board.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. /*
  2. * Copyright (c) 2023-2025 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. *
  6. */
  7. #include "board.h"
  8. #include "hpm_uart_drv.h"
  9. #include "hpm_gptmr_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "pinmux.h"
  13. #include "hpm_pmp_drv.h"
  14. #include "assert.h"
  15. #include "hpm_clock_drv.h"
  16. #include "hpm_sysctl_drv.h"
  17. #include "hpm_pwm_drv.h"
  18. #include "hpm_trgm_drv.h"
  19. #include "hpm_pllctlv2_drv.h"
  20. #include "hpm_pcfg_drv.h"
  21. #include <rtconfig.h>
  22. /**
  23. * @brief FLASH configuration option definitions:
  24. * option[0]:
  25. * [31:16] 0xfcf9 - FLASH configuration option tag
  26. * [15:4] 0 - Reserved
  27. * [3:0] option words (exclude option[0])
  28. * option[1]:
  29. * [31:28] Flash probe type
  30. * 0 - SFDP SDR / 1 - SFDP DDR
  31. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  32. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  33. * 6 - OctaBus DDR (SPI -> OPI DDR)
  34. * 8 - Xccela DDR (SPI -> OPI DDR)
  35. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  36. * [27:24] Command Pads after Power-on Reset
  37. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  38. * [23:20] Command Pads after Configuring FLASH
  39. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  40. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  41. * 0 - Not needed
  42. * 1 - QE bit is at bit 6 in Status Register 1
  43. * 2 - QE bit is at bit1 in Status Register 2
  44. * 3 - QE bit is at bit7 in Status Register 2
  45. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  46. * [15:8] Dummy cycles
  47. * 0 - Auto-probed / detected / default value
  48. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  49. * [7:4] Misc.
  50. * 0 - Not used
  51. * 1 - SPI mode
  52. * 2 - Internal loopback
  53. * 3 - External DQS
  54. * [3:0] Frequency option
  55. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  56. *
  57. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  58. * [31:20] Reserved
  59. * [19:16] IO voltage
  60. * 0 - 3V / 1 - 1.8V
  61. * [15:12] Pin group
  62. * 0 - 1st group / 1 - 2nd group
  63. * [11:8] Connection selection
  64. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  65. * [7:0] Drive Strength
  66. * 0 - Default value
  67. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  68. * JESD216)
  69. * [31:16] reserved
  70. * [15:12] Sector Erase Command Option, not required here
  71. * [11:8] Sector Size Option, not required here
  72. * [7:0] Flash Size Option
  73. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  74. */
  75. #if defined(FLASH_XIP) && FLASH_XIP
  76. __attribute__((section(".nor_cfg_option"), used)) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
  77. #endif
  78. #if defined(FLASH_UF2) && FLASH_UF2
  79. ATTR_PLACE_AT(".uf2_signature") __attribute__((used)) const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  80. #endif
  81. void board_init_console(void)
  82. {
  83. #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
  84. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  85. console_config_t cfg;
  86. /* uart needs to configure pin function before enabling clock, otherwise the level change of
  87. uart rx pin when configuring pin function will cause a wrong data to be received.
