module.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /*
  2. * File : module.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006 - 2010, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2010-01-09 Bernard first version
  13. * 2010-04-09 yi.qiu implement based on first version
  14. * 2010-10-23 yi.qiu implement module memory allocator
  15. */
  16. #include <rtthread.h>
  17. #include <rtm.h>
  18. #include "string.h"
  19. #include "kservice.h"
  20. /* #define RT_MODULE_DEBUG */
  21. #ifdef RT_USING_MODULE
  22. #include "module.h"
  23. #define elf_module ((Elf32_Ehdr *)module_ptr)
  24. #define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff))
  25. #define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff))
  26. #define IS_PROG(s) (s.sh_type == SHT_PROGBITS)
  27. #define IS_NOPROG(s) (s.sh_type == SHT_NOBITS)
  28. #define IS_REL(s) (s.sh_type == SHT_REL)
  29. #define IS_RELA(s) (s.sh_type == SHT_RELA)
  30. #define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC)
  31. #define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR))
  32. #define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE))
  33. /* module memory allocator */
  34. struct rt_module_page
  35. {
  36. rt_uint8_t *ptr; /* address of memory block */
  37. rt_size_t npage; /* number of pages */
  38. rt_list_t list;
  39. };
  40. /* module memory allocator */
  41. struct rt_mem_head
  42. {
  43. rt_size_t size; /* size of memory block */
  44. struct rt_mem_head *next; /* next valid memory block */
  45. };
  46. extern void *rt_malloc_page(rt_size_t npages);
  47. extern void rt_free_page(void *page_ptr, rt_size_t npages);
  48. static rt_module_t rt_current_module = RT_NULL;
  49. rt_list_t rt_module_symbol_list;
  50. struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL, *_rt_module_symtab_end = RT_NULL;
  51. /**
  52. * @ingroup SystemInit
  53. *
  54. * This function will initialize system module
  55. *
  56. */
  57. void rt_system_module_init(void)
  58. {
  59. #ifdef __GNUC__
  60. extern int __rtmsymtab_start;
  61. extern int __rtmsymtab_end;
  62. _rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start;
  63. _rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end;
  64. #elif defined (__CC_ARM)
  65. extern int RTMSymTab$$Base;
  66. extern int RTMSymTab$$Limit;
  67. _rt_module_symtab_begin = (struct rt_module_symtab *)&RTMSymTab$$Base;
  68. _rt_module_symtab_end = (struct rt_module_symtab *)&RTMSymTab$$Limit;
  69. #endif
  70. rt_list_init(&rt_module_symbol_list);
  71. /* init current module */
  72. rt_current_module = RT_NULL;
  73. }
  74. static rt_uint32_t rt_module_symbol_find(const char* sym_str)
  75. {
  76. /* find in kernel symbol table */
  77. struct rt_module_symtab* index;
  78. for (index = _rt_module_symtab_begin; index != _rt_module_symtab_end; index ++)
  79. {
  80. if (rt_strcmp(index->name, sym_str) == 0)
  81. return (rt_uint32_t)index->addr;
  82. }
  83. return 0;
  84. }
  85. /**
  86. * This function will return self module object
  87. *
  88. * @return the self module object
  89. *
  90. */
  91. rt_module_t rt_module_self (void)
  92. {
  93. /* return current module */
  94. return rt_current_module;
  95. }
  96. /**
  97. * This function will set current module object
  98. *
  99. * @return RT_EOK
  100. */
  101. rt_err_t rt_module_set (rt_module_t module)
  102. {
  103. /* set current module */
  104. rt_current_module = module;
  105. return RT_EOK;
  106. }
  107. static int rt_module_arm_relocate(struct rt_module* module, Elf32_Rel *rel, Elf32_Addr sym_val)
  108. {
  109. Elf32_Addr *where, tmp;
  110. Elf32_Sword addend;
  111. where = (Elf32_Addr *)((rt_uint8_t*)module->module_space + rel->r_offset);
