {
  768. case RT_CAN_BUS_BIT_PAD_ERR:
  769. can->status.bitpaderrcnt++;
  770. break;
  771. case RT_CAN_BUS_FORMAT_ERR:
  772. can->status.formaterrcnt++;
  773. break;
  774. case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
  775. can->status.ackerrcnt++;
  776. break;
  777. case RT_CAN_BUS_IMPLICIT_BIT_ERR:
  778. case RT_CAN_BUS_EXPLICIT_BIT_ERR:
  779. can->status.biterrcnt++;
  780. break;
  781. case RT_CAN_BUS_CRC_ERR:
  782. can->status.crcerrcnt++;
  783. break;
  784. }
  785. _can_check_tx_complete(can);
  786. can->status.lasterrtype = errtype & 0x70;
  787. can->status.rcverrcnt = errtype >> 24;
  788. can->status.snderrcnt = (errtype >> 16 & 0xFF);
  789. can->status.errcode = errtype & 0x07;
  790. hcan->Instance->MSR |= CAN_MSR_ERRI;
  791. }
  792. /**
  793. * @internal
  794. * @brief The low-level ISR for CAN TX events on STM32.
  795. *
  796. * This function's sole responsibility is to check the hardware status flags
  797. * to determine which mailbox completed a transmission and whether it was
  798. * successful or failed. It then reports the specific event to the upper
  799. * framework layer via `rt_hw_can_isr()`.
  800. *
  801. * @note This ISR contains NO framework-level logic (e.g., buffer handling).
  802. * It is a pure hardware event reporter, ensuring a clean separation
  803. * of concerns between the driver and the framework.
  804. *
  805. * @param[in] can A pointer to the CAN device structure.
  806. * @return void
  807. */
  808. static void _can_tx_isr(struct rt_can_device *can)
  809. {
  810. CAN_HandleTypeDef *hcan;
  811. RT_ASSERT(can);
  812. hcan = &((struct stm32_can *) can->parent.user_data)->CanHandle;
  813. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP0))
  814. {
  815. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK0))
  816. {
  817. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 0 << 8);
  818. }
  819. else
  820. {
  821. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
  822. }
  823. /* Write 0 to Clear transmission status flag RQCPx */
  824. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP0);
  825. }
  826. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP1))
  827. {
  828. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK1))
  829. {
  830. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 1 << 8);
  831. }
  832. else
  833. {
  834. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
  835. }
  836. /* Write 0 to Clear transmission status flag RQCPx */
  837. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP1);
  838. }
  839. else if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_RQCP2))
  840. {
  841. if (__HAL_CAN_GET_FLAG(hcan, CAN_FLAG_TXOK2))
  842. {
  843. rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | 2 << 8);
  844. }
  845. else
  846. {
  847. rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
  848. }
  849. /* Write 0 to Clear transmission status flag RQCPx */
  850. SET_BIT(hcan->Instance->TSR, CAN_TSR_RQCP2);
  851. }
  852. }
  853. #ifdef BSP_USING_CAN1
  854. /**
  855. * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
  856. */
  857. void CAN1_TX_IRQHandler(void)
  858. {
  859. rt_interrupt_enter();
  860. _can_tx_isr(&drv_can1.device);
  861. rt_interrupt_leave();
  862. }
  863. /**
  864. * @brief This function handles CAN1 RX0 interrupts.
  865. */
  866. void CAN1_RX0_IRQHandler(void)
  867. {
  868. rt_interrupt_enter();
  869. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
  870. rt_interrupt_leave();
  871. }
  872. /**
  873. * @brief This function handles CAN1 RX1 interrupts.
  874. */
  875. void CAN1_RX1_IRQHandler(void)
  876. {
  877. rt_interrupt_enter();
  878. _can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
  879. rt_interrupt_leave();
  880. }
  881. /**
  882. * @brief This function handles CAN1 SCE interrupts.
  883. */
  884. void CAN1_SCE_IRQHandler(void)
  885. {
  886. rt_interrupt_enter();
  887. _can_sce_isr(&drv_can1.device);
  888. rt_interrupt_leave();
  889. }
  890. #endif /* BSP_USING_CAN1 */
  891. #ifdef BSP_USING_CAN2
  892. /**
  893. * @brief This function handles CAN2 TX interrupts.
  894. */
  895. void CAN2_TX_IRQHandler(void)
  896. {
  897. rt_interrupt_enter();
  898. _can_tx_isr(&drv_can2.device);
  899. rt_interrupt_leave();
  900. }
  901. /**
  902. * @brief This function handles CAN2 RX0 interrupts.
  903. */
  904. void CAN2_RX0_IRQHandler(void)
  905. {
  906. rt_interrupt_enter();
  907. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
  908. rt_interrupt_leave();
  909. }
  910. /**
  911. * @brief This function handles CAN2 RX1 interrupts.
  912. */
  913. void CAN2_RX1_IRQHandler(void)
  914. {
  915. rt_interrupt_enter();
  916. _can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
  917. rt_interrupt_leave();
  918. }
  919. /**
  920. * @brief This function handles CAN2 SCE interrupts.
  921. */
  922. void CAN2_SCE_IRQHandler(void)
  923. {
  924. rt_interrupt_enter();
  925. _can_sce_isr(&drv_can2.device);
  926. rt_interrupt_leave();
  927. }
  928. #endif /* BSP_USING_CAN2 */
  929. int rt_hw_can_init(void)
  930. {
  931. struct can_configure config = CANDEFAULTCONFIG;
  932. config.privmode = RT_CAN_MODE_NOPRIV;
  933. config.ticks = 50;
  934. #ifdef RT_CAN_USING_HDR
  935. config.maxhdr = 14;
  936. #ifdef CAN2
  937. config.maxhdr = 28;
  938. #endif
  939. #endif
  940. /* config default filter */
  941. CAN_FilterTypeDef filterConf = {0};
  942. filterConf.FilterIdHigh = 0x0000;
  943. filterConf.FilterIdLow = 0x0000;
  944. filterConf.FilterMaskIdHigh = 0x0000;
  945. filterConf.FilterMaskIdLow = 0x0000;
  946. filterConf.FilterFIFOAssignment = CAN_FILTER_FIFO0;
  947. filterConf.FilterBank = 0;
  948. filterConf.FilterMode = CAN_FILTERMODE_IDMASK;
  949. filterConf.FilterScale = CAN_FILTERSCALE_32BIT;
  950. filterConf.FilterActivation = ENABLE;
  951. filterConf.SlaveStartFilterBank = 14;
  952. #ifdef BSP_USING_CAN1
  953. filterConf.FilterBank = 0;
  954. drv_can1.FilterConfig = filterConf;
  955. drv_can1.device.config = config;
  956. /* register CAN1 device */
  957. rt_hw_can_register(&drv_can1.device,
  958. drv_can1.name,
  959. &_can_ops,
  960. &drv_can1);
  961. #endif /* BSP_USING_CAN1 */
  962. #ifdef BSP_USING_CAN2
  963. filterConf.FilterBank = filterConf.SlaveStartFilterBank;
  964. drv_can2.FilterConfig = filterConf;
  965. drv_can2.device.config = config;
  966. /* register CAN2 device */
  967. rt_hw_can_register(&drv_can2.device,
  968. drv_can2.name,
  969. &_can_ops,
  970. &drv_can2);
  971. #endif /* BSP_USING_CAN2 */
  972. return 0;
  973. }
  974. INIT_BOARD_EXPORT(rt_hw_can_init);
  975. #endif /* BSP_USING_CAN */
  976. /************************** end of file ******************/