  88. And a uart rx dma request will be generated by default uart fifo dma trigger level. */
  89. init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
  90. clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
  91. cfg.type = BOARD_CONSOLE_TYPE;
  92. cfg.base = (uint32_t)BOARD_CONSOLE_UART_BASE;
  93. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
  94. cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
  95. if (status_success != console_init(&cfg)) {
  96. /* failed to initialize debug console */
  97. while (1) {
  98. }
  99. }
  100. #else
  101. while (1)
  102. ;
  103. #endif
  104. #endif
  105. }
  106. void board_print_clock_freq(void)
  107. {
  108. printf("==============================\n");
  109. printf(" %s clock summary\n", BOARD_NAME);
  110. printf("==============================\n");
  111. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  112. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  113. printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi));
  114. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  115. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  116. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  117. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  118. printf("==============================\n");
  119. }
  120. void board_init_uart(UART_Type *ptr)
  121. {
  122. /* configure uart's pin before opening uart's clock */
  123. init_uart_pins(ptr);
  124. board_init_uart_clock(ptr);
  125. }
  126. void board_print_banner(void)
  127. {
  128. const uint8_t banner[] = { "\n\
  129. ----------------------------------------------------------------------\n\
  130. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  131. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  132. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  133. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  134. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  135. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  136. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  137. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  138. ----------------------------------------------------------------------\n"};
  139. #ifdef SDK_VERSION_STRING
  140. printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
  141. #endif
  142. printf("%s", banner);
  143. }
  144. uint8_t board_get_led_pwm_off_level(void)
  145. {
  146. return BOARD_LED_OFF_LEVEL;
  147. }
  148. uint8_t board_get_led_gpio_off_level(void)
  149. {
  150. return BOARD_LED_OFF_LEVEL;
  151. }
  152. void board_ungate_mchtmr_at_lp_mode(void)
  153. {
  154. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  155. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  156. }
  157. void board_init(void)
  158. {
  159. board_init_clock();
  160. board_init_console();
  161. board_init_pmp();
  162. #if BOARD_SHOW_CLOCK
  163. board_print_clock_freq();
  164. #endif
  165. #if BOARD_SHOW_BANNER
  166. board_print_banner();
  167. #endif
  168. }
  169. void board_init_core1(void)
  170. {
  171. clock_update_core_clock();
  172. board_init_console();
  173. board_init_pmp();
  174. }
  175. void board_delay_us(uint32_t us)
  176. {
  177. clock_cpu_delay_us(us);
  178. }
  179. void board_delay_ms(uint32_t ms)
  180. {
  181. clock_cpu_delay_ms(ms);
  182. }
  183. #if !defined(NO_BOARD_TIMER_SUPPORT) || !NO_BOARD_TIMER_SUPPORT
  184. static board_timer_cb timer_cb;
  185. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr)
  186. void board_timer_isr(void)
  187. {
  188. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  189. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  190. timer_cb();
  191. }
  192. }
  193. void board_timer_create(uint32_t ms, board_timer_cb cb)
  194. {
  195. uint32_t gptmr_freq;
  196. gptmr_channel_config_t config;
  197. timer_cb = cb;
  198. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  199. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  200. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  201. config.reload = gptmr_freq / 1000 * ms;