  112. switch (ELF32_R_TYPE(rel->r_info))
  113. {
  114. case R_ARM_NONE:
  115. break;
  116. case R_ARM_ABS32:
  117. *where += (Elf32_Addr)sym_val;
  118. #ifdef RT_MODULE_DEBUG
  119. rt_kprintf("R_ARM_ABS32: %x -> %x\n", where, *where);
  120. #endif
  121. break;
  122. case R_ARM_PC24:
  123. case R_ARM_PLT32:
  124. case R_ARM_CALL:
  125. case R_ARM_JUMP24:
  126. addend = *where & 0x00ffffff;
  127. if (addend & 0x00800000)
  128. addend |= 0xff000000;
  129. tmp = sym_val - (Elf32_Addr)where + (addend << 2);
  130. tmp >>= 2;
  131. *where = (*where & 0xff000000) | (tmp & 0x00ffffff);
  132. #ifdef RT_MODULE_DEBUG
  133. rt_kprintf("R_ARM_PC24: %x -> %x\n", where, *where);
  134. #endif
  135. break;
  136. case R_ARM_V4BX:
  137. *where &= 0xf000000f;
  138. *where |= 0x01a0f000;
  139. break;
  140. case R_ARM_GLOB_DAT:
  141. case R_ARM_JUMP_SLOT:
  142. *where = (Elf32_Addr)sym_val;
  143. #ifdef RT_MODULE_DEBUG
  144. rt_kprintf("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val);
  145. #endif
  146. break;
  147. case R_ARM_RELATIVE:
  148. *where += (Elf32_Addr)sym_val;
  149. #ifdef RT_MODULE_DEBUG
  150. rt_kprintf("R_ARM_RELATIVE: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val);
  151. #endif
  152. break;
  153. default:
  154. return -1;
  155. }
  156. return 0;
  157. }
  158. static void rt_module_init_object_container(struct rt_module* module)
  159. {
  160. RT_ASSERT(module != RT_NULL);
  161. /* initialize object container - thread */
  162. rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list));
  163. module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread);
  164. module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread;
  165. #ifdef RT_USING_SEMAPHORE
  166. /* initialize object container - semaphore */
  167. rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list));
  168. module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore);
  169. module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore;
  170. #endif
  171. #ifdef RT_USING_MUTEX
  172. /* initialize object container - mutex */
  173. rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list));
  174. module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex);
  175. module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex;
  176. #endif
  177. #ifdef RT_USING_EVENT
  178. /* initialize object container - event */
  179. rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list));
  180. module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event);
  181. module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event;
  182. #endif
  183. #ifdef RT_USING_MAILBOX
  184. /* initialize object container - mailbox */
  185. rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list));
  186. module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox);
  187. module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox;
  188. #endif
  189. #ifdef RT_USING_MESSAGEQUEUE
  190. /* initialize object container - message queue */
  191. rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list));
  192. module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue);
  193. module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue;
  194. #endif
  195. #ifdef RT_USING_MEMPOOL
  196. /* initialize object container - memory pool */
  197. rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list));
  198. module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool);
  199. module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool;
  200. #endif
  201. #ifdef RT_USING_DEVICE
  202. /* initialize object container - device */
  203. rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list));
