| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547 |
- if ARCH_ARMV8 && ARCH_CPU_64BIT
- orsource "./aarch64/Kconfig"
- endif
- config ARCH_CPU_64BIT
- bool
- help
- Indicates that this architecture uses 64-bit addressing and data types.
- When enabled, pointers and registers are 64-bit wide, providing access
- to larger memory spaces (>4GB). This is automatically selected by 64-bit
- architectures like AArch64, RISC-V64, and MIPS64.
-
- Impact: Affects memory layout, data structure sizes, and ABI conventions.
- config RT_USING_CACHE
- bool
- default n
- help
- Enable CPU cache support for data and instruction caches.
-
- When enabled, RT-Thread will provide cache management APIs (flush, invalidate)
- and properly handle cache coherency during DMA operations and memory management.
- This is essential for high-performance CPUs like Cortex-A and Cortex-M7.
-
- Typical use cases:
- - DMA transfers requiring cache synchronization
- - Memory-mapped I/O operations
- - Multi-core systems requiring cache coherency
-
- Note: Automatically selected by architectures with cache support (e.g., Cortex-M7,
- Cortex-A series, ARMv8). Improper cache management can lead to data corruption.
- config RT_USING_HW_ATOMIC
- bool
- default n
- help
- Enable hardware atomic operations support using CPU-specific instructions.
-
- When enabled, RT-Thread uses hardware atomic instructions (e.g., LDREX/STREX on ARM,
- atomic instructions on RISC-V) for lock-free synchronization primitives, improving
- performance and reducing interrupt latency compared to software implementations.
-
- Automatically selected by CPUs with atomic instruction support:
- - ARM Cortex-M3 and above (LDREX/STREX)
- - ARM Cortex-A series
- - ARM Cortex-R series
- - RISC-V with 'A' extension
-
- Benefits: Better performance for spinlocks, reference counting, and concurrent data structures.
- No action required - this is automatically configured based on CPU architecture.
- config ARCH_CPU_BIG_ENDIAN
- bool
- help
- Indicates that this CPU uses big-endian byte ordering.
-
- In big-endian systems, the most significant byte is stored at the lowest memory address.
- This affects how multi-byte data (integers, floats) are stored and accessed in memory.
-
- Most ARM, RISC-V, and x86 systems use little-endian. Big-endian is common in:
- - Some PowerPC configurations
- - MIPS systems (configurable)
- - Network protocols (network byte order)
-
- Note: This must match your hardware configuration. Incorrect setting will cause
- data corruption when accessing multi-byte values.
- config ARCH_ARM_BOOTWITH_FLUSH_CACHE
- bool
- default n
- help
- Flush and disable caches during system boot on ARM platforms.
-
- When enabled, the bootloader will flush and disable instruction and data caches
- before jumping to RT-Thread kernel. This ensures clean cache state during initialization.
-
- Enable this when:
- - Bootloader leaves caches in inconsistent state
- - Transitioning from another OS or bootloader
- - Debugging cache-related boot issues
-
- Note: Not needed for most configurations. Only enable if experiencing boot failures
- related to stale cache data.
- config ARCH_CPU_STACK_GROWS_UPWARD
- bool
- default n
- help
- Indicates that the stack grows toward higher memory addresses (upward).
-
- Most architectures (ARM, RISC-V, x86, MIPS) use downward-growing stacks where
- the stack pointer decreases as items are pushed. However, some architectures
- like TI DSP C28x use upward-growing stacks.
-
- This setting affects:
- - Stack pointer initialization and overflow detection
- - Context switching and exception handling
- - Stack boundary checking
-
- Note: This is architecture-specific and automatically configured. Do not change
- unless porting to a new architecture with upward-growing stack.
- config RT_USING_CPU_FFS
- bool
- default n
- help
- Enable optimized Find First Set (FFS) implementation using CPU instructions.
-
- FFS finds the position of the first (least significant) bit set in a word. When enabled,
- RT-Thread uses hardware instructions like CLZ (Count Leading Zeros) on ARM or equivalent
- on other architectures for fast bit scanning operations.
-
- Used internally by:
- - Scheduler for finding highest-priority ready thread
- - Bitmap operations
- - IPC mechanisms
-
- Automatically selected by CPUs with FFS support:
- - ARM Cortex-M3 and above (CLZ instruction)
- - ARM Cortex-A series
- - ARM Cortex-R series
-
- Benefits: Significantly faster scheduler operation (O(1) vs O(n) thread selection).
- No configuration needed - automatically enabled for supported CPUs.
- config ARCH_MM_MMU
- bool
- help
- Enable Memory Management Unit (MMU) support for virtual memory.
-
- MMU provides hardware-based virtual memory management, enabling:
- - Virtual to physical address translation
- - Memory protection between processes
- - Demand paging and memory mapping
- - Separate address spaces for different processes
-
- Required for:
- - RT-Smart mode (user-space applications)
- - Process isolation and protection
- - Dynamic memory mapping (mmap)
- - Copy-on-write mechanisms
-
- Automatically selected by MMU-capable architectures:
- - ARM Cortex-A series
- - AArch64 (ARMv8)
- - RISC-V with Sv39/Sv48 paging
-
- Note: MMU requires proper page table setup and increases system complexity.
- Only available on CPUs with hardware MMU support.
- config ARCH_MM_MPU
- bool
- help
- Enable Memory Protection Unit (MPU) support.
-
- MPU provides hardware-based memory protection without full virtual memory capabilities.
- Unlike MMU, MPU works with physical addresses and has limited number of regions (typically 8-16).
-
- Features:
- - Protect memory regions from unauthorized access
- - Define region permissions (read, write, execute)
- - Prevent stack overflow and buffer overruns
- - Isolate kernel from user code
-
- Common use cases:
- - Thread stack protection
- - Peripheral register protection
- - Code/data separation
- - Safety-critical applications
-
- Available on:
- - ARM Cortex-M0+/M3/M4/M7/M23/M33/M85 (with MPU option)
- - ARM Cortex-R series
-
- Note: Less flexible than MMU but lower overhead. Suitable for microcontrollers
- without MMU. Enable RT_USING_HW_STACK_GUARD for automatic stack protection.