  202. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  203. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  204. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  205. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  206. }
  207. #endif
  208. void board_i2c_bus_clear(I2C_Type *ptr)
  209. {
  210. init_i2c_pins_as_gpio(ptr);
  211. if (ptr == BOARD_APP_I2C_BASE) {
  212. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN);
  213. gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  214. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN)) {
  215. printf("CLK is low, please power cycle the board\n");
  216. while (1) {
  217. }
  218. }
  219. if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN)) {
  220. printf("SDA is low, try to issue I2C bus clear\n");
  221. } else {
  222. printf("I2C bus is ready\n");
  223. return;
  224. }
  225. gpio_set_pin_output(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN);
  226. while (1) {
  227. for (uint32_t i = 0; i < 9; i++) {
  228. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 1);
  229. board_delay_ms(10);
  230. gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 0);
  231. board_delay_ms(10);
  232. }
  233. board_delay_ms(100);
  234. }
  235. printf("I2C bus is cleared\n");
  236. }
  237. }
  238. uint32_t board_init_i2c_clock(I2C_Type *ptr)
  239. {
  240. uint32_t freq = 0;
  241. if (ptr == HPM_I2C0) {
  242. clock_add_to_group(clock_i2c0, 0);
  243. freq = clock_get_frequency(clock_i2c0);
  244. } else if (ptr == HPM_I2C1) {
  245. clock_add_to_group(clock_i2c1, 0);
  246. freq = clock_get_frequency(clock_i2c1);
  247. } else if (ptr == HPM_I2C2) {
  248. clock_add_to_group(clock_i2c2, 0);
  249. freq = clock_get_frequency(clock_i2c2);
  250. } else if (ptr == HPM_I2C3) {
  251. clock_add_to_group(clock_i2c3, 0);
  252. freq = clock_get_frequency(clock_i2c3);
  253. } else {
  254. ;
  255. }
  256. return freq;
  257. }
  258. void board_init_i2c(I2C_Type *ptr)
  259. {
  260. i2c_config_t config;
  261. hpm_stat_t stat;
  262. uint32_t freq;
  263. freq = board_init_i2c_clock(ptr);
  264. board_i2c_bus_clear(ptr);
  265. init_i2c_pins(ptr);
  266. config.i2c_mode = i2c_mode_normal;
  267. config.is_10bit_addressing = false;
  268. stat = i2c_init_master(ptr, freq, &config);
  269. if (stat != status_success) {
  270. printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
  271. while (1) {
  272. }
  273. }
  274. }
  275. uint32_t board_init_spi_clock(SPI_Type *ptr)
  276. {
  277. if (ptr == HPM_SPI1) {
  278. clock_add_to_group(clock_spi1, 0);
  279. return clock_get_frequency(clock_spi1);
  280. } else if (ptr == HPM_SPI2) {
  281. clock_add_to_group(clock_spi2, 0);
  282. return clock_get_frequency(clock_spi2);
  283. } else if (ptr == HPM_SPI3) {
  284. clock_add_to_group(clock_spi3, 0);
  285. return clock_get_frequency(clock_spi3);
  286. }
  287. return 0;
  288. }
  289. void board_init_lin_pins(LIN_Type *ptr)
  290. {
  291. init_lin_pins(ptr);
  292. }
  293. uint32_t board_init_lin_clock(LIN_Type *ptr)
  294. {
  295. if (ptr == HPM_LIN0) {
  296. clock_add_to_group(clock_lin0, 0);
  297. clock_set_source_divider(clock_lin0, clk_src_pll0_clk0, 20U); /* 20MHz */
  298. return clock_get_frequency(clock_lin0);
  299. }
  300. return 0;
  301. }
  302. void board_init_gpio_pins(void)
  303. {
  304. init_gpio_pins();
  305. }
  306. void board_init_spi_pins(SPI_Type *ptr)
  307. {
  308. init_spi_pins(ptr);
  309. }
  310. void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
  311. {
  312. init_spi_pins_with_gpio_as_cs(ptr);
  313. gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
  314. GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
  315. }
  316. void board_write_spi_cs(uint32_t pin, uint8_t state)
  317. {
  318. gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
  319. }
  320. void board_init_led_pins(void)
  321. {
  322. init_led_pins_as_gpio();
  323. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
  324. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
  325. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