  204. module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device);
  205. module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device;
  206. #endif
  207. /* initialize object container - timer */
  208. rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list));
  209. module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer);
  210. module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer;
  211. }
  212. /**
  213. * This function will load a module from memory and create a thread for it
  214. *
  215. * @param name the name of module, which shall be unique
  216. * @param module_ptr the memory address of module image
  217. *
  218. * @return the module object
  219. *
  220. */
  221. rt_module_t rt_module_load(const char* name, void* module_ptr)
  222. {
  223. rt_uint8_t *ptr = RT_NULL;
  224. rt_module_t module = RT_NULL;
  225. rt_bool_t linked = RT_FALSE;
  226. rt_uint32_t index, module_size = 0;
  227. rt_kprintf("rt_module_load: %s ,", name);
  228. /* check ELF header */
  229. if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) == 0)
  230. {
  231. /* rtmlinke finished */
  232. linked = RT_TRUE;
  233. }
  234. else if (rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0)
  235. {
  236. rt_kprintf(" module magic error\n");
  237. return RT_NULL;
  238. }
  239. /* check ELF class */
  240. if(elf_module->e_ident[EI_CLASS] != ELFCLASS32)
  241. {
  242. rt_kprintf(" module class error\n");
  243. return RT_NULL;
  244. }
  245. /* get the ELF image size */
  246. for (index = 0; index < elf_module->e_phnum; index++)
  247. {
  248. if(phdr[index].p_type == PT_LOAD)
  249. module_size += phdr[index].p_memsz;
  250. }
  251. if (module_size == 0)
  252. {
  253. rt_kprintf(" module size error\n");
  254. return module;
  255. }
  256. /* allocate module */
  257. module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char*)name);
  258. if (!module) return RT_NULL;
  259. /* allocate module space */
  260. module->module_space = rt_malloc(module_size);
  261. if (module->module_space == RT_NULL)
  262. {
  263. rt_object_delete(&(module->parent));
  264. return RT_NULL;
  265. }
  266. /* zero all space */
  267. ptr = module->module_space;
  268. rt_memset(ptr, 0, module_size);
  269. rt_kprintf(" load address at 0x%x\n", ptr);
  270. for (index = 0; index < elf_module->e_phnum; index++)
  271. {
  272. if(phdr[index].p_type == PT_LOAD)
  273. {
  274. rt_memcpy(ptr, (rt_uint8_t*)elf_module + phdr[index].p_offset, phdr[index].p_filesz);
  275. ptr += phdr[index].p_memsz;
  276. }
  277. }
  278. /* set module entry */
  279. module->module_entry = module->module_space + elf_module->e_entry;
  280. /* handle relocation section */
  281. for (index = 0; index < elf_module->e_shnum; index ++)
  282. {
  283. if (IS_REL(shdr[index]))
  284. {
  285. rt_uint32_t i, nr_reloc;
  286. Elf32_Sym *symtab;
  287. Elf32_Rel *rel;
  288. rt_uint8_t *strtab;
  289. static rt_bool_t unsolved = RT_FALSE;
  290. /* get relocate item */
  291. rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset);
  292. /* locate .rel.plt and .rel.dyn section */
  293. symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset);
  294. strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
  295. nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel));
  296. /* relocate every items */
  297. for (i = 0; i < nr_reloc; i ++)
  298. {
  299. Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
  300. #ifdef RT_MODULE_DEBUG
  301. rt_kprintf("relocate symbol %s shndx %d\n", strtab + sym->st_name, sym->st_shndx);
  302. #endif
  303. if((sym->st_shndx != SHT_NULL) || (ELF_ST_BIND(sym->st_info) == STB_LOCAL))