- config ARCH_ARM
- bool
- help
- Select ARM architecture family support.
-
- ARM is a widely-used RISC architecture family for embedded systems and mobile devices.
- This is automatically selected when choosing a specific ARM CPU variant.
-
- Supported ARM variants in RT-Thread:
- - ARM9/ARM11: Legacy 32-bit ARM cores
- - Cortex-M: Microcontroller profile (M0/M0+/M3/M4/M7/M23/M33/M85)
- - Cortex-R: Real-time profile (R4/R52)
- - Cortex-A: Application profile (A5/A7/A8/A9/A55)
- - ARMv8: 64-bit architecture (Cortex-A53/A57/A72/A73)
-
- No direct configuration needed - select specific CPU type instead.
- config ARCH_ARM_CORTEX_M
- bool
- select ARCH_ARM
- help
- ARM Cortex-M microcontroller profile.
-
- Cortex-M is ARM's microcontroller-optimized architecture designed for low-power,
- cost-sensitive embedded applications with deterministic interrupt handling.
-
- Features:
- - Nested Vectored Interrupt Controller (NVIC)
- - Low interrupt latency (typically 12-15 cycles)
- - Thumb-2 instruction set for code density
- - Optional MPU for memory protection
- - Optional FPU (M4F/M7F variants)
-
- Variants: M0/M0+/M3/M4/M7/M23/M33/M85
-
- Automatically selected when choosing specific Cortex-M CPU variant.
- config ARCH_ARM_CORTEX_R
- bool
- select ARCH_ARM
- help
- ARM Cortex-R real-time profile.
-
- Cortex-R is designed for high-performance real-time applications requiring
- deterministic behavior and fault tolerance.
-
- Features:
- - Tightly-coupled memory (TCM) for deterministic access
- - Error detection and correction (ECC)
- - Dual-core lockstep for safety-critical applications
- - Low and deterministic interrupt latency
- - Optional MPU or MMU
-
- Common applications:
- - Automotive (ADAS, engine control)
- - Industrial control systems
- - Medical devices
- - Hard real-time systems
-
- Variants: R4/R5/R52
- Automatically selected when choosing specific Cortex-R CPU variant.
- config ARCH_ARM_CORTEX_FPU
- bool
- help
- Enable Floating Point Unit (FPU) support for ARM Cortex processors.
-
- When enabled, RT-Thread will:
- - Save/restore FPU registers during context switch
- - Enable FPU coprocessor access
- - Support hardware floating-point operations
-
- FPU variants:
- - Cortex-M4F/M7F: Single-precision FPv4-SP
- - Cortex-M7: Optional double-precision FPv5
- - Cortex-A: VFPv3/VFPv4/NEON
-
- Benefits: 10-100x performance improvement for floating-point math
- Cost: Increased context switch time, larger stack frames
-
- Enable if your application requires:
- - DSP operations
- - Audio/video processing
- - Scientific computations
- - Graphics operations
-
- Note: Hardware must have FPU. Check your MCU datasheet.
- config ARCH_ARM_CORTEX_SECURE
- bool
- help
- Enable ARM TrustZone security extension support.
-
- TrustZone provides hardware-based isolation between secure and non-secure worlds,
- enabling trusted execution environments (TEE).
-
- Features:
- - Secure and non-secure memory regions
- - Secure and non-secure peripheral access
- - Secure state transitions
- - Protection of cryptographic keys and sensitive data
-
- Available on:
- - Cortex-M23/M33/M35P/M55/M85 (ARMv8-M)
- - Cortex-A with Security Extensions
-
- Use cases:
- - Secure boot
- - Cryptographic operations
- - Key storage
- - Secure firmware updates
- - Payment and DRM systems
-
- Note: Requires secure firmware and proper secure/non-secure memory partitioning.
- config ARCH_ARM_CORTEX_M0
- bool
- select ARCH_ARM_CORTEX_M
- help
- ARM Cortex-M0 ultra-low-power microcontroller core.
-
- Smallest and most energy-efficient ARM processor, ideal for simple control applications.
-
- Features:
- - ARMv6-M architecture
- - 32-bit processor with Thumb instruction set (subset)
- - Minimal interrupt latency
- - No MPU, no FPU, no cache
- - Very low gate count and power consumption
-
- Performance: ~0.9 DMIPS/MHz
- Typical applications: Sensors, simple controllers, battery-powered devices
-
- Choose this for your BSP if using Cortex-M0 based MCU.
- config ARCH_ARM_CORTEX_M3
- bool
- select ARCH_ARM_CORTEX_M
- select RT_USING_CPU_FFS
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-M3 mainstream microcontroller core.
-
- Balanced processor for general-purpose embedded applications with good performance
- and energy efficiency.
-
- Features:
- - ARMv7-M architecture
- - Thumb-2 instruction set (full)
- - Hardware divide instructions
- - Optional MPU (8 regions)
- - Atomic operations (LDREX/STREX)
- - No FPU, no cache
-
- Performance: ~1.25 DMIPS/MHz
-
- Common use cases:
- - Industrial control
- - Consumer electronics
- - Motor control
- - IoT devices
-
- Examples: STM32F1xx, LPC17xx, EFM32
- Choose this for your BSP if using Cortex-M3 based MCU.
- config ARCH_ARM_MPU
- bool
- depends on ARCH_ARM
- select ARCH_MM_MPU
- help
- Enable Memory Protection Unit for ARM Cortex-M/R processors.
-
- Select this to enable MPU support on compatible ARM cores. The MPU provides
- hardware-based memory protection with configurable regions.
-
- When enabled, you can:
- - Protect thread stacks from overflow
- - Restrict access to peripheral registers
- - Enforce execute-never (XN) permissions
- - Separate privileged and unprivileged memory
-
- Configuration:
- - Number of regions: Typically 8 (Cortex-M3/M4) or 16 (Cortex-M7/M33)
- - Region size: Must be power of 2, minimum 32 bytes (Cortex-M3/M4) or 256 bytes (ARMv8-M)
- - Permissions: Read, write, execute, privileged/unprivileged
-
- Enable this along with RT_USING_HW_STACK_GUARD for automatic stack protection.