  326. }
  327. void board_led_toggle(void)
  328. {
  329. #ifdef BOARD_LED_TOGGLE_RGB
  330. static uint8_t i;
  331. switch (i) {
  332. case 1:
  333. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  334. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
  335. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  336. break;
  337. case 2:
  338. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  339. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  340. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
  341. break;
  342. case 0:
  343. default:
  344. gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
  345. gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  346. gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  347. break;
  348. }
  349. i++;
  350. i = i % 3;
  351. #else
  352. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  353. #endif
  354. }
  355. void board_led_write(uint8_t state)
  356. {
  357. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  358. }
  359. void board_init_usb(USB_Type *ptr)
  360. {
  361. if (ptr == HPM_USB0) {
  362. init_usb_pins(ptr);
  363. clock_add_to_group(clock_usb0, 0);
  364. }
  365. }
  366. void board_init_pmp(void)
  367. {
  368. uint32_t start_addr;
  369. uint32_t end_addr;
  370. uint32_t length;
  371. pmp_entry_t pmp_entry[16];
  372. uint8_t index = 0;
  373. /* Init noncachable memory */
  374. extern uint32_t __noncacheable_start__[];
  375. extern uint32_t __noncacheable_end__[];
  376. start_addr = (uint32_t)__noncacheable_start__;
  377. end_addr = (uint32_t)__noncacheable_end__;
  378. length = end_addr - start_addr;
  379. if (length > 0) {
  380. /* Ensure the address and the length are power of 2 aligned */
  381. assert((length & (length - 1U)) == 0U);
  382. assert((start_addr & (length - 1U)) == 0U);
  383. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  384. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  385. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  386. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  387. index++;
  388. }
  389. /* Init share memory */
  390. extern uint32_t __share_mem_start__[];
  391. extern uint32_t __share_mem_end__[];
  392. start_addr = (uint32_t)__share_mem_start__;
  393. end_addr = (uint32_t)__share_mem_end__;
  394. length = end_addr - start_addr;
  395. if (length > 0) {
  396. /* Ensure the address and the length are power of 2 aligned */
  397. assert((length & (length - 1U)) == 0U);
  398. assert((start_addr & (length - 1U)) == 0U);
  399. pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  400. pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  401. pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  402. pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  403. index++;
  404. }
  405. pmp_config(&pmp_entry[0], index);
  406. }
  407. void board_init_clock(void)
  408. {
  409. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  410. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  411. /* Configure the External OSC ramp-up time: ~9ms */
  412. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  413. /* Select clock setting preset1 */
  414. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  415. }
  416. /* Add clocks to group 0 */
  417. clock_add_to_group(clock_cpu0, 0);
  418. clock_add_to_group(clock_mchtmr0, 0);
  419. clock_add_to_group(clock_ahbp, 0);
  420. clock_add_to_group(clock_axic, 0);
  421. clock_add_to_group(clock_axis, 0);
  422. clock_add_to_group(clock_xpi0, 0);
  423. clock_add_to_group(clock_xdma, 0);
  424. clock_add_to_group(clock_hdma, 0);
  425. clock_add_to_group(clock_ram0, 0);
  426. clock_add_to_group(clock_lmm0, 0);
  427. clock_add_to_group(clock_lmm1, 0);
  428. clock_add_to_group(clock_gpio, 0);
  429. clock_add_to_group(clock_mot0, 0);
  430. clock_add_to_group(clock_mot1, 0);
  431. clock_add_to_group(clock_mot2, 0);
  432. clock_add_to_group(clock_mot3, 0);
  433. clock_add_to_group(clock_synt, 0);
  434. clock_add_to_group(clock_ptpc, 0);
  435. /* Connect Group0 to CPU0 */