  304. rt_module_arm_relocate(module, rel, (Elf32_Addr)(module->module_space + sym->st_value));
  305. else if(!linked)
  306. {
  307. Elf32_Addr addr;
  308. #ifdef RT_MODULE_DEBUG
  309. rt_kprintf("unresolved relocate symbol: %s\n", strtab + sym->st_name);
  310. #endif
  311. /* need to resolve symbol in kernel symbol table */
  312. addr = rt_module_symbol_find((const char*)(strtab + sym->st_name));
  313. if (addr == 0)
  314. {
  315. rt_kprintf("can't find %s in kernel symbol table\n", strtab + sym->st_name);
  316. unsolved = RT_TRUE;
  317. }
  318. else rt_module_arm_relocate(module, rel, addr);
  319. }
  320. rel ++;
  321. }
  322. if(unsolved)
  323. {
  324. rt_object_delete(&(module->parent));
  325. rt_free(module);
  326. return RT_NULL;
  327. }
  328. }
  329. }
  330. /* construct module symbol table */
  331. for (index = 0; index < elf_module->e_shnum; index ++)
  332. {
  333. /* find .dynsym section */
  334. rt_uint8_t* shstrab = (rt_uint8_t*) module_ptr + shdr[elf_module->e_shstrndx].sh_offset;
  335. if (rt_strcmp((const char *)(shstrab + shdr[index].sh_name), ELF_DYNSYM) == 0) break;
  336. }
  337. /* found .dynsym section */
  338. if(index != elf_module->e_shnum)
  339. {
  340. int i, count = 0;
  341. Elf32_Sym *symtab = RT_NULL;
  342. rt_uint8_t *strtab = RT_NULL;
  343. symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset);
  344. strtab = (rt_uint8_t*) module_ptr + shdr[shdr[index].sh_link].sh_offset;
  345. for(i=0; i<shdr[index].sh_size/sizeof(Elf32_Sym); i++)
  346. {
  347. if((ELF_ST_BIND(symtab[i].st_info) == STB_GLOBAL) && (ELF_ST_TYPE(symtab[i].st_info) == STT_FUNC))
  348. count++;
  349. }
  350. module->symtab = (struct rt_module_symtab*)rt_malloc(count * sizeof(struct rt_module_symtab));
  351. module->nsym = count;
  352. for(i=0, count=0; i<shdr[index].sh_size/sizeof(Elf32_Sym); i++)
  353. {
  354. if((ELF_ST_BIND(symtab[i].st_info) == STB_GLOBAL) && (ELF_ST_TYPE(symtab[i].st_info) == STT_FUNC))
  355. {
  356. rt_size_t length = rt_strlen((const char*)(strtab + symtab[i].st_name)) + 1;
  357. module->symtab[count].addr = (void*)(module->module_space + symtab[i].st_value);
  358. module->symtab[count].name = rt_malloc(length);
  359. rt_memset((void*)module->symtab[count].name, 0, length);
  360. rt_memcpy((void*)module->symtab[count].name, strtab + symtab[i].st_name, length);
  361. count++;
  362. }
  363. }
  364. }
  365. /* init module object container */
  366. rt_module_init_object_container(module);
  367. /* increase module reference count */
  368. module->nref++;
  369. if(elf_module->e_entry != 0)
  370. {
  371. /* init module page list */
  372. rt_list_init(&module->page_list);
  373. /* init module memory allocator */
  374. module->mem_list = RT_NULL;
  375. /* create mpool for page node */
  376. module->mpool = rt_mp_create(name, 256, sizeof(struct rt_module_page));
  377. /* create module thread */
  378. module->stack_size = 2048;
  379. module->thread_priority = 90;
  380. module->module_thread = rt_thread_create(name,
  381. module->module_entry, RT_NULL,
  382. module->stack_size,
  383. module->thread_priority, 10);
  384. module->module_thread->module_id = (void*)module;
  385. /* startup module thread */
  386. rt_thread_startup(module->module_thread);
  387. }
  388. else
  389. {
  390. /* without entry point */
  391. module->parent.flag |= RT_MODULE_FLAG_WITHOUTENTRY;
  392. }
  393. return module;
  394. }
  395. #ifdef RT_USING_DFS
  396. #include <dfs_posix.h>
  397. /**
  398. * This function will load a module from a file
  399. *
  400. * @param filename the file name of application module
  401. *
  402. * @return the module object
  403. *
  404. */