- See components/mprotect/Kconfig for detailed MPU configuration.
- config ARCH_ARM_CORTEX_M4
- bool
- select ARCH_ARM_CORTEX_M
- select RT_USING_CPU_FFS
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-M4 DSP-oriented microcontroller core.
-
- Enhanced version of M3 with DSP extensions and optional FPU, designed for
- digital signal processing and motor control applications.
-
- Features:
- - ARMv7E-M architecture
- - DSP instructions (SIMD, saturating arithmetic, MAC)
- - Optional single-precision FPU (FPv4-SP)
- - Optional MPU (8 regions)
- - Hardware divide and atomic operations
- - No cache
-
- Performance: ~1.25 DMIPS/MHz (CPU), 10x faster for DSP operations with FPU
-
- Ideal for:
- - Audio processing
- - Motor control (FOC algorithms)
- - Sensor fusion
- - Real-time control loops
-
- Examples: STM32F4xx, K64F, nRF52, TM4C
- Choose this for your BSP if using Cortex-M4 or M4F based MCU.
- config ARCH_ARM_CORTEX_M7
- bool
- select ARCH_ARM_CORTEX_M
- select RT_USING_CPU_FFS
- select RT_USING_CACHE
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-M7 high-performance microcontroller core.
-
- Most powerful Cortex-M processor with superscalar architecture, cache, and
- advanced features for demanding embedded applications.
-
- Features:
- - ARMv7E-M architecture with 6-stage superscalar pipeline
- - L1 instruction and data cache (configurable 0-64KB each)
- - Optional single/double-precision FPU (FPv5)
- - Tightly-coupled memory (TCM) for deterministic access
- - Optional MPU (8 or 16 regions)
- - DSP instructions and atomic operations
-
- Performance: ~2.14 DMIPS/MHz (up to 600MHz), 5 CoreMark/MHz
-
- Critical for cache management:
- - Must flush cache before DMA reads from memory
- - Must invalidate cache after DMA writes to memory
- - Cache coherency APIs automatically enabled
-
- Ideal for:
- - High-performance embedded systems
- - Vision and image processing
- - Advanced motor control
- - Real-time communication protocols
-
- Examples: STM32F7xx/H7xx, i.MX RT, SAM V71
- Choose this for your BSP if using Cortex-M7 based MCU.
- config ARCH_ARM_CORTEX_M85
- bool
- select ARCH_ARM_CORTEX_M
- select RT_USING_CPU_FFS
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-M85 next-generation high-performance microcontroller core.
-
- Latest and most powerful Cortex-M processor with AI/ML acceleration and
- advanced security features (ARMv8.1-M architecture).
-
- Features:
- - ARMv8.1-M architecture with Helium (M-Profile Vector Extension)
- - TrustZone security
- - L1 cache (optional)
- - Optional single/double-precision FPU
- - Optional MPU (8 or 16 regions)
- - Pointer authentication and branch target identification
- - DSP and atomic operations
-
- Performance: Up to 6.2 CoreMark/MHz
-
- Helium benefits:
- - 5-15x performance for ML inference
- - Enhanced DSP for signal processing
- - Vector operations for parallel data processing
-
- Ideal for:
- - Edge AI/ML applications
- - Advanced image/audio processing
- - Security-critical applications
- - Next-generation IoT devices
-
- Examples: Future MCUs with Cortex-M85
- Choose this for your BSP if using Cortex-M85 based MCU.
- config ARCH_ARM_CORTEX_M23
- bool
- select ARCH_ARM_CORTEX_M
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-M23 ultra-low-power core with TrustZone.
-
- Energy-efficient processor with security features, successor to Cortex-M0+.
-
- Features:
- - ARMv8-M Baseline architecture
- - TrustZone security extension
- - Optional MPU (8 or 16 regions)
- - Atomic operations (LDREX/STREX)
- - Low power consumption
- - No FPU, no cache
-
- Performance: ~1.0 DMIPS/MHz
-
- Key advantage: Hardware security with minimal area/power overhead
-
- Ideal for:
- - Secure IoT devices
- - Battery-powered secure sensors
- - Payment terminals
- - Smart cards
-
- Examples: Future secure IoT MCUs
- Choose this for your BSP if using Cortex-M23 based MCU.
- config ARCH_ARM_CORTEX_M33
- bool
- select ARCH_ARM_CORTEX_M
- select RT_USING_CPU_FFS
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-M33 mainstream core with TrustZone.
-
- Balanced processor combining Cortex-M4 performance with TrustZone security,
- ideal for secure IoT and connected devices.
-
- Features:
- - ARMv8-M Mainline architecture
- - TrustZone security extension
- - Optional single-precision FPU (FPv5)
- - Optional MPU (8 or 16 regions)
- - DSP instructions
- - Atomic operations
- - Optional cache (Cortex-M33 derivatives)
-
- Performance: ~1.5 DMIPS/MHz
-
- Security features:
- - Secure/non-secure memory partitioning
- - Secure function calls
- - Stack limit checking
- - Co-processor isolation
-
- Ideal for:
- - Secure IoT gateways
- - Industrial automation with security
- - Connected consumer devices
- - Secure bootloaders
-
- Examples: nRF91, LPC55xx, STM32L5xx
- Choose this for your BSP if using Cortex-M33 based MCU.
- config ARCH_ARM_CORTEX_R
- bool
- select ARCH_ARM
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-R real-time processor family.
-
- High-performance real-time processors with deterministic behavior for
- safety-critical and real-time systems.
-
- Common features across Cortex-R family:
- - Low and deterministic interrupt latency
- - Tightly-coupled memory (TCM)
- - Error correction code (ECC)
- - Optional MPU or MMU
- - VFP floating-point
-
- Automatically selected when choosing specific Cortex-R variant (R4/R52).
- See individual Cortex-R variant options for detailed specifications.
- config ARCH_ARM_CORTEX_R52
- bool
- select ARCH_ARM_CORTEX_R
- help
- ARM Cortex-R52 safety-critical real-time core.
-
- Latest Cortex-R processor designed for ASIL-D automotive and IEC 61508 SIL-3
- industrial safety applications.