  436. clock_connect_group_to_cpu(0, 0);
  437. /* Add clocks to Group1 */
  438. clock_add_to_group(clock_cpu1, 1);
  439. clock_add_to_group(clock_mchtmr1, 1);
  440. /* Connect Group1 to CPU1 */
  441. clock_connect_group_to_cpu(1, 1);
  442. /* Bump up DCDC voltage to 1275mv */
  443. pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
  444. /* Configure CPU to 600MHz, AXI/AHB to 200MHz. CPU1 clock freqency same as CPU0 */
  445. sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clock_source_pll1_clk1, 1, 3, 3);
  446. /* Configure PLL1 Post Divider */
  447. pllctlv2_set_postdiv(HPM_PLLCTLV2, pllctlv2_pll1, pllctlv2_clk0, pllctlv2_div_2p0); /* PLL1CLK0: 480MHz */
  448. pllctlv2_set_postdiv(HPM_PLLCTLV2, pllctlv2_pll1, pllctlv2_clk1, pllctlv2_div_1p6); /* PLL1CLK1: 600MHz */
  449. /* Configure PLL1 Frequency to 960MHz */
  450. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, pllctlv2_pll1, 960000000);
  451. clock_update_core_clock();
  452. /* Configure mchtmr to 24MHz */
  453. clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
  454. clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
  455. }
  456. uint32_t board_init_adc_clock(void *ptr, bool clk_src_bus)
  457. {
  458. uint32_t freq = 0;
  459. if (ptr == (void *)HPM_ADC0) {
  460. if (clk_src_bus) {
  461. /* Configure the ADC clock from AHB (@200MHz by default)*/
  462. clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
  463. } else {
  464. /* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
  465. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  466. clock_set_source_divider(clock_ana0, clk_src_pll0_clk0, 2U);
  467. }
  468. clock_add_to_group(clock_adc0, 0);
  469. freq = clock_get_frequency(clock_adc0);
  470. } else if (ptr == (void *)HPM_ADC1) {
  471. if (clk_src_bus) {
  472. /* Configure the ADC clock from AHB (@200MHz by default)*/
  473. clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
  474. } else {
  475. /* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
  476. clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
  477. clock_set_source_divider(clock_ana1, clk_src_pll0_clk0, 2U);
  478. }
  479. clock_add_to_group(clock_adc1, 0);
  480. freq = clock_get_frequency(clock_adc1);
  481. } else if (ptr == (void *)HPM_ADC2) {
  482. if (clk_src_bus) {
  483. /* Configure the ADC clock from AHB (@200MHz by default)*/
  484. clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
  485. } else {
  486. /* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */
  487. clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
  488. clock_set_source_divider(clock_ana2, clk_src_pll0_clk0, 2U);
  489. }
  490. clock_add_to_group(clock_adc2, 0);
  491. freq = clock_get_frequency(clock_adc2);
  492. }
  493. return freq;
  494. }
  495. uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
  496. {
  497. uint32_t freq = 0;
  498. if (ptr == HPM_DAC0) {
  499. if (clk_src_ahb == true) {
  500. /* Configure the DAC clock to 200MHz */
  501. clock_set_dac_source(clock_dac0, clk_dac_src_ahb0);
  502. } else {
  503. /* Configure the DAC clock to 166MHz */
  504. clock_set_dac_source(clock_dac0, clk_dac_src_ana3);
  505. clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
  506. }
  507. clock_add_to_group(clock_dac0, 0);
  508. freq = clock_get_frequency(clock_dac0);
  509. } else if (ptr == HPM_DAC1) {
  510. if (clk_src_ahb == true) {
  511. /* Configure the DAC clock to 200MHz */
  512. clock_set_dac_source(clock_dac1, clk_dac_src_ahb0);
  513. } else {
  514. /* Configure the DAC clock to 166MHz */
  515. clock_set_dac_source(clock_dac1, clk_dac_src_ana4);
  516. clock_set_source_divider(clock_ana4, clk_src_pll0_clk1, 2);
  517. }
  518. clock_add_to_group(clock_dac1, 0);
  519. freq = clock_get_frequency(clock_dac1);
  520. }
  521. return freq;
  522. }
  523. void board_init_can(MCAN_Type *ptr)
  524. {
  525. init_can_pins(ptr);
  526. }
  527. uint32_t board_init_can_clock(MCAN_Type *ptr)
  528. {
  529. uint32_t freq = 0;
  530. if (ptr == HPM_MCAN0) {
  531. /* Set the CAN0 peripheral clock to 8MHz */