  405. rt_module_t rt_module_open(const char* filename)
  406. {
  407. int fd, length;
  408. struct rt_module* module;
  409. struct stat s;
  410. char *buffer, *offset_ptr;;
  411. /* check parameters */
  412. RT_ASSERT(filename != RT_NULL);
  413. if (stat(filename, &s) !=0)
  414. {
  415. rt_kprintf("access file failed\n");
  416. return RT_NULL;
  417. }
  418. buffer = (char *)rt_malloc(s.st_size);
  419. if (buffer == RT_NULL)
  420. {
  421. rt_kprintf("out of memory\n");
  422. return RT_NULL;
  423. }
  424. offset_ptr = buffer;
  425. fd = open(filename, O_RDONLY, 0);
  426. if (fd < 0)
  427. {
  428. rt_kprintf("open file failed\n");
  429. rt_free(buffer);
  430. return RT_NULL;
  431. }
  432. do
  433. {
  434. length = read(fd, offset_ptr, 4096);
  435. if (length > 0)
  436. {
  437. offset_ptr += length;
  438. }
  439. }while (length > 0);
  440. /* close fd */
  441. close(fd);
  442. if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size)
  443. {
  444. rt_kprintf("check: read file failed\n");
  445. rt_free(buffer);
  446. return RT_NULL;
  447. }
  448. module = rt_module_load(filename, (void *)buffer);
  449. rt_free(buffer);
  450. return module;
  451. }
  452. #if defined(RT_USING_FINSH)
  453. #include <finsh.h>
  454. FINSH_FUNCTION_EXPORT_ALIAS(rt_module_open, exec, exec module from file);
  455. #endif
  456. #endif
  457. /**
  458. * This function will unload a module from memory and release resources
  459. *
  460. * @param module the module to be unloaded
  461. *
  462. * @return the operation status, RT_EOK on OK; -RT_ERROR on error
  463. *
  464. */
  465. rt_err_t rt_module_unload(rt_module_t module)
  466. {
  467. int i;
  468. struct rt_object* object;
  469. struct rt_list_node *list;
  470. rt_kprintf("rt_module_unload: %s\n", module->parent.name);
  471. /* check parameter */
  472. RT_ASSERT(module != RT_NULL);
  473. /* module has entry point */
  474. if(!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY))
  475. {
  476. /* suspend module main thread */
  477. if(module->module_thread != RT_NULL)
  478. {
  479. if (module->module_thread->stat == RT_THREAD_READY)
  480. rt_thread_suspend(module->module_thread);
  481. }
  482. /* delete threads */
  483. list = &module->module_object[RT_Object_Class_Thread].object_list;
  484. while(list->next != list)
  485. {
  486. object = rt_list_entry(list->next, struct rt_object, list);
  487. if (rt_object_is_systemobject(object) == RT_EOK)
  488. {
  489. /* detach static object */
  490. rt_thread_detach((rt_thread_t)object);
  491. }
  492. else
  493. {
  494. /* delete dynamic object */
  495. rt_thread_delete((rt_thread_t)object);
  496. }
  497. }
  498. #ifdef RT_USING_SEMAPHORE
  499. /* delete semaphores */
  500. list = &module->module_object[RT_Object_Class_Thread].object_list;
  501. while(list->next != list)
  502. {
  503. object = rt_list_entry(list->next, struct rt_object, list);
  504. if (rt_object_is_systemobject(object) == RT_EOK)
  505. {
  506. /* detach static object */
  507. rt_sem_detach((rt_sem_t)object);
  508. }
  509. else
  510. {
  511. /* delete dynamic object */
  512. rt_sem_delete((rt_sem_t)object);
  513. }
  514. }
  515. #endif
  516. #ifdef RT_USING_MUTEX
  517. /* delete mutexs*/
  518. list = &module->module_object[RT_Object_Class_Mutex].object_list;
  519. while(list->next != list)
  520. {
  521. object = rt_list_entry(list->next, struct rt_object, list);
  522. if (rt_object_is_systemobject(object) == RT_EOK)
  523. {
  524. /* detach static object */
  525. rt_mutex_detach((rt_mutex_t)object);
  526. }
  527. else
  528. {
  529. /* delete dynamic object */
  530. rt_mutex_delete((rt_mutex_t)object);
  531. }
  532. }
  533. #endif