-
- Features:
- - ARMv8-R architecture (32-bit)
- - Dual-core lockstep for fault detection
- - ECC on caches and TCM
- - Optional MPU or MMU
- - Virtualization extensions
- - Single/double precision FPU
- - NEON SIMD
-
- Performance: Up to 1.6 DMIPS/MHz per core
-
- Safety features:
- - Redundant execution for error detection
- - Memory protection and ECC
- - Built-in self-test (BIST)
-
- Ideal for:
- - Automotive ADAS and autonomous driving
- - Industrial safety controllers (SIL-3)
- - Medical devices
- - Aerospace applications
-
- Choose this for your BSP if using Cortex-R52 based SoC.
- config ARCH_ARM_MMU
- bool
- select RT_USING_CACHE
- select ARCH_MM_MMU
- depends on ARCH_ARM
- help
- Enable MMU support for ARM Cortex-A processors.
-
- Provides full virtual memory management with page-based address translation.
- Automatically selected by Cortex-A variants.
-
- Features:
- - 4KB/16KB/64KB page sizes
- - Two-level (LPAE: three-level) page tables
- - Virtual memory for multiple processes
- - Memory attributes (cacheable, bufferable, shareable)
- - Access permissions (privileged, user, read-only, execute-never)
-
- Enables:
- - RT-Smart user-space applications
- - Memory protection between processes
- - Demand paging and swapping
- - Memory-mapped files (mmap)
- - Shared memory between processes
-
- Performance impact:
- - TLB (Translation Lookaside Buffer) misses add latency
- - Page table walks on TLB miss
- - Requires proper cache and TLB management
-
- Note: Automatically enabled for Cortex-A. Required for RT-Smart mode.
- if RT_USING_SMART
- config KERNEL_VADDR_START
- hex "The virtural address of kernel start"
- default 0xffff000000000000 if ARCH_ARMV8
- default 0xc0000000 if ARCH_ARM
- default 0xffffffc000000000 if ARCH_RISCV && ARCH_REMAP_KERNEL
- default 0x80000000 if ARCH_RISCV
- depends on ARCH_MM_MMU
- help
- Starting virtual address for kernel space in RT-Smart mode.
-
- This defines where the kernel is mapped in the virtual address space.
- The kernel typically resides in the upper half of the address space to
- separate it from user-space applications.
-
- Default values:
- - ARMv8 (64-bit): 0xffff000000000000 (upper 256TB)
- - ARM (32-bit): 0xc0000000 (upper 1GB, Linux-compatible)
- - RISC-V with remap: 0xffffffc000000000
- - RISC-V standard: 0x80000000 (2GB mark)
-
- User-space applications use addresses below this value.
-
- Note: Must be aligned to architecture's virtual memory requirements.
- Changing this requires recompiling all kernel and user-space code.
- config RT_IOREMAP_LATE
- bool "Support to create IO mapping in the kernel address space after system initlalization."
- default n
- depends on ARCH_ARM_CORTEX_A
- depends on ARCH_MM_MMU
- help
- Enable dynamic I/O memory remapping after system initialization.
-
- When enabled, allows mapping device I/O memory into kernel virtual address
- space at runtime using rt_ioremap(). This is useful for:
- - Hot-pluggable devices
- - Runtime device discovery (device tree)
- - Drivers loaded after boot
- - Flexible peripheral address mapping
-
- Without this option, all I/O mappings must be established during early boot.
-
- Impact:
- - Slightly increased memory overhead for dynamic mapping tables
- - Additional TLB entries for I/O regions
-
- Enable if you need runtime flexibility for device driver loading or
- working with device tree-based systems.
- endif
- config ARCH_ARM_ARM9
- bool
- select ARCH_ARM
- help
- ARM9 processor family (legacy ARMv4T/ARMv5 architecture).
-
- Classic ARM architecture used in many embedded systems from the 2000s.
- Now largely superseded by Cortex-A for application processors.
-
- Features:
- - 5-stage pipeline
- - MMU for virtual memory
- - Separate instruction and data caches
- - ARM and Thumb instruction sets
-
- Performance: ~1.1 DMIPS/MHz
-
- Examples: ARM926EJ-S (NXP i.MX, Atmel AT91SAM9)
- Choose this if your BSP uses ARM9-based SoC.
- config ARCH_ARM_ARM11
- bool
- select ARCH_ARM
- help
- ARM11 processor family (ARMv6 architecture).
-
- Enhanced ARM architecture with improved performance and SIMD extensions.
- Bridges the gap between ARM9 and Cortex-A.
-
- Features:
- - 8-stage pipeline
- - MMU with improved TLB
- - SIMD instructions
- - Unaligned access support
- - Hardware divide (some variants)
-
- Performance: ~1.25 DMIPS/MHz
-
- Examples: ARM1176JZF-S (Raspberry Pi 1, BCM2835)
- Choose this if your BSP uses ARM11-based SoC.
- config ARCH_ARM_CORTEX_A
- bool
- select ARCH_ARM
- select ARCH_ARM_MMU
- select RT_USING_CPU_FFS
- select RT_USING_HW_ATOMIC
- help
- ARM Cortex-A application processor family.
-
- High-performance processors designed for complex operating systems and
- rich applications (Linux, Android, RT-Smart).
-
- Common features:
- - MMU for virtual memory (required)
- - Multi-level caches (L1/L2/L3)
- - VFP floating-point and NEON SIMD
- - TrustZone security extensions
- - Multi-core configurations (SMP)
- - GIC (Generic Interrupt Controller)
-
- Typical applications:
- - Industrial HMI and gateways
- - Multimedia devices
- - Automotive infotainment
- - Edge computing
- - RT-Smart mixed-criticality systems
-
- Variants: A5/A7/A8/A9/A15/A17/A35/A53/A55/A57/A72/A73
-
- Automatically selected when choosing specific Cortex-A variant.
- if ARCH_ARM_CORTEX_A
- config RT_SMP_AUTO_BOOT
- bool
- default n
- help
- Automatically boot secondary CPU cores at system startup.
-
- When enabled, RT-Thread will start all available CPU cores during
- initialization for symmetric multiprocessing (SMP).
-
- If disabled, secondary cores remain in reset/low-power state until
- explicitly started by application code.