  532. clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
  533. clock_add_to_group(clock_can0, 0);
  534. freq = clock_get_frequency(clock_can0);
  535. } else if (ptr == HPM_MCAN1) {
  536. /* Set the CAN1 peripheral clock to 8MHz */
  537. clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
  538. clock_add_to_group(clock_can1, 0);
  539. freq = clock_get_frequency(clock_can1);
  540. } else if (ptr == HPM_MCAN2) {
  541. /* Set the CAN2 peripheral clock to 8MHz */
  542. clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 5);
  543. clock_add_to_group(clock_can2, 0);
  544. freq = clock_get_frequency(clock_can2);
  545. } else if (ptr == HPM_MCAN3) {
  546. /* Set the CAN2 peripheral clock to 8MHz */
  547. clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 5);
  548. clock_add_to_group(clock_can3, 0);
  549. freq = clock_get_frequency(clock_can3);
  550. } else {
  551. /* Invalid CAN instance */
  552. }
  553. return freq;
  554. }
  555. void board_init_adc16_pins(void)
  556. {
  557. init_adc_pins();
  558. }
  559. void board_init_acmp_pins(void)
  560. {
  561. init_acmp_pins();
  562. }
  563. void board_init_acmp_clock(ACMP_Type *ptr)
  564. {
  565. (void)ptr;
  566. clock_add_to_group(BOARD_ACMP_CLK, BOARD_RUNNING_CORE & 0x1);
  567. }
  568. void board_init_rgb_pwm_pins(void)
  569. {
  570. init_led_pins_as_pwm();
  571. }
  572. void board_disable_output_rgb_led(uint8_t color)
  573. {
  574. switch (color) {
  575. case BOARD_RGB_RED:
  576. pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  577. break;
  578. case BOARD_RGB_GREEN:
  579. pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  580. break;
  581. case BOARD_RGB_BLUE:
  582. pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  583. break;
  584. default:
  585. while (1) {
  586. ;
  587. }
  588. }
  589. }
  590. void board_enable_output_rgb_led(uint8_t color)
  591. {
  592. switch (color) {
  593. case BOARD_RGB_RED:
  594. pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
  595. break;
  596. case BOARD_RGB_GREEN:
  597. pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
  598. break;
  599. case BOARD_RGB_BLUE:
  600. pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
  601. break;
  602. default:
  603. while (1) {
  604. ;
  605. }
  606. }
  607. }
  608. void board_init_dac_pins(DAC_Type *ptr)
  609. {
  610. init_dac_pins(ptr);
  611. }
  612. uint32_t board_init_uart_clock(UART_Type *ptr)
  613. {
  614. uint32_t freq = 0U;
  615. if (ptr == HPM_UART0) {
  616. clock_add_to_group(clock_uart0, 0);
  617. freq = clock_get_frequency(clock_uart0);
  618. } else if (ptr == HPM_UART1) {
  619. clock_add_to_group(clock_uart1, 0);
  620. freq = clock_get_frequency(clock_uart1);
  621. } else if (ptr == HPM_UART2) {
  622. clock_add_to_group(clock_uart2, 0);
  623. freq = clock_get_frequency(clock_uart2);
  624. } else {
  625. /* Not supported */
  626. }
  627. return freq;
  628. }
  629. void board_init_gptmr_channel_pin(GPTMR_Type *ptr, uint32_t channel, bool as_comp)
  630. {
  631. init_gptmr_channel_pin(ptr, channel, as_comp);
  632. }
  633. void board_init_clk_ref_pin(void)
  634. {
  635. init_clk_ref_pins();
  636. }
  637. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  638. {
  639. uint32_t freq = 0U;
  640. if (ptr == HPM_GPTMR0) {
  641. clock_add_to_group(clock_gptmr0, BOARD_RUNNING_CORE & 0x1);
  642. freq = clock_get_frequency(clock_gptmr0);
  643. } else if (ptr == HPM_GPTMR1) {
  644. clock_add_to_group(clock_gptmr1, BOARD_RUNNING_CORE & 0x1);
  645. freq = clock_get_frequency(clock_gptmr1);
  646. } else if (ptr == HPM_GPTMR2) {
  647. clock_add_to_group(clock_gptmr2, BOARD_RUNNING_CORE & 0x1);
  648. freq = clock_get_frequency(clock_gptmr2);
  649. } else if (ptr == HPM_GPTMR3) {
  650. clock_add_to_group(clock_gptmr3, BOARD_RUNNING_CORE & 0x1);
  651. freq = clock_get_frequency(clock_gptmr3);
  652. } else if (ptr == HPM_PTMR) {
  653. clock_add_to_group(clock_ptmr, BOARD_RUNNING_CORE & 0x1);
  654. freq = clock_get_frequency(clock_ptmr);
  655. } else {
  656. /* Not supported */
  657. }
  658. return freq;
  659. }