  534. #ifdef RT_USING_EVENT
  535. /* delete mailboxs */
  536. list = &module->module_object[RT_Object_Class_Event].object_list;
  537. while(list->next != list)
  538. {
  539. object = rt_list_entry(list->next, struct rt_object, list);
  540. if (rt_object_is_systemobject(object) == RT_EOK)
  541. {
  542. /* detach static object */
  543. rt_event_detach((rt_event_t)object);
  544. }
  545. else
  546. {
  547. /* delete dynamic object */
  548. rt_event_delete((rt_event_t)object);
  549. }
  550. }
  551. #endif
  552. #ifdef RT_USING_MAILBOX
  553. /* delete mailboxs */
  554. list = &module->module_object[RT_Object_Class_MailBox].object_list;
  555. while(list->next != list)
  556. {
  557. object = rt_list_entry(list->next, struct rt_object, list);
  558. if (rt_object_is_systemobject(object) == RT_EOK)
  559. {
  560. /* detach static object */
  561. rt_mb_detach((rt_mailbox_t)object);
  562. }
  563. else
  564. {
  565. /* delete dynamic object */
  566. rt_mb_delete((rt_mailbox_t)object);
  567. }
  568. }
  569. #endif
  570. #ifdef RT_USING_MESSAGEQUEUE
  571. /* delete msgqueues */
  572. list = &module->module_object[RT_Object_Class_MessageQueue].object_list;
  573. while(list->next != list)
  574. {
  575. object = rt_list_entry(list->next, struct rt_object, list);
  576. if (rt_object_is_systemobject(object) == RT_EOK)
  577. {
  578. /* detach static object */
  579. rt_mq_detach((rt_mq_t)object);
  580. }
  581. else
  582. {
  583. /* delete dynamic object */
  584. rt_mq_delete((rt_mq_t)object);
  585. }
  586. }
  587. #endif
  588. #ifdef RT_USING_MEMPOOL
  589. /* delete mempools */
  590. list = &module->module_object[RT_Object_Class_MemPool].object_list;
  591. while(list->next != list)
  592. {
  593. object = rt_list_entry(list->next, struct rt_object, list);
  594. if (rt_object_is_systemobject(object) == RT_EOK)
  595. {
  596. /* detach static object */
  597. rt_mp_detach((rt_mp_t)object);
  598. }
  599. else
  600. {
  601. /* delete dynamic object */
  602. rt_mp_delete((rt_mp_t)object);
  603. }
  604. }
  605. #endif
  606. #ifdef RT_USING_DEVICE
  607. /* delete devices */
  608. list = &module->module_object[RT_Object_Class_Device].object_list;
  609. while(list->next != list)
  610. {
  611. object = rt_list_entry(list->next, struct rt_object, list);
  612. rt_device_unregister((rt_device_t)object);
  613. }
  614. #endif
  615. /* delete timers */
  616. list = &module->module_object[RT_Object_Class_Timer].object_list;
  617. while(list->next != list)
  618. {
  619. object = rt_list_entry(list->next, struct rt_object, list);
  620. if (rt_object_is_systemobject(object) == RT_EOK)
  621. {
  622. /* detach static object */
  623. rt_timer_detach((rt_timer_t)object);
  624. }
  625. else
  626. {
  627. /* delete dynamic object */
  628. rt_timer_delete((rt_timer_t)object);
  629. }
  630. }
  631. /* free module pages */
  632. list = &module->page_list;
  633. while(list->next != list)
  634. {
  635. struct rt_module_page* page;
  636. /* free page */
  637. page = rt_list_entry(list->next, struct rt_module_page, list);
  638. rt_free_page(page->ptr, page->npage);
  639. rt_list_remove(list->next);
  640. }
  641. /* delete mpool */
  642. if(module->mpool) rt_mp_delete(module->mpool);
  643. }
  644. /* release module space memory */
  645. rt_free(module->module_space);
  646. /* release module symbol table */
  647. for(i=0; i<module->nsym; i++) rt_free((void *)module->symtab[i].name);
  648. if(module->symtab != RT_NULL) rt_free(module->symtab);
  649. /* delete module object */
  650. rt_object_delete((rt_object_t)module);
  651. return RT_EOK;
  652. }
  653. /**
  654. * This function will find the specified module.