-
- Enable for:
- - Multi-core load distribution
- - Parallel task execution
- - Maximum system performance
-
- Disable for:
- - Power-sensitive applications
- - Asymmetric multiprocessing (AMP)
- - Single-core debugging
-
- Note: Requires RT_USING_SMP to be enabled.
- config RT_USING_GIC_V2
- bool
- default n
- help
- Use ARM Generic Interrupt Controller version 2 (GICv2).
-
- GICv2 is the interrupt controller for Cortex-A processors, providing:
- - Up to 1020 interrupt sources
- - Interrupt priority and masking
- - CPU interface for each core
- - Distributor for routing interrupts to cores
- - Software-generated interrupts (SGI) for inter-core communication
-
- Used in:
- - Cortex-A5/A7/A8/A9/A15/A17
- - Single and multi-core SMP systems
-
- Mutually exclusive with GICv3. Select based on your SoC hardware.
- config RT_USING_GIC_V3
- bool
- default n
- help
- Use ARM Generic Interrupt Controller version 3/4 (GICv3/GICv4).
-
- GICv3 is the enhanced interrupt controller for newer ARM processors:
- - Improved scalability (supports more cores)
- - System register access (no memory-mapped CPU interface)
- - Locality-specific peripheral interrupts (LPI)
- - Message-based interrupts
- - GICv4: Direct injection of virtual interrupts
-
- Used in:
- - Cortex-A55/A57/A72/A73 and newer
- - ARMv8 (AArch64) systems
- - Large SMP systems (>8 cores)
-
- Mutually exclusive with GICv2. Select based on your SoC hardware.
- config RT_NO_USING_GIC
- bool
- default y if !RT_USING_GIC_V2 && !RT_USING_GIC_V3
- help
- No GIC interrupt controller in use.
-
- Automatically set when neither GICv2 nor GICv3 is selected.
- This may indicate:
- - Custom interrupt controller
- - Legacy interrupt controller
- - Configuration error
-
- Most Cortex-A systems require either GICv2 or GICv3.
- endif
- config ARCH_ARM_CORTEX_A5
- bool
- select ARCH_ARM_CORTEX_A
- help
- ARM Cortex-A5 energy-efficient application processor.
-
- Entry-level Cortex-A processor offering lower cost and power than A9
- while maintaining application-class capabilities.
-
- Features:
- - ARMv7-A architecture
- - 1-4 cores, in-order execution
- - Optional NEON SIMD and VFPv4
- - TrustZone security
- - L1 cache, optional L2
- - GICv2
-
- Performance: ~1.57 DMIPS/MHz
-
- Ideal for: Cost-sensitive IoT gateways, industrial HMI
- Examples: Vybrid VF6xx (Cortex-A5 + Cortex-M4)
- Choose this if your BSP uses Cortex-A5 based SoC.
- config ARCH_ARM_CORTEX_A7
- bool
- select ARCH_ARM_CORTEX_A
- help
- ARM Cortex-A7 power-efficient application processor.
-
- Most power-efficient ARMv7-A processor, often paired with A15 in big.LITTLE
- configurations or used standalone for cost-effective systems.
-
- Features:
- - ARMv7-A architecture with hardware virtualization
- - 1-4 cores, in-order execution
- - VFPv4 and NEON standard
- - TrustZone security
- - L1 and L2 cache
- - GICv2
-
- Performance: ~1.9 DMIPS/MHz
- Power: 40% lower than Cortex-A9 at same performance
-
- Ideal for: IoT gateways, set-top boxes, entry-level tablets
- Examples: BCM2836 (Raspberry Pi 2), i.MX6UL, Allwinner A33
- Choose this if your BSP uses Cortex-A7 based SoC.
- config ARCH_ARM_CORTEX_A8
- bool
- select ARCH_ARM_CORTEX_A
- help
- ARM Cortex-A8 general-purpose application processor.
-
- First Cortex-A processor, designed for multimedia and mobile applications.
-
- Features:
- - ARMv7-A architecture
- - Single core, 13-stage superscalar pipeline
- - VFPv3 and NEON
- - TrustZone security
- - L1 and L2 cache
-
- Performance: ~2.0 DMIPS/MHz
-
- Ideal for: Industrial automation, multimedia systems
- Examples: TI AM335x (BeagleBone), OMAP3
- Choose this if your BSP uses Cortex-A8 based SoC.
- config ARCH_ARM_CORTEX_A9
- bool
- select ARCH_ARM_CORTEX_A
- help
- ARM Cortex-A9 high-performance application processor.
-
- Popular multi-core processor balancing performance and power efficiency.
-
- Features:
- - ARMv7-A architecture
- - 1-4 cores, out-of-order execution
- - VFPv3 and NEON
- - TrustZone security
- - L1 cache per core, shared L2
- - GICv2
-
- Performance: ~2.5 DMIPS/MHz per core
-
- Ideal for: Industrial gateways, automotive, network equipment
- Examples: Zynq-7000 (A9 + FPGA), i.MX6, NVIDIA Tegra 2/3
- Choose this if your BSP uses Cortex-A9 based SoC.
- config ARCH_ARM_CORTEX_A55
- bool
- select ARCH_ARM_CORTEX_A
- help
- ARM Cortex-A55 ultra-efficient 64-bit processor (ARMv8.2-A).
-
- DynamIQ-enabled processor for modern SMP and big.LITTLE configurations,
- designed for power efficiency and AI/ML workloads.
-
- Features:
- - ARMv8.2-A architecture (64-bit)
- - 1-8 cores in DynamIQ cluster
- - Dot product instructions for ML
- - TrustZone and pointer authentication
- - L1 and L2 cache, optional L3
- - GICv3
-
- Performance: ~1.8 DMIPS/MHz (better IPC than A53)
-
- Ideal for: Mobile, automotive ADAS, edge AI
- Examples: MediaTek Helio, Qualcomm Snapdragon 7xx/6xx
- Choose this if your BSP uses Cortex-A55 based SoC.
- config ARCH_ARM_SECURE_MODE
- bool "Running in secure mode [ARM Cortex-A]"
- default n
- depends on ARCH_ARM_CORTEX_A
- help
- Run RT-Thread in ARM secure mode (TrustZone secure world).
-
- TrustZone divides the system into two execution environments:
- - Secure world: Access to all resources, runs trusted code
- - Non-secure world: Restricted access, runs normal applications
-
- Enable this when:
- - RT-Thread acts as secure monitor or trusted OS
- - Implementing secure boot chain
- - Running in EL3 (ARMv8) or secure state (ARMv7)
- - Providing secure services to non-secure OS
-
- Disable when:
- - Running as normal OS in non-secure world
- - No TrustZone partitioning needed
- - Booting directly without secure monitor
-
- Impact:
- - Changes memory access permissions
- - Affects SCR (Secure Configuration Register) settings
- - Influences interrupt routing
-
- Note: Most applications run in non-secure mode. Only enable if you're
- implementing secure firmware or trusted execution environment.
- config RT_BACKTRACE_FUNCTION_NAME
- bool "To show function name when backtrace."
- default n
- depends on ARCH_ARM_CORTEX_A
- help
- Display function names in backtrace/call stack dumps.
-
- When enabled, exception handlers and assertion failures will show
- symbolic function names in addition to addresses, making debugging easier.
-
- Requires:
- - Debug symbols in the binary
- - Symbol table in memory or accessible
- - Additional processing during backtrace
-
- Benefits:
- - Easier identification of crash location
- - Better error reports
- - Faster debugging
-
- Costs:
- - Slightly larger binary (symbol information)
- - Increased backtrace processing time
-
- Recommended for development builds. May be disabled for production
- to save space and improve backtrace speed.
- config ARCH_ARMV8
- bool
- select ARCH_ARM
- select ARCH_ARM_MMU
- select RT_USING_CPU_FFS
- select ARCH_USING_ASID
- select ARCH_USING_IRQ_CTX_LIST
- help
- ARM 64-bit architecture (ARMv8-A / AArch64).
-
- Modern 64-bit ARM architecture for high-performance application processors.
- Represents major architectural evolution from ARMv7 with enhanced features.
-
- Key features:
- - 64-bit addressing and registers (can also run 32-bit code in AArch32 mode)
- - Exception levels (EL0-EL3) for privilege separation
- - Enhanced virtual memory (48-bit addressing, up to 256TB)
- - ASID (Address Space ID) for efficient context switching
- - Improved SIMD (Advanced SIMD / NEON)
- - Hardware virtualization support
- - Scalable Vector Extension (SVE) on some variants
-
- Advantages over ARMv7:
- - More registers (31 general-purpose 64-bit registers)
- - Larger addressable memory (>4GB)
- - Better performance and efficiency
- - Enhanced security features
-
- Processors: Cortex-A53/A57/A72/A73/A75/A76, Neoverse, Apple M-series
-
- Automatically selected by AArch64 BSP configurations.
- Required for RT-Smart on 64-bit ARM platforms.
- config ARCH_MIPS
- bool
- help
- MIPS (Microprocessor without Interlocked Pipeline Stages) architecture.
-
- Classic RISC architecture used in embedded systems, networking equipment,
- and consumer electronics.
-
- Features:
- - Simple load/store RISC design
- - Configurable endianness (big or little)
- - Optional FPU and DSP extensions
- - Hardware multithreading (MIPS MT)
-
- Common applications:
- - Network routers and switches
- - Set-top boxes
- - Gaming consoles
- - Embedded Linux systems
-
- Variants: MIPS32, MIPS64, microMIPS
- Choose this if your BSP uses MIPS-based SoC.
- config ARCH_MIPS64
- bool
- select ARCH_CPU_64BIT
- help
- MIPS 64-bit architecture.
-
- 64-bit extension of MIPS architecture providing:
- - 64-bit addressing and registers
- - Backward compatible with MIPS32 code
- - Enhanced performance for 64-bit operations
- - Access to larger memory spaces
-
- Applications: High-end networking equipment, servers
- Examples: Cavium OCTEON, Loongson processors
- Choose this if your BSP uses MIPS64-based SoC.
- config ARCH_MIPS_XBURST
- bool
- select ARCH_MIPS
- help
- Ingenic XBurst MIPS-based processor family.
-
- Customized MIPS architecture optimized for mobile and multimedia applications
- by Ingenic Semiconductor.
-
- Features:
- - MIPS32-compatible core with enhancements
- - Low power consumption
- - Integrated multimedia accelerators
-
- Common applications: Handheld devices, e-readers, IoT
- Examples: JZ47xx series SoCs
- Choose this if your BSP uses Ingenic XBurst processor.
- config ARCH_ANDES
- bool
- help
- Andes RISC-V based architecture.
-
- Custom RISC-V implementation by Andes Technology with proprietary extensions
- for enhanced performance and features.
-
- Features:
- - RISC-V ISA with Andes-specific extensions
- - CoDense (16-bit instruction compression)
- - StackSafe for stack protection
- - PowerBrake for power management
-
- Applications: AIoT, storage controllers, automotive
- Choose this if your BSP uses Andes processor core.
- config ARCH_CSKY
- bool
- help
- C-SKY CPU architecture.
-
- Chinese-designed processor architecture (now part of Alibaba's T-Head).
-
- Features:
- - 16/32-bit RISC architecture
- - Low power and small code size
- - DSP extensions
-
- Applications: IoT devices, consumer electronics
- Choose this if your BSP uses C-SKY based processor.
- config ARCH_POWERPC
- bool
- help
- PowerPC architecture.
-
- High-performance RISC architecture traditionally used in embedded and
- server applications.
-
- Features:
- - Big-endian (configurable to little-endian on some models)
- - AltiVec SIMD on some variants
- - Strong memory consistency model
-
- Applications: Networking equipment, aerospace, industrial control
- Examples: MPC5xxx, QorIQ series
- Choose this if your BSP uses PowerPC processor.
- config ARCH_RISCV
- bool
- help
- RISC-V open standard instruction set architecture.
-
- Modern, modular, open-source ISA designed for efficiency and extensibility.
- Gaining rapid adoption in embedded systems, IoT, and AI/ML applications.