  655. *
  656. * @param name the name of module finding
  657. *
  658. * @return the module
  659. */
  660. rt_module_t rt_module_find(const char* name)
  661. {
  662. struct rt_object_information *information;
  663. struct rt_object* object;
  664. struct rt_list_node* node;
  665. extern struct rt_object_information rt_object_container[];
  666. /* enter critical */
  667. rt_enter_critical();
  668. /* try to find device object */
  669. information = &rt_object_container[RT_Object_Class_Module];
  670. for (node = information->object_list.next; node != &(information->object_list); node = node->next)
  671. {
  672. object = rt_list_entry(node, struct rt_object, list);
  673. if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0)
  674. {
  675. /* leave critical */
  676. rt_exit_critical();
  677. return (rt_module_t)object;
  678. }
  679. }
  680. /* leave critical */
  681. rt_exit_critical();
  682. /* not found */
  683. return RT_NULL;
  684. }
  685. static struct rt_mem_head *morepage(rt_size_t nu)
  686. {
  687. rt_uint8_t *cp;
  688. rt_uint32_t npage;
  689. struct rt_mem_head *up;
  690. struct rt_module_page *node;
  691. RT_ASSERT (nu != 0);
  692. /* allocate pages from system heap */
  693. npage = (nu * sizeof(struct rt_mem_head) + RT_MM_PAGE_SIZE - 1)/RT_MM_PAGE_SIZE;
  694. cp = rt_malloc_page(npage);
  695. if(!cp) return RT_NULL;
  696. /* allocate page list node from mpool */
  697. node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER);
  698. node->ptr = cp;
  699. node->npage = npage;
  700. /* insert page list node to moudle's page list */
  701. rt_list_insert_after (&rt_current_module->page_list, &node->list);
  702. up = (struct rt_mem_head *) cp;
  703. up->size = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head);
  704. rt_module_free(rt_current_module, (void *)(up+1));
  705. return up;
  706. }
  707. /*
  708. rt_module_malloc - allocate memory block in free list
  709. */
  710. void *rt_module_malloc(rt_size_t size)
  711. {
  712. struct rt_mem_head *b, *n;
  713. struct rt_mem_head **prev;
  714. rt_size_t nunits;
  715. nunits = (size + sizeof(struct rt_mem_head) -1)/sizeof(struct rt_mem_head) + 1;
  716. RT_ASSERT(size != 0);
  717. RT_ASSERT(nunits != 0);
  718. prev = (struct rt_mem_head **)&rt_current_module->mem_list;
  719. /* if size can be divided by page, allocate page directly */
  720. if(size % RT_MM_PAGE_SIZE == 0)
  721. {
  722. rt_uint8_t *cp;
  723. struct rt_module_page *node;
  724. rt_uint32_t npage = size / RT_MM_PAGE_SIZE;
  725. /* allocate pages from system heap */
  726. cp = rt_malloc_page(npage);
  727. if(!cp) return RT_NULL;
  728. /* allocate page list node from mpool */
  729. node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER);
  730. node->ptr = cp;
  731. node->npage = npage;
  732. /* insert page list node to moudle's page list */
  733. rt_list_insert_after (&rt_current_module->page_list, &node->list);
  734. }
  735. while(RT_TRUE)
  736. {
  737. b = *prev;
  738. if(!b)
  739. {
  740. if ((b = morepage(nunits)) == RT_NULL) return RT_NULL;
  741. else return rt_module_malloc(size); /* To be improved */
  742. }
  743. if (b->size > nunits)
  744. {
  745. /* split memory */
  746. n = b + nunits;
  747. n->next = b->next;
  748. n->size = b->size - nunits;
  749. b->size = nunits;
  750. *prev = n;
  751. break;
  752. }
  753. if (b->size == nunits)
  754. {
  755. /* this node fit, remove this node */
  756. *prev = b->next;
  757. break;
  758. }
  759. prev = &(b->next);
  760. }
  761. return (void *)(b + 1);
  762. }
  763. /*
  764. rt_module_free - insert memory block in free list
  765. */
  766. void rt_module_free(rt_module_t module, void *addr)
  767. {
  768. struct rt_mem_head *b, *n;
  769. struct rt_mem_head **prev;
  770. RT_ASSERT(addr);
  771. RT_ASSERT((((rt_uint32_t)addr) & (sizeof(struct rt_mem_head) -1)) == 0);
  772. n = (struct rt_mem_head *)addr - 1;
  773. prev = (struct rt_mem_head **)&module->mem_list;
  774. while ((b = *prev) != RT_NULL)
  775. {
  776. RT_ASSERT(b->size > 0);
  777. RT_ASSERT(b > n || b + b->size <= n);
  778. if (b + b->size == n)
  779. {
  780. if (b + (b->size += n->size) == b->next)
  781. {
  782. b->size += b->next->size;
  783. b->next = b->next->next;
  784. }
  785. return;
  786. }
  787. if (b == n + n->size)
  788. {
  789. n->size = b->size + n->size;
  790. n->next = b->next;
  791. *prev = n;
  792. return;
  793. }
  794. if (b > n + n->size) break;
  795. prev = &(b->next);
  796. }
  797. n->next = b;
  798. *prev = n;
  799. /* free page, TODO */
  800. }
  801. /*
  802. rt_module_realloc - realloc memory block in free list
  803. */
  804. void *rt_module_realloc(void *ptr, rt_size_t size)
  805. {
  806. struct rt_mem_head *b, *p, *prev, *tmpp;
  807. rt_size_t nunits;
  808. if (!ptr) return rt_module_malloc(size);
  809. if (size == 0)
  810. {
  811. rt_module_free(rt_current_module, ptr);
  812. return RT_NULL;
  813. }
  814. nunits = (size + sizeof(struct rt_mem_head) - 1) / sizeof(struct rt_mem_head) + 1;
  815. b = (struct rt_mem_head *)ptr - 1;
  816. if (nunits <= b->size)
  817. {
  818. /* new size is smaller or equal then before */
  819. if (nunits == b->size) return ptr;
  820. else
  821. {
  822. p = b + nunits;
  823. p->size = b->size - nunits;
  824. b->size = nunits;
  825. rt_module_free(rt_current_module, (void *)(p + 1));
  826. return (void *)(b + 1);
  827. }
  828. }
  829. else
  830. {
  831. /* more space then required */
  832. prev = (struct rt_mem_head *)rt_current_module->mem_list;
  833. for (p = prev->next; p != (b->size + b) && p != RT_NULL; prev = p, p = p->next) break;
  834. /* available block after ap in freelist */
  835. if (p != RT_NULL && (p->size >= (nunits - (b->size))) && p == (b + b->size))
  836. {
  837. /* perfect match */
  838. if (p->size == (nunits - (b->size)))
  839. {
  840. b->size = nunits;
  841. prev->next = p->next;
  842. }
  843. else /* more space then required, split block*/
  844. {
  845. /* pointer to old header */
  846. tmpp = p;
  847. p = b + nunits;
  848. /* restoring old pointer */
  849. p->next = tmpp->next;
  850. /* new size for p */
  851. p->size = tmpp->size + b->size - nunits;
  852. b->size = nunits;
  853. prev->next = p;
  854. }
  855. rt_current_module->mem_list = (void *)prev;
  856. return (void *) (b + 1);
  857. }
  858. else /* allocate new memory and copy old data */
  859. {
  860. if ((p = rt_module_malloc(size)) == RT_NULL) return RT_NULL;
  861. rt_memmove(p, (b+1), ((b->size) * sizeof(struct rt_mem_head)));
  862. rt_module_free(rt_current_module, (void *)(b + 1));
  863. return (void *) (p);
  864. }
  865. }
  866. }
  867. #endif