-
- Key advantages:
- - Open standard (no licensing fees)
- - Modular design (choose only needed extensions)
- - Simple and clean architecture
- - Growing ecosystem and vendor support
-
- Base ISAs: RV32I (32-bit), RV64I (64-bit)
- Common extensions:
- - M: Integer multiplication/division
- - A: Atomic instructions
- - F: Single-precision floating-point
- - D: Double-precision floating-point
- - C: Compressed 16-bit instructions
- - V: Vector operations
-
- Examples: SiFive, Allwinner D1, ESP32-C3/C6, GigaDevice GD32V
-
- Automatically selected when choosing RV32 or RV64 variant.
- config ARCH_RISCV_FPU
- bool
- help
- RISC-V floating-point unit support.
-
- Enable hardware floating-point operations using RISC-V F and/or D extensions.
- Automatically selected by ARCH_RISCV_FPU_S or ARCH_RISCV_FPU_D.
-
- When enabled:
- - FPU registers (f0-f31) saved/restored during context switch
- - Hardware FP instructions used by compiler
- - Significant performance improvement for floating-point math
-
- Note: CPU must have F and/or D extension support.
- config ARCH_RISCV_VECTOR
- bool
- help
- RISC-V Vector Extension (RVV) support.
-
- Enable RISC-V Vector Extension for SIMD operations, ideal for data-parallel
- workloads like DSP, image processing, and AI/ML inference.
-
- Features:
- - Vector registers with configurable length (VLEN)
- - Vector arithmetic, logic, and memory operations
- - Predication and masking
- - Auto-vectorization by compiler
-
- Benefits:
- - 4-10x performance for vectorizable workloads
- - Efficient memory access patterns
- - Scalable across different vector lengths
-
- Applications: Signal processing, multimedia, ML inference
-
- Note: Requires CPU with V extension (ratified v1.0).
- Select VLEN based on your hardware specification.
- if ARCH_RISCV_VECTOR
- choice ARCH_VECTOR_VLEN
- prompt "RISCV Vector Vlen"
- default ARCH_VECTOR_VLEN_128
- help
- Select the vector register length (VLEN) for RISC-V Vector Extension.
-
- VLEN defines the width of vector registers in bits. This must match
- your hardware's vector implementation.
-
- Common VLEN values:
- - 128-bit: Entry-level vector implementations, good balance
- - 256-bit: Higher throughput, more aggressive vectorization
-
- Larger VLEN:
- + More data processed per instruction
- + Better performance for vector operations
- - Larger context switch overhead
- - More silicon area required
-
- Check your CPU documentation for supported VLEN.
- config ARCH_VECTOR_VLEN_128
- bool "128"
- help
- 128-bit vector register length.
-
- Standard choice for embedded RISC-V processors with vector support.
- Provides good performance/area balance.
-
- Choose this for most RISC-V vector implementations.
- config ARCH_VECTOR_VLEN_256
- bool "256"
- help
- 256-bit vector register length.
-
- Wider vector registers for higher throughput in data-parallel workloads.
- Requires more silicon area and increases context switch time.
-
- Choose this only if your CPU supports 256-bit VLEN.
- endchoice
- endif
- config ARCH_RISCV_FPU_S
- select ARCH_RISCV_FPU
- bool
- help
- RISC-V single-precision floating-point (F extension).
-
- Enable support for 32-bit (float) floating-point operations in hardware.
-
- Features:
- - 32 single-precision FP registers (f0-f31)
- - IEEE 754 single-precision arithmetic
- - FP load/store, arithmetic, conversion instructions
-
- Sufficient for many embedded applications requiring FP without the
- overhead of double-precision.
-
- Automatically selected by BSP when CPU has F extension.
- config ARCH_RISCV_FPU_D
- select ARCH_RISCV_FPU
- bool
- help
- RISC-V double-precision floating-point (D extension).
-
- Enable support for 64-bit (double) floating-point operations in hardware.
- Includes F extension functionality.
-
- Features:
- - 32 double-precision FP registers (f0-f31, 64-bit wide)
- - IEEE 754 double-precision arithmetic
- - Both single and double-precision operations
-
- Required for:
- - High-precision scientific computations
- - Financial calculations
- - Applications requiring >7 significant digits
-
- Note: D extension requires F extension as prerequisite.
- Automatically selected by BSP when CPU has D extension.
- config ARCH_RISCV32
- select ARCH_RISCV
- bool
- help
- RISC-V 32-bit architecture (RV32).
-
- 32-bit RISC-V implementation optimized for resource-constrained
- embedded systems and microcontrollers.
-
- Features:
- - 32-bit addressing (4GB address space)
- - 32 general-purpose 32-bit registers
- - Compact code size with C extension
- - Lower power consumption
-
- Ideal for:
- - Microcontrollers and IoT devices
- - Cost-sensitive applications
- - Battery-powered systems
-
- Common variants: RV32IMAC, RV32IMAFC
- Examples: ESP32-C3, GigaDevice GD32VF103, Nuclei Bumblebee
-
- Choose this if your BSP uses 32-bit RISC-V processor.
- config ARCH_RISCV64
- select ARCH_RISCV
- select ARCH_CPU_64BIT
- bool
- help
- RISC-V 64-bit architecture (RV64).
-
- 64-bit RISC-V implementation for high-performance embedded systems
- and application processors.
-
- Features:
- - 64-bit addressing (16 exabyte address space)
- - 32 general-purpose 64-bit registers
- - Backward compatible with RV32 software (with proper toolchain)
- - Better performance for 64-bit arithmetic
-
- Ideal for:
- - Application processors
- - RT-Smart user-space applications
- - Systems requiring >4GB memory
- - High-performance embedded Linux
-
- Common variants: RV64IMAC, RV64GC
- Examples: SiFive U74, Allwinner D1 (C906), Kendryte K210
-
- Choose this if your BSP uses 64-bit RISC-V processor.
- if ARCH_RISCV64
- config ARCH_USING_NEW_CTX_SWITCH
- bool
- default y
- help
- Use optimized context switch implementation for RISC-V 64-bit.
-
- Enables improved context switching with better performance and
- smaller code size. This is the recommended implementation for RV64.
-
- Automatically enabled for RISC-V 64-bit. No manual configuration needed.
- config ARCH_USING_RISCV_COMMON64
- bool
- depends on ARCH_RISCV64
- select RT_USING_CPUTIME
- select ARCH_USING_NEW_CTX_SWITCH
- help
- Use common 64-bit RISC-V implementation under ./libcpu/risc-v/common64.
-
- Provides unified, optimized implementation for 64-bit RISC-V cores:
- - Standard context switch routines
- - Exception and interrupt handling
- - MMU/PMP management
- - CPU time measurement
-
- Benefits:
- - Code reuse across different RV64 cores
- - Well-tested implementation
- - Consistent behavior
-
- Enable this for standard RV64 cores (SiFive U74, T-Head C906, etc.)
- unless you have specific custom requirements.
- endif
- config ARCH_REMAP_KERNEL
- bool
- depends on RT_USING_SMART
- help
- Remap kernel image to high virtual address region.
-
- In RT-Smart mode, move kernel to upper virtual memory region to separate
- it from user-space, similar to Linux kernel layout.
-
- Benefits:
- - Clear separation between kernel and user address spaces
- - User applications can use lower addresses (0x0 upward)
- - Prevents accidental user access to kernel memory
- - Compatible with standard executable loaders
-
- Memory layout with remapping:
- - User space: 0x00000000 - KERNEL_VADDR_START
- - Kernel space: KERNEL_VADDR_START - 0xFFFFFFFF...
-
- Required for: Full RT-Smart user-space isolation
- Note: Increases boot time slightly due to remapping overhead.
- config ARCH_USING_ASID
- bool
- depends on RT_USING_SMART
- help
- Enable Address Space ID (ASID) support from architecture.
-
- ASID is a hardware feature that tags TLB (Translation Lookaside Buffer)
- entries with process identifiers, avoiding TLB flushes on context switch.
-
- Benefits:
- - Faster context switches between processes
- - Better TLB utilization (multiple processes' translations cached)
- - Reduced MMU overhead
-
- Without ASID: TLB must be flushed on every context switch (expensive)
- With ASID: TLB entries for multiple processes coexist (efficient)
-
- Performance impact: Can reduce context switch time by 50-70%
-
- Automatically enabled for:
- - ARMv8 (8-bit or 16-bit ASID)
- - Some ARMv7-A implementations
- - RISC-V with ASID support
-
- Note: Requires MMU with ASID support. Automatically selected by
- compatible architectures.
- config ARCH_IA32
- bool
- help
- Intel IA-32 (x86 32-bit) architecture.
-
- 32-bit x86 architecture for PC-compatible systems and embedded x86 platforms.
-
- Features:
- - CISC architecture
- - Segmented memory model (legacy) or flat model
- - x87 FPU, MMX, SSE extensions
- - Paging and segmentation
-
- Applications: Industrial PCs, legacy embedded systems, virtualization hosts
- Examples: Intel Atom, AMD Geode
-
- Choose this if your BSP uses x86 32-bit processor.
- config ARCH_TIDSP
- bool
- help
- Texas Instruments DSP architecture family.
-
- Specialized processors for digital signal processing applications.
-
- Features:
- - Optimized for real-time signal processing
- - Harvard architecture (separate program/data memory)
- - Hardware multipliers and MAC units
- - Low-latency interrupt handling
-
- Applications: Motor control, audio processing, power electronics
-
- Automatically selected by specific TI DSP variant (e.g., C28x).
- config ARCH_TIDSP_C28X
- bool
- select ARCH_TIDSP
- select ARCH_CPU_STACK_GROWS_UPWARD
- help
- Texas Instruments C28x DSP architecture.
-
- Fixed-point DSP optimized for real-time control applications,
- especially motor control and power conversion.
-
- Features:
- - 32-bit fixed-point architecture
- - Upward-growing stack (unusual characteristic)
- - Single-cycle MAC operations
- - Fast interrupt response (<50ns)
- - Floating-point unit (C28x+FPU variants)
-
- Ideal for:
- - Digital motor control (FOC, vector control)
- - Power inverters and converters
- - Solar inverters
- - Industrial drives
-
- Examples: TMS320F28xxx series
-
- Note: Stack grows upward unlike most architectures.
- Choose this if your BSP uses TI C28x DSP.
- config ARCH_HOST_SIMULATOR
- bool
- help
- Host machine simulator (running RT-Thread on development PC).
-
- Allows running RT-Thread as a user-space application on Linux, Windows,
- or macOS for development, testing, and debugging without physical hardware.
-
- Features:
- - Rapid prototyping and testing
- - Debugger-friendly (use GDB, Visual Studio debugger)
- - File system access to host files
- - Network simulation
-
- Use cases:
- - Algorithm development and testing
- - Application logic verification
- - CI/CD automated testing
- - Learning RT-Thread without hardware
-
- Note: Timing behavior differs from real hardware. Not suitable for
- real-time performance validation.
-
- Choose this for simulator-based BSP (e.g., qemu-vexpress-a9, simulator).
- config ARCH_USING_HW_THREAD_SELF
- bool
- default n
- help
- Use hardware register to identify current thread (thread self-identification).
-
- Some architectures provide dedicated registers or instructions to identify
- the currently executing thread without memory access.
-
- Benefits:
- - Faster rt_thread_self() operation (single register read)
- - Reduced memory bandwidth
- - Better performance in multi-core systems
-
- Examples:
- - ARM: TPIDRURO/TPIDR_EL0 register
- - x86: FS/GS segment registers
- - RISC-V: Some implementations use tp register
-
- Automatically enabled by architectures supporting this feature.
- No manual configuration needed.
- config ARCH_USING_IRQ_CTX_LIST
- bool
- default n
- help
- Use interrupt context list for nested interrupt handling.
-
- Maintains a list of interrupt contexts for proper nested interrupt
- management, especially important for complex interrupt scenarios.
-
- Benefits:
- - Correct handling of deeply nested interrupts
- - Proper context tracking in multi-level interrupt systems
- - Better debugging of interrupt-related issues
-
- Overhead:
- - Slight increase in interrupt entry/exit time
- - Small memory overhead for context list
-
- Automatically enabled by architectures requiring it (e.g., ARMv8).
- No manual configuration needed